Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cda3a774
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cda3a774
编写于
11月 27, 2017
作者:
P
peterzhang2029
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
bug fix when using hsigmoid with gpu
上级
54b39949
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
134 addition
and
16 deletion
+134
-16
paddle/gserver/layers/HierarchicalSigmoidLayer.cpp
paddle/gserver/layers/HierarchicalSigmoidLayer.cpp
+124
-16
paddle/gserver/layers/HierarchicalSigmoidLayer.h
paddle/gserver/layers/HierarchicalSigmoidLayer.h
+10
-0
未找到文件。
paddle/gserver/layers/HierarchicalSigmoidLayer.cpp
浏览文件 @
cda3a774
...
...
@@ -64,49 +64,113 @@ void HierarchicalSigmoidLayer::forward(PassType passType) {
batchSize
,
codeLength_
,
/* trans */
false
,
useGpu
(
deviceId_
)
);
false
);
Matrix
::
resizeOrCreate
(
preOutput_
.
grad
,
batchSize
,
codeLength_
,
/* trans */
false
,
useGpu
(
deviceId_
));
false
);
IVectorPtr
label
=
getInput
(
*
getLabelLayer
()).
ids
;
preOutput_
.
value
->
zeroMem
();
if
(
useGpu_
)
{
Matrix
::
resizeOrCreate
(
cpuOutput_
,
output_
.
value
->
getHeight
(),
output_
.
value
->
getWidth
(),
/* trans */
false
,
false
);
IVector
::
resizeOrCreate
(
cpuLabel_
,
label
->
getSize
(),
false
);
cpuLabel_
->
copyFrom
(
*
label
);
cpuOutput_
->
copyFrom
(
*
output_
.
value
);
}
else
{
cpuOutput_
=
output_
.
value
;
cpuLabel_
=
label
;
}
/* add the bias-vector */
if
(
biases_
.
get
()
!=
NULL
)
{
preOutput_
.
value
->
addByBitCode
(
numClasses_
,
*
label
,
*
biases_
->
getW
());
if
(
useGpu_
)
{
Matrix
::
resizeOrCreate
(
cpuBias_
,
1
,
numClasses_
-
1
,
/* trans */
false
,
false
);
cpuBias_
->
copyFrom
(
*
biases_
->
getW
());
}
else
{
cpuBias_
=
biases_
->
getW
();
}
preOutput_
.
value
->
addByBitCode
(
numClasses_
,
*
cpuLabel_
,
*
cpuBias_
);
}
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
()
-
1
;
++
i
)
{
MatrixPtr
input
=
getInputValue
(
i
);
if
(
useGpu_
)
{
Matrix
::
resizeOrCreate
(
cpuInput_
,
input
->
getHeight
(),
input
->
getWidth
(),
/* trans */
false
,
false
);
Matrix
::
resizeOrCreate
(
cpuWeight_
,
weights_
[
i
]
->
getW
()
->
getHeight
(),
weights_
[
i
]
->
getW
()
->
getWidth
(),
/* trans */
false
,
false
);
cpuInput_
->
copyFrom
(
*
input
);
cpuWeight_
->
copyFrom
(
*
weights_
[
i
]
->
getW
());
}
else
{
cpuInput_
=
input
;
cpuWeight_
=
weights_
[
i
]
->
getW
();
}
preOutput_
.
value
->
mulByBitCode
(
numClasses_
,
*
label
,
*
weights_
[
i
]
->
getW
(),
*
input
);
numClasses_
,
*
cpuLabel_
,
*
cpuWeight_
,
*
cpuInput_
);
}
// keep consistent with the clipping in the following softrelu
preOutput_
.
value
->
clip
(
-
40.0
,
40.0
);
preOutput_
.
value
->
sumByBitCode
(
numClasses_
,
*
label
,
*
output_
.
value
,
*
cpuLabel_
,
*
cpuOutput_
,
-
1
);
// scaleSum
preOutput_
.
value
->
softrelu
(
*
preOutput_
.
value
);
MatrixPtr
sum
=
Matrix
::
create
(
batchSize
,
1
,
/* trans= */
false
,
useGpu
(
deviceId_
)
);
Matrix
::
create
(
batchSize
,
1
,
/* trans= */
false
,
false
);
preOutput_
.
value
->
rowSum
(
*
sum
);
output_
.
value
->
add
(
*
sum
);
cpuOutput_
->
add
(
*
sum
);
if
(
useGpu_
)
{
output_
.
value
->
copyFrom
(
*
cpuOutput_
);
}
else
{
output_
.
value
=
cpuOutput_
;
}
}
void
HierarchicalSigmoidLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
IVectorPtr
label
=
getInput
(
*
getLabelLayer
()).
ids
;
if
(
useGpu_
)
{
IVector
::
resizeOrCreate
(
cpuLabel_
,
label
->
getSize
(),
false
);
cpuLabel_
->
copyFrom
(
*
label
);
}
else
{
cpuLabel_
=
label
;
}
preOutput_
.
grad
->
one
();
preOutput_
.
grad
->
softreluDerivative
(
*
preOutput_
.
value
);
preOutput_
.
grad
->
subByBitCode
(
numClasses_
,
*
label
);
preOutput_
.
grad
->
subByBitCode
(
numClasses_
,
*
cpuLabel_
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
MatrixPtr
biases_grad
=
biases_
->
getWGrad
();
if
(
useGpu_
)
{
Matrix
::
resizeOrCreate
(
cpuBias_
,
1
,
numClasses_
-
1
,
/* trans */
false
,
false
);
cpuBias_
->
copyFrom
(
*
biases_grad
);
}
else
{
cpuBias_
=
biases_grad
;
}
preOutput_
.
grad
->
addByBitCodeBackward
(
numClasses_
,
*
label
,
*
biases_
->
getWGrad
());
numClasses_
,
*
cpuLabel_
,
*
cpuBias_
);
if
(
useGpu
)
{
biases_grad
->
copyFrom
(
*
cpuBias_
);
}
else
{
biases_grad
=
cpuBias_
;
}
/* Increasing the number of gradient */
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
...
...
@@ -115,9 +179,31 @@ void HierarchicalSigmoidLayer::backward(const UpdateCallback& callback) {
/* Calculate the W-gradient for the current layer */
MatrixPtr
input
=
getInputValue
(
i
);
if
(
weights_
[
i
]
->
getWGrad
())
{
MatrixPtr
weights_grad
=
weights_
[
i
]
->
getWGrad
();
if
(
useGpu_
)
{
Matrix
::
resizeOrCreate
(
cpuInput_
,
input
->
getHeight
(),
input
->
getWidth
(),
/* trans */
false
,
false
);
Matrix
::
resizeOrCreate
(
cpuWeightGrad_
,
weights_grad
->
getHeight
(),
weights_grad
->
getWidth
(),
/* trans */
false
,
false
);
cpuInput_
->
copyFrom
(
*
input
);
cpuWeightGrad_
->
copyFrom
(
*
weights_grad
);
}
else
{
cpuInput_
=
input
;
cpuWeightGrad_
=
weights_grad
;
}
preOutput_
.
grad
->
mulByBitCodeBackwardWeight
(
numClasses_
,
*
label
,
*
weights_
[
i
]
->
getWGrad
(),
*
input
);
numClasses_
,
*
cpuLabel_
,
*
cpuWeightGrad_
,
*
cpuInput_
);
if
(
useGpu_
)
{
weights_grad
->
copyFrom
(
*
cpuWeightGrad_
);
}
else
{
weights_grad
=
cpuWeightGrad_
;
}
/* Increasing the number of gradient */
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
...
...
@@ -125,8 +211,30 @@ void HierarchicalSigmoidLayer::backward(const UpdateCallback& callback) {
/* Calculate the input layers error */
MatrixPtr
inputGrad
=
getInputGrad
(
i
);
if
(
inputGrad
)
{
if
(
useGpu_
)
{
Matrix
::
resizeOrCreate
(
cpuInputGrad_
,
inputGrad
->
getHeight
(),
inputGrad
->
getWidth
(),
/* trans */
false
,
false
);
Matrix
::
resizeOrCreate
(
cpuWeight_
,
weights_
[
i
]
->
getW
()
->
getHeight
(),
weights_
[
i
]
->
getW
()
->
getWidth
(),
/* trans */
false
,
false
);
cpuInputGrad_
->
copyFrom
(
*
inputGrad
);
cpuWeight_
->
copyFrom
(
*
weights_
[
i
]
->
getW
());
}
else
{
cpuInputGrad_
=
inputGrad
;
cpuWeight_
=
weights_
[
i
]
->
getW
();
}
preOutput_
.
grad
->
mulByBitCodeBackwardError
(
numClasses_
,
*
label
,
*
weights_
[
i
]
->
getW
(),
*
inputGrad
);
numClasses_
,
*
cpuLabel_
,
*
cpuWeight_
,
*
cpuInputGrad_
);
if
(
useGpu_
)
{
inputGrad
->
copyFrom
(
*
cpuInputGrad_
);
}
else
{
inputGrad
=
cpuInputGrad_
;
}
}
}
}
...
...
paddle/gserver/layers/HierarchicalSigmoidLayer.h
浏览文件 @
cda3a774
...
...
@@ -80,6 +80,16 @@ protected:
int
codeLength_
;
/// temporary result of output_
Argument
preOutput_
;
/// The temporary variables in CPU memory.
MatrixPtr
cpuWeight_
;
MatrixPtr
cpuWeightGrad_
;
MatrixPtr
cpuInput_
;
MatrixPtr
cpuInputGrad_
;
MatrixPtr
cpuBias_
;
MatrixPtr
cpuOutput_
;
IVectorPtr
cpuLabel_
;
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录