Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cbe7466f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2301
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cbe7466f
编写于
4月 14, 2022
作者:
L
liutiexing
提交者:
GitHub
4月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
executor perf statistics (#41648)
* executor perf statistics * fix ut * fix ut * fix ut * add ut * add ut
上级
d0f3296b
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
782 addition
and
10 deletion
+782
-10
paddle/fluid/framework/new_executor/CMakeLists.txt
paddle/fluid/framework/new_executor/CMakeLists.txt
+2
-0
paddle/fluid/framework/new_executor/executor_statistics.cc
paddle/fluid/framework/new_executor/executor_statistics.cc
+627
-0
paddle/fluid/framework/new_executor/executor_statistics.h
paddle/fluid/framework/new_executor/executor_statistics.h
+27
-0
paddle/fluid/framework/new_executor/standalone_executor.cc
paddle/fluid/framework/new_executor/standalone_executor.cc
+7
-0
paddle/fluid/framework/new_executor/workqueue/CMakeLists.txt
paddle/fluid/framework/new_executor/workqueue/CMakeLists.txt
+1
-1
paddle/fluid/framework/new_executor/workqueue/nonblocking_threadpool.h
...framework/new_executor/workqueue/nonblocking_threadpool.h
+6
-3
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+5
-4
python/paddle/fluid/tests/unittests/interpreter/CMakeLists.txt
...n/paddle/fluid/tests/unittests/interpreter/CMakeLists.txt
+1
-1
python/paddle/fluid/tests/unittests/interpreter/test_standalone_executor.py
...d/tests/unittests/interpreter/test_standalone_executor.py
+105
-0
未找到文件。
paddle/fluid/framework/new_executor/CMakeLists.txt
浏览文件 @
cbe7466f
...
@@ -20,6 +20,8 @@ endif()
...
@@ -20,6 +20,8 @@ endif()
cc_library
(
standalone_executor SRCS standalone_executor.cc DEPS interpretercore
)
cc_library
(
standalone_executor SRCS standalone_executor.cc DEPS interpretercore
)
cc_library
(
staticgraph_executor_statistics SRCS executor_statistics.cc DEPS enforce glog os_info
)
# cc_binary(standalone_executor_test SRCS standalone_executor_test.cc DEPS interpretercore standalone_executor operator op_registry executor ${GLOB_OP_LIB} ${GLOB_OPERATOR_DEPS} profiler)
# cc_binary(standalone_executor_test SRCS standalone_executor_test.cc DEPS interpretercore standalone_executor operator op_registry executor ${GLOB_OP_LIB} ${GLOB_OPERATOR_DEPS} profiler)
# skip win32 since wget is not installed by default on windows machine.
# skip win32 since wget is not installed by default on windows machine.
if
(
WITH_GPU AND WITH_TESTING AND NOT WIN32 AND NOT
"$ENV{CI_SKIP_CPP_TEST}"
STREQUAL
"ON"
)
if
(
WITH_GPU AND WITH_TESTING AND NOT WIN32 AND NOT
"$ENV{CI_SKIP_CPP_TEST}"
STREQUAL
"ON"
)
...
...
paddle/fluid/framework/new_executor/executor_statistics.cc
0 → 100644
浏览文件 @
cbe7466f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
#include <fstream>
#include <functional>
#include <map>
#include <ostream>
#include <queue>
#include <set>
#include <unordered_map>
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/platform/flags.h"
#include "paddle/fluid/platform/os_info.h"
#include "paddle/fluid/platform/profiler/utils.h"
DECLARE_bool
(
use_stream_safe_cuda_allocator
);
PADDLE_DEFINE_EXPORTED_string
(
static_executor_perfstat_filepath
,
""
,
"FLAGS_static_executor_perfstat_filepath "
"enables performance statistics for the static "
"graph executor."
);
namespace
paddle
{
namespace
framework
{
class
StatisticsEngine
{
public:
int
Apply
(
const
platform
::
NodeTrees
&
trees
);
void
Log
(
const
std
::
string
&
full_filename
);
private:
// type
struct
EventStat
{
uint64_t
total_time
=
0
;
size_t
count
=
0
;
uint64_t
normalization_time
=
0
;
};
struct
Priority
{
// use a smaller number to denote higher priority
int
innerthread_priority
=
0
;
int
interthread_priority
=
0
;
};
struct
StdEvent
{
size_t
evt_idx
;
uint64_t
start_ns
;
uint64_t
end_ns
;
StdEvent
(
size_t
idx
,
uint64_t
start
,
uint64_t
end
)
:
evt_idx
(
idx
),
start_ns
(
start
),
end_ns
(
end
)
{}
};
enum
class
ExecutorType
{
EXECUTOR
,
PARALLEL_EXECUTOR
,
INTERPRETER_CORE
};
using
Filter
=
std
::
function
<
bool
(
const
platform
::
HostTraceEventNode
&
)
>
;
int
Init
(
const
platform
::
NodeTrees
&
trees
);
int
Stat
(
const
platform
::
NodeTrees
&
trees
);
void
InitStdEvents
();
void
InitInnerthreadPriorityForStdEvents
();
void
InitInterthreadPriorityForStdEvents
();
int
InitFiltersForExecutor
();
int
InitFiltersForParallelExecutor
();
int
InitFiltersForInterpreterCore
();
int
RegisterEventFilter
(
const
std
::
string
&
std_event
,
Filter
filter
)
{
auto
iter
=
name2idx_
.
find
(
std_event
);
if
(
iter
==
name2idx_
.
end
())
{
LOG
(
WARNING
)
<<
"Unsupported std_event "
<<
std_event
;
return
-
1
;
}
auto
idx
=
iter
->
second
;
if
(
filters_
[
idx
])
{
LOG
(
WARNING
)
<<
"Duplicate registration for std_event("
<<
std_event
<<
")"
;
return
-
1
;
}
filters_
[
idx
]
=
std
::
move
(
filter
);
return
0
;
}
void
MergeEvents
(
std
::
function
<
size_t
(
size_t
,
size_t
)
>
merger
,
std
::
vector
<
StdEvent
>*
in_out_evts
);
int
MergeInnerthreadEvents
(
std
::
vector
<
std
::
vector
<
StdEvent
>>*
all_evts
);
int
MergeInterthreadEvents
(
std
::
vector
<
std
::
vector
<
StdEvent
>>*
all_evts
);
int
StatNormalizationTime
(
const
std
::
vector
<
std
::
vector
<
StdEvent
>>&
all_evts
);
bool
inited_
=
false
;
ExecutorType
executor_type_
;
std
::
vector
<
std
::
string
>
names_
;
std
::
vector
<
Filter
>
filters_
;
std
::
vector
<
Priority
>
priorities_
;
std
::
vector
<
EventStat
>
statistics_
;
std
::
unordered_map
<
std
::
string
,
size_t
>
name2idx_
;
};
int
StatisticsEngine
::
Apply
(
const
platform
::
NodeTrees
&
tree
)
{
return
Init
(
tree
)
||
Stat
(
tree
);
}
int
StatisticsEngine
::
Init
(
const
platform
::
NodeTrees
&
trees
)
{
if
(
inited_
)
{
LOG
(
WARNING
)
<<
"Duplicate initialization for StatisticsEngine"
;
return
-
1
;
}
if
(
platform
::
GetCurrentThreadName
()
!=
"MainThread"
)
{
LOG
(
WARNING
)
<<
"StatisticsEngin must run on the main thread"
;
return
-
1
;
}
inited_
=
true
;
InitStdEvents
();
InitInnerthreadPriorityForStdEvents
();
InitInterthreadPriorityForStdEvents
();
// determine executor type
uint64_t
main_tid
=
platform
::
GetCurrentThreadId
().
sys_tid
;
for
(
const
auto
&
kv
:
trees
.
GetNodeTrees
())
{
if
(
kv
.
first
!=
main_tid
)
{
continue
;
}
std
::
queue
<
const
platform
::
HostTraceEventNode
*>
q
;
q
.
push
(
kv
.
second
);
while
(
!
q
.
empty
())
{
auto
cur_node
=
q
.
front
();
q
.
pop
();
const
auto
&
name
=
cur_node
->
Name
();
if
(
name
.
find
(
"Executor::"
)
==
0
)
{
VLOG
(
10
)
<<
"type: Executor"
;
executor_type_
=
ExecutorType
::
EXECUTOR
;
return
InitFiltersForExecutor
();
}
else
if
(
name
.
find
(
"ParallelExecutor::"
)
==
0
)
{
VLOG
(
10
)
<<
"type: ParallelExecutor"
;
executor_type_
=
ExecutorType
::
PARALLEL_EXECUTOR
;
return
InitFiltersForParallelExecutor
();
}
else
if
(
name
.
find
(
"StandaloneExecutor::"
)
==
0
)
{
VLOG
(
10
)
<<
"type: InterpreterCore"
;
executor_type_
=
ExecutorType
::
INTERPRETER_CORE
;
return
InitFiltersForInterpreterCore
();
}
for
(
const
auto
&
child
:
cur_node
->
GetChildren
())
{
q
.
push
(
child
);
}
}
}
LOG
(
WARNING
)
<<
"Unsupported Executor"
;
return
-
1
;
}
void
StatisticsEngine
::
InitStdEvents
()
{
name2idx_
[
"Total"
]
=
names_
.
size
();
names_
.
push_back
(
"Total"
);
name2idx_
[
"PythonEnd"
]
=
names_
.
size
();
names_
.
push_back
(
"PythonEnd"
);
name2idx_
[
"CplusplusEnd"
]
=
names_
.
size
();
names_
.
push_back
(
"CplusplusEnd"
);
name2idx_
[
"RunOp"
]
=
names_
.
size
();
names_
.
push_back
(
"RunOp"
);
name2idx_
[
"LuanchKernel"
]
=
names_
.
size
();
names_
.
push_back
(
"LuanchKernel"
);
name2idx_
[
"OpCompute"
]
=
names_
.
size
();
names_
.
push_back
(
"OpCompute"
);
name2idx_
[
"OpInfershape"
]
=
names_
.
size
();
names_
.
push_back
(
"OpInfershape"
);
name2idx_
[
"DataTransform"
]
=
names_
.
size
();
names_
.
push_back
(
"DataTransform"
);
name2idx_
[
"GarbageCollect"
]
=
names_
.
size
();
names_
.
push_back
(
"GarbageCollect"
);
name2idx_
[
"CalcNextOp"
]
=
names_
.
size
();
names_
.
push_back
(
"CalcNextOp"
);
name2idx_
[
"AllocateDeviceMem"
]
=
names_
.
size
();
names_
.
push_back
(
"AllocateDeviceMem"
);
name2idx_
[
"FreeDeviceMem"
]
=
names_
.
size
();
names_
.
push_back
(
"FreeDeviceMem"
);
name2idx_
[
"ThreadpoolAddTask"
]
=
names_
.
size
();
names_
.
push_back
(
"ThreadpoolAddTask"
);
size_t
n
=
names_
.
size
();
filters_
.
resize
(
n
);
priorities_
.
resize
(
n
);
statistics_
.
resize
(
n
);
}
void
StatisticsEngine
::
InitInnerthreadPriorityForStdEvents
()
{
int
prio
=
0
;
priorities_
[
name2idx_
[
"AllocateDeviceMem"
]].
innerthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"FreeDeviceMem"
]].
innerthread_priority
=
prio
;
priorities_
[
name2idx_
[
"ThreadpoolAddTask"
]].
innerthread_priority
=
prio
;
priorities_
[
name2idx_
[
"CalcNextOp"
]].
innerthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"GarbageCollect"
]].
innerthread_priority
=
prio
;
priorities_
[
name2idx_
[
"OpCompute"
]].
innerthread_priority
=
prio
;
priorities_
[
name2idx_
[
"OpInfershape"
]].
innerthread_priority
=
prio
;
priorities_
[
name2idx_
[
"DataTransform"
]].
innerthread_priority
=
prio
;
priorities_
[
name2idx_
[
"RunOp"
]].
innerthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"CplusplusEnd"
]].
innerthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"Total"
]].
innerthread_priority
=
++
prio
;
}
void
StatisticsEngine
::
InitInterthreadPriorityForStdEvents
()
{
int
prio
=
0
;
priorities_
[
name2idx_
[
"LuanchKernel"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"AllocateDeviceMem"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"FreeDeviceMem"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"ThreadpoolAddTask"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"CalcNextOp"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"GarbageCollect"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"OpInfershape"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"DataTransform"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"RunOp"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"CplusplusEnd"
]].
interthread_priority
=
++
prio
;
priorities_
[
name2idx_
[
"PythonEnd"
]].
interthread_priority
=
prio
;
}
const
char
*
alloc_device_mem
=
FLAGS_use_stream_safe_cuda_allocator
?
"StreamSafeCUDAAllocator::Allocate"
:
"AutoGrowthBestFitAllocator::Allocate"
;
const
char
*
free_device_mem
=
FLAGS_use_stream_safe_cuda_allocator
?
"StreamSafeCUDAAllocator::Free"
:
"AutoGrowthBestFitAllocator::Free"
;
int
StatisticsEngine
::
InitFiltersForExecutor
()
{
return
RegisterEventFilter
(
"Total"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
().
find
(
"ProfileStep"
)
==
0
;
})
||
RegisterEventFilter
(
"CplusplusEnd"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"Executor::RunPartialPreparedContext"
;
})
||
RegisterEventFilter
(
"RunOp"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Type
()
==
platform
::
TracerEventType
::
Operator
;
})
||
RegisterEventFilter
(
"OpCompute"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"compute"
&&
evt
.
Type
()
==
platform
::
TracerEventType
::
OperatorInner
;
})
||
RegisterEventFilter
(
"OpInfershape"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"infer_shape"
&&
evt
.
Type
()
==
platform
::
TracerEventType
::
OperatorInner
;
})
||
RegisterEventFilter
(
"GarbageCollect"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"CheckGC"
;
})
||
RegisterEventFilter
(
"AllocateDeviceMem"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
alloc_device_mem
;
})
||
RegisterEventFilter
(
"FreeDeviceMem"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
free_device_mem
;
})
||
RegisterEventFilter
(
"DataTransform"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"prepare_data"
&&
evt
.
Type
()
==
platform
::
TracerEventType
::
OperatorInner
;
});
}
int
StatisticsEngine
::
InitFiltersForParallelExecutor
()
{
return
RegisterEventFilter
(
"Total"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
().
find
(
"ProfileStep"
)
==
0
;
})
||
RegisterEventFilter
(
"CplusplusEnd"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"ParallelExecutor::Run"
;
})
||
RegisterEventFilter
(
"RunOp"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Type
()
==
platform
::
TracerEventType
::
Operator
;
})
||
RegisterEventFilter
(
"OpCompute"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"compute"
&&
evt
.
Type
()
==
platform
::
TracerEventType
::
OperatorInner
;
})
||
RegisterEventFilter
(
"OpInfershape"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"infer_shape"
&&
evt
.
Type
()
==
platform
::
TracerEventType
::
OperatorInner
;
})
||
RegisterEventFilter
(
"GarbageCollect"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"eager_deletion"
||
evt
.
Name
()
==
"CheckGC"
;
})
||
RegisterEventFilter
(
"AllocateDeviceMem"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
alloc_device_mem
;
})
||
RegisterEventFilter
(
"FreeDeviceMem"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
free_device_mem
;
})
||
RegisterEventFilter
(
"DataTransform"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"prepare_data"
&&
evt
.
Type
()
==
platform
::
TracerEventType
::
OperatorInner
;
})
||
RegisterEventFilter
(
"ThreadpoolAddTask"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"WorkQueue::AddTask"
;
});
}
int
StatisticsEngine
::
InitFiltersForInterpreterCore
()
{
return
RegisterEventFilter
(
"Total"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
().
find
(
"ProfileStep"
)
==
0
;
})
||
RegisterEventFilter
(
"CplusplusEnd"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"StandaloneExecutor::run"
;
})
||
RegisterEventFilter
(
"RunOp"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Type
()
==
platform
::
TracerEventType
::
Operator
;
})
||
RegisterEventFilter
(
"OpCompute"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"compute"
&&
evt
.
Type
()
==
platform
::
TracerEventType
::
OperatorInner
;
})
||
RegisterEventFilter
(
"OpInfershape"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"infer_shape"
&&
evt
.
Type
()
==
platform
::
TracerEventType
::
OperatorInner
;
})
||
RegisterEventFilter
(
"GarbageCollect"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"CheckGC"
||
evt
.
Name
()
==
"RecordStreamForGC"
;
})
||
RegisterEventFilter
(
"AllocateDeviceMem"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
alloc_device_mem
;
})
||
RegisterEventFilter
(
"FreeDeviceMem"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
free_device_mem
;
})
||
RegisterEventFilter
(
"CalcNextOp"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"RunNextInstructions"
;
})
||
RegisterEventFilter
(
"ThreadpoolAddTask"
,
[](
const
platform
::
HostTraceEventNode
&
evt
)
{
return
evt
.
Name
()
==
"WorkQueue::AddTask"
;
});
}
int
StatisticsEngine
::
Stat
(
const
platform
::
NodeTrees
&
trees
)
{
// Convert StdEvent
std
::
vector
<
std
::
vector
<
StdEvent
>>
all_evts
;
for
(
const
auto
&
tree
:
trees
.
GetNodeTrees
())
{
std
::
vector
<
StdEvent
>
thr_evts
;
std
::
queue
<
const
platform
::
HostTraceEventNode
*>
q
;
q
.
push
(
tree
.
second
);
std
::
unordered_set
<
const
platform
::
HostTraceEventNode
*>
removed
;
while
(
!
q
.
empty
())
{
auto
cur_node
=
q
.
front
();
q
.
pop
();
for
(
const
auto
&
child
:
cur_node
->
GetChildren
())
{
// Remove duplicate operator records.
// See InterpreterCore::RunInstruction for details.
if
(
child
->
Type
()
==
platform
::
TracerEventType
::
Operator
&&
cur_node
->
Name
()
==
"compute"
)
{
removed
.
insert
(
child
);
}
q
.
push
(
child
);
}
if
(
removed
.
count
(
cur_node
)
>
0
)
{
VLOG
(
10
)
<<
"Remove duplicate operator record: "
<<
cur_node
->
Name
();
continue
;
}
for
(
size_t
idx
=
0
;
idx
<
filters_
.
size
();
++
idx
)
{
if
(
!
filters_
[
idx
])
{
continue
;
}
if
(
filters_
[
idx
](
*
cur_node
))
{
thr_evts
.
emplace_back
(
idx
,
cur_node
->
StartNs
(),
cur_node
->
EndNs
());
break
;
}
}
}
if
(
thr_evts
.
size
()
==
0
)
{
continue
;
}
std
::
sort
(
thr_evts
.
begin
(),
thr_evts
.
end
(),
[](
const
StdEvent
&
e1
,
const
StdEvent
&
e2
)
{
return
e1
.
start_ns
<
e2
.
start_ns
;
});
all_evts
.
push_back
(
std
::
move
(
thr_evts
));
}
if
(
all_evts
.
size
()
==
0
)
{
LOG
(
WARNING
)
<<
"No profiler events"
;
return
-
1
;
}
// statistic total_time/count
for
(
const
auto
&
thr_evts
:
all_evts
)
{
for
(
const
auto
&
evt
:
thr_evts
)
{
auto
&
evt_stat
=
statistics_
[
evt
.
evt_idx
];
evt_stat
.
total_time
+=
evt
.
end_ns
-
evt
.
start_ns
;
evt_stat
.
count
+=
1
;
}
}
auto
&
python_end
=
statistics_
[
name2idx_
[
"PythonEnd"
]];
const
auto
&
totol
=
statistics_
[
name2idx_
[
"Total"
]];
const
auto
&
cplusplus_end
=
statistics_
[
name2idx_
[
"CplusplusEnd"
]];
python_end
.
total_time
=
totol
.
total_time
-
cplusplus_end
.
total_time
;
python_end
.
count
=
cplusplus_end
.
count
+
1
;
auto
&
luanch_kernel
=
statistics_
[
name2idx_
[
"LuanchKernel"
]];
const
auto
&
op_compute
=
statistics_
[
name2idx_
[
"OpCompute"
]];
const
auto
&
allocate
=
statistics_
[
name2idx_
[
"AllocateDeviceMem"
]];
luanch_kernel
.
total_time
=
op_compute
.
total_time
-
allocate
.
total_time
;
luanch_kernel
.
count
=
op_compute
.
count
;
if
(
executor_type_
!=
ExecutorType
::
EXECUTOR
&&
statistics_
[
name2idx_
[
"ThreadpoolAddTask"
]].
count
==
0
)
{
LOG
(
WARNING
)
<<
"Check your env variable FLAGS_host_trace_level, make sure "
"FLAGS_host_trace_level >= 10."
;
return
-
1
;
}
// statistic normalization_time
return
MergeInnerthreadEvents
(
&
all_evts
)
||
MergeInterthreadEvents
(
&
all_evts
)
||
StatNormalizationTime
(
all_evts
);
}
void
StatisticsEngine
::
MergeEvents
(
std
::
function
<
size_t
(
size_t
,
size_t
)
>
merger
,
std
::
vector
<
StdEvent
>*
in_out_evts
)
{
auto
evts
=
*
in_out_evts
;
std
::
sort
(
evts
.
begin
(),
evts
.
end
(),
[](
const
StdEvent
&
e1
,
const
StdEvent
&
e2
)
{
return
e1
.
start_ns
<
e2
.
start_ns
;
});
std
::
list
<
StdEvent
>
merged
;
auto
iter
=
merged
.
begin
();
for
(
size_t
i
=
0
;
i
<
evts
.
size
();)
{
if
(
iter
==
merged
.
end
())
{
iter
=
merged
.
insert
(
iter
,
evts
[
i
]);
++
i
;
}
else
if
(
iter
->
end_ns
<=
evts
[
i
].
start_ns
)
{
++
iter
;
}
else
if
(
iter
->
evt_idx
==
evts
[
i
].
evt_idx
)
{
iter
->
end_ns
=
std
::
max
(
iter
->
end_ns
,
evts
[
i
].
end_ns
);
++
i
;
}
else
{
auto
merged_type
=
merger
(
iter
->
evt_idx
,
evts
[
i
].
evt_idx
);
if
(
merged_type
==
iter
->
evt_idx
)
{
if
(
evts
[
i
].
end_ns
>
iter
->
end_ns
)
{
evts
[
i
].
start_ns
=
iter
->
end_ns
;
++
iter
;
}
else
{
++
i
;
}
}
else
{
StdEvent
back
=
*
iter
;
if
(
back
.
start_ns
!=
evts
[
i
].
start_ns
)
{
merged
.
insert
(
iter
,
{
back
.
evt_idx
,
back
.
start_ns
,
evts
[
i
].
start_ns
});
}
*
iter
=
evts
[
i
];
if
(
back
.
end_ns
>
evts
[
i
].
end_ns
)
{
auto
pos
=
iter
;
merged
.
insert
(
++
pos
,
{
back
.
evt_idx
,
evts
[
i
].
end_ns
,
back
.
end_ns
});
}
++
i
;
}
}
}
in_out_evts
->
assign
(
merged
.
begin
(),
merged
.
end
());
}
int
StatisticsEngine
::
MergeInnerthreadEvents
(
std
::
vector
<
std
::
vector
<
StdEvent
>>*
all_evts
)
{
auto
merger
=
[
&
priorities
=
priorities_
](
size_t
idx1
,
size_t
idx2
)
{
return
priorities
[
idx1
].
innerthread_priority
<=
priorities
[
idx2
].
innerthread_priority
?
idx1
:
idx2
;
};
for
(
auto
&
thr_evts
:
*
all_evts
)
{
MergeEvents
(
merger
,
&
thr_evts
);
for
(
auto
&
evt
:
thr_evts
)
{
if
(
names_
[
evt
.
evt_idx
]
==
"Total"
)
{
evt
.
evt_idx
=
name2idx_
[
"PythonEnd"
];
}
else
if
(
names_
[
evt
.
evt_idx
]
==
"OpCompute"
)
{
evt
.
evt_idx
=
name2idx_
[
"LuanchKernel"
];
}
}
}
return
0
;
}
int
StatisticsEngine
::
MergeInterthreadEvents
(
std
::
vector
<
std
::
vector
<
StdEvent
>>*
all_evts
)
{
auto
merger
=
[
&
priorities
=
priorities_
](
size_t
idx1
,
size_t
idx2
)
{
return
priorities
[
idx1
].
interthread_priority
<=
priorities
[
idx2
].
interthread_priority
?
idx1
:
idx2
;
};
// K-way merge, just simplest impl
std
::
vector
<
StdEvent
>
base_list
;
base_list
.
swap
(
all_evts
->
at
(
0
));
for
(
size_t
i
=
1
;
i
<
all_evts
->
size
();
++
i
)
{
auto
&
cur_list
=
all_evts
->
at
(
i
);
base_list
.
reserve
(
base_list
.
size
()
+
cur_list
.
size
());
base_list
.
insert
(
base_list
.
end
(),
cur_list
.
begin
(),
cur_list
.
end
());
MergeEvents
(
merger
,
&
base_list
);
}
all_evts
->
resize
(
1
);
(
*
all_evts
)[
0
].
swap
(
base_list
);
return
0
;
}
int
StatisticsEngine
::
StatNormalizationTime
(
const
std
::
vector
<
std
::
vector
<
StdEvent
>>&
all_evts
)
{
if
(
all_evts
.
size
()
!=
1
)
{
LOG
(
WARNING
)
<<
"Invalid argument"
;
return
-
1
;
}
for
(
const
auto
&
evt
:
all_evts
[
0
])
{
statistics_
[
evt
.
evt_idx
].
normalization_time
+=
evt
.
end_ns
-
evt
.
start_ns
;
}
// verify
uint64_t
total
=
statistics_
[
name2idx_
[
"Total"
]].
total_time
;
uint64_t
normalization_sum
=
0
;
for
(
size_t
idx
=
0
;
idx
<
statistics_
.
size
();
++
idx
)
{
normalization_sum
+=
statistics_
[
idx
].
normalization_time
;
}
if
(
total
-
normalization_sum
!=
0
)
{
LOG
(
WARNING
)
<<
"total: "
<<
total
<<
"is greater than normalization_sum:"
<<
normalization_sum
;
return
-
1
;
}
return
0
;
}
void
StatisticsEngine
::
Log
(
const
std
::
string
&
filepath
)
{
std
::
ofstream
ofs
;
ofs
.
open
(
filepath
,
std
::
ofstream
::
out
|
std
::
ofstream
::
trunc
);
if
(
!
ofs
)
{
LOG
(
WARNING
)
<<
"Unable to open file "
<<
filepath
<<
" for writing data."
;
return
;
}
ofs
<<
"["
;
for
(
size_t
idx
=
0
;
idx
<
statistics_
.
size
();
++
idx
)
{
const
auto
&
evt_stat
=
statistics_
[
idx
];
ofs
<<
platform
::
string_format
(
std
::
string
(
R"JSON(
{
"statistical item" : "%s",
"total time(ns)" : %llu,
"total number of times" : %llu,
"normalization time(ns)" : %llu
},)JSON"
),
names_
[
idx
].
c_str
(),
evt_stat
.
total_time
,
evt_stat
.
count
,
evt_stat
.
normalization_time
);
}
ofs
.
seekp
(
-
1
,
std
::
ios_base
::
end
);
ofs
<<
"]"
;
if
(
ofs
)
{
LOG
(
INFO
)
<<
"writing the executor performance statistics to "
<<
filepath
;
}
ofs
.
close
();
}
void
StaticGraphExecutorPerfStatistics
(
std
::
shared_ptr
<
const
platform
::
NodeTrees
>
profiling_data
)
{
if
(
FLAGS_static_executor_perfstat_filepath
.
size
()
==
0
)
{
VLOG
(
5
)
<<
"StaticGraphExecutorPerfStatistics is disabled"
;
return
;
}
StatisticsEngine
engine
;
if
(
engine
.
Apply
(
*
profiling_data
)
==
0
)
{
engine
.
Log
(
FLAGS_static_executor_perfstat_filepath
);
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/new_executor/executor_statistics.h
0 → 100644
浏览文件 @
cbe7466f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/platform/profiler/event_node.h"
namespace
paddle
{
namespace
framework
{
void
StaticGraphExecutorPerfStatistics
(
std
::
shared_ptr
<
const
platform
::
NodeTrees
>
profiling_data
);
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/new_executor/standalone_executor.cc
浏览文件 @
cbe7466f
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
#include "paddle/fluid/framework/new_executor/interpretercore_util.h"
#include "paddle/fluid/framework/new_executor/interpretercore_util.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
...
@@ -59,6 +60,9 @@ paddle::framework::FetchList StandaloneExecutor::Run(
...
@@ -59,6 +60,9 @@ paddle::framework::FetchList StandaloneExecutor::Run(
const
std
::
vector
<
std
::
string
>&
feed_names
,
const
std
::
vector
<
std
::
string
>&
feed_names
,
const
std
::
vector
<
framework
::
LoDTensor
>&
feed_tensors
,
const
std
::
vector
<
framework
::
LoDTensor
>&
feed_tensors
,
const
std
::
vector
<
std
::
string
>&
fetch_names
)
{
const
std
::
vector
<
std
::
string
>&
fetch_names
)
{
platform
::
RecordEvent
record_event
(
"StandaloneExecutor::run"
,
platform
::
TracerEventType
::
UserDefined
,
1
);
auto
core
=
GetInterpreterCore
(
feed_names
,
fetch_names
,
true
);
auto
core
=
GetInterpreterCore
(
feed_names
,
fetch_names
,
true
);
return
core
->
Run
(
feed_names
,
feed_tensors
);
return
core
->
Run
(
feed_names
,
feed_tensors
);
...
@@ -67,6 +71,9 @@ paddle::framework::FetchList StandaloneExecutor::Run(
...
@@ -67,6 +71,9 @@ paddle::framework::FetchList StandaloneExecutor::Run(
paddle
::
framework
::
FetchList
StandaloneExecutor
::
Run
(
paddle
::
framework
::
FetchList
StandaloneExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>&
feed_names
,
const
std
::
vector
<
std
::
string
>&
feed_names
,
const
std
::
vector
<
std
::
string
>&
fetch_names
)
{
const
std
::
vector
<
std
::
string
>&
fetch_names
)
{
platform
::
RecordEvent
record_event
(
"StandaloneExecutor::run"
,
platform
::
TracerEventType
::
UserDefined
,
1
);
auto
core
=
GetInterpreterCore
(
feed_names
,
fetch_names
,
false
);
auto
core
=
GetInterpreterCore
(
feed_names
,
fetch_names
,
false
);
VLOG
(
4
)
<<
"StandaloneExecutor: "
<<
this
<<
", InterpreterCore: "
<<
core
;
VLOG
(
4
)
<<
"StandaloneExecutor: "
<<
this
<<
", InterpreterCore: "
<<
core
;
return
core
->
Run
(
feed_names
);
return
core
->
Run
(
feed_names
);
...
...
paddle/fluid/framework/new_executor/workqueue/CMakeLists.txt
浏览文件 @
cbe7466f
cc_library
(
workqueue_utils SRCS workqueue_utils.cc events_waiter.cc DEPS enforce glog
)
cc_library
(
workqueue_utils SRCS workqueue_utils.cc events_waiter.cc DEPS enforce glog
)
cc_library
(
workqueue SRCS workqueue.cc DEPS workqueue_utils enforce glog
)
cc_library
(
workqueue SRCS workqueue.cc DEPS workqueue_utils enforce glog
os_info
)
cc_test
(
workqueue_test SRCS workqueue_test.cc DEPS workqueue
)
cc_test
(
workqueue_test SRCS workqueue_test.cc DEPS workqueue
)
paddle/fluid/framework/new_executor/workqueue/nonblocking_threadpool.h
浏览文件 @
cbe7466f
...
@@ -129,6 +129,7 @@ class ThreadPoolTempl {
...
@@ -129,6 +129,7 @@ class ThreadPoolTempl {
// this. We expect that such scenario is prevented by program, that is,
// this. We expect that such scenario is prevented by program, that is,
// this is kept alive while any threads can potentially be in Schedule.
// this is kept alive while any threads can potentially be in Schedule.
if
(
!
t
.
f
)
{
if
(
!
t
.
f
)
{
// Allow 'false positive' which makes a redundant notification.
if
(
num_tasks
>
num_threads_
-
blocked_
)
{
if
(
num_tasks
>
num_threads_
-
blocked_
)
{
VLOG
(
6
)
<<
"Add task, Notify"
;
VLOG
(
6
)
<<
"Add task, Notify"
;
ec_
.
Notify
(
false
);
ec_
.
Notify
(
false
);
...
@@ -379,9 +380,8 @@ class ThreadPoolTempl {
...
@@ -379,9 +380,8 @@ class ThreadPoolTempl {
return
false
;
return
false
;
}
}
// Number of blocked threads is used as termination condition.
// Number of blocked threads is used as notification condition.
// If we are shutting down and all worker threads blocked without work,
// We must increase the counter before the emptiness check.
// that's we are done.
blocked_
++
;
blocked_
++
;
// Now do a reliable emptiness check.
// Now do a reliable emptiness check.
...
@@ -393,6 +393,9 @@ class ThreadPoolTempl {
...
@@ -393,6 +393,9 @@ class ThreadPoolTempl {
return
true
;
return
true
;
}
}
// Number of blocked threads is used as termination condition.
// If we are shutting down and all worker threads blocked without work,
// that's we are done.
if
(
done_
&&
blocked_
==
static_cast
<
unsigned
>
(
num_threads_
))
{
if
(
done_
&&
blocked_
==
static_cast
<
unsigned
>
(
num_threads_
))
{
ec_
.
CancelWait
();
ec_
.
CancelWait
();
// Almost done, but need to re-check queues.
// Almost done, but need to re-check queues.
...
...
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
cbe7466f
...
@@ -350,7 +350,7 @@ if(WITH_PYTHON)
...
@@ -350,7 +350,7 @@ if(WITH_PYTHON)
add_custom_target
(
eager_op_function_generator_cmd ALL DEPENDS
${
eager_impl_file
}
)
add_custom_target
(
eager_op_function_generator_cmd ALL DEPENDS
${
eager_impl_file
}
)
endif
()
endif
()
list
(
APPEND PYBIND_DEPS interpretercore standalone_executor
)
list
(
APPEND PYBIND_DEPS interpretercore standalone_executor
staticgraph_executor_statistics
)
cc_library
(
op_function_common SRCS op_function_common.cc DEPS
${
PYBIND_DEPS
}
)
cc_library
(
op_function_common SRCS op_function_common.cc DEPS
${
PYBIND_DEPS
}
)
list
(
APPEND PYBIND_DEPS op_function_common
)
list
(
APPEND PYBIND_DEPS op_function_common
)
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
cbe7466f
...
@@ -46,6 +46,7 @@ limitations under the License. */
...
@@ -46,6 +46,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
...
@@ -2903,9 +2904,6 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -2903,9 +2904,6 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
"run"
,
.
def
(
"run"
,
[](
StandaloneExecutor
&
self
,
std
::
vector
<
std
::
string
>
feed_names
,
[](
StandaloneExecutor
&
self
,
std
::
vector
<
std
::
string
>
feed_names
,
std
::
vector
<
std
::
string
>
fetch_names
)
{
std
::
vector
<
std
::
string
>
fetch_names
)
{
platform
::
RecordEvent
record_event
(
"StandaloneExecutor::run"
,
platform
::
TracerEventType
::
UserDefined
,
1
);
paddle
::
framework
::
FetchList
ret
;
paddle
::
framework
::
FetchList
ret
;
{
{
pybind11
::
gil_scoped_release
release
;
pybind11
::
gil_scoped_release
release
;
...
@@ -3380,7 +3378,10 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -3380,7 +3378,10 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
"stop"
,
.
def
(
"stop"
,
[](
paddle
::
platform
::
Profiler
*
profiler
)
{
[](
paddle
::
platform
::
Profiler
*
profiler
)
{
platform
::
DisableHostEventRecorder
();
platform
::
DisableHostEventRecorder
();
return
profiler
->
Stop
();
auto
result
=
profiler
->
Stop
();
framework
::
StaticGraphExecutorPerfStatistics
(
result
->
GetNodeTrees
());
return
result
;
},
},
py
::
return_value_policy
::
automatic_reference
);
py
::
return_value_policy
::
automatic_reference
);
...
...
python/paddle/fluid/tests/unittests/interpreter/CMakeLists.txt
浏览文件 @
cbe7466f
...
@@ -2,7 +2,7 @@ file(GLOB TEST_INTERP_CASES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
...
@@ -2,7 +2,7 @@ file(GLOB TEST_INTERP_CASES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string
(
REPLACE
".py"
""
TEST_INTERP_CASES
"
${
TEST_INTERP_CASES
}
"
)
string
(
REPLACE
".py"
""
TEST_INTERP_CASES
"
${
TEST_INTERP_CASES
}
"
)
foreach
(
target
${
TEST_INTERP_CASES
}
)
foreach
(
target
${
TEST_INTERP_CASES
}
)
py_test_modules
(
${
target
}
MODULES
${
target
}
ENVS FLAGS_allocator_strategy=auto_growth FLAGS_use_stream_safe_cuda_allocator=true FLAGS_fast_eager_deletion_mode=false FLAGS_eager_delete_tensor_gb=0
)
py_test_modules
(
${
target
}
MODULES
${
target
}
ENVS FLAGS_
host_trace_level=10 FLAGS_static_executor_perfstat_filepath=./perfstat FLAGS_
allocator_strategy=auto_growth FLAGS_use_stream_safe_cuda_allocator=true FLAGS_fast_eager_deletion_mode=false FLAGS_eager_delete_tensor_gb=0
)
py_test_modules
(
${
target
}
_non_eager_deletion MODULES
${
target
}
ENVS FLAGS_allocator_strategy=auto_growth FLAGS_use_stream_safe_cuda_allocator=true FLAGS_fast_eager_deletion_mode=false FLAGS_eager_delete_tensor_gb=0.000001
)
py_test_modules
(
${
target
}
_non_eager_deletion MODULES
${
target
}
ENVS FLAGS_allocator_strategy=auto_growth FLAGS_use_stream_safe_cuda_allocator=true FLAGS_fast_eager_deletion_mode=false FLAGS_eager_delete_tensor_gb=0.000001
)
py_test_modules
(
${
target
}
_fast_gc MODULES
${
target
}
ENVS FLAGS_allocator_strategy=auto_growth FLAGS_use_stream_safe_cuda_allocator=true FLAGS_fast_eager_deletion_mode=true FLAGS_eager_delete_tensor_gb=0
)
py_test_modules
(
${
target
}
_fast_gc MODULES
${
target
}
ENVS FLAGS_allocator_strategy=auto_growth FLAGS_use_stream_safe_cuda_allocator=true FLAGS_fast_eager_deletion_mode=true FLAGS_eager_delete_tensor_gb=0
)
py_test_modules
(
${
target
}
_fast_gc_non_eager_deletion MODULES
${
target
}
ENVS FLAGS_allocator_strategy=auto_growth FLAGS_use_stream_safe_cuda_allocator=true FLAGS_fast_eager_deletion_mode=true FLAGS_eager_delete_tensor_gb=0.000001
)
py_test_modules
(
${
target
}
_fast_gc_non_eager_deletion MODULES
${
target
}
ENVS FLAGS_allocator_strategy=auto_growth FLAGS_use_stream_safe_cuda_allocator=true FLAGS_fast_eager_deletion_mode=true FLAGS_eager_delete_tensor_gb=0.000001
)
...
...
python/paddle/fluid/tests/unittests/interpreter/test_standalone_executor.py
浏览文件 @
cbe7466f
...
@@ -15,10 +15,13 @@
...
@@ -15,10 +15,13 @@
import
os
import
os
os
.
environ
[
'FLAGS_use_stream_safe_cuda_allocator'
]
=
"true"
os
.
environ
[
'FLAGS_use_stream_safe_cuda_allocator'
]
=
"true"
import
sys
import
sys
import
shutil
import
unittest
import
unittest
import
paddle
import
paddle
import
json
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid.core
import
StandaloneExecutor
from
paddle.fluid.core
import
StandaloneExecutor
from
paddle.profiler
import
profiler
import
numpy
as
np
import
numpy
as
np
...
@@ -116,6 +119,107 @@ def build_program():
...
@@ -116,6 +119,107 @@ def build_program():
return
main_program
,
startup_program
,
[
mean
]
return
main_program
,
startup_program
,
[
mean
]
class
ExecutorStatisticsTestCase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
iter_n
=
3
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
paddle
.
CPUPlace
()
def
test_standalone_executor_statistics
(
self
):
if
os
.
getenv
(
"FLAGS_static_executor_perfstat_filepath"
)
is
None
:
return
paddle
.
seed
(
2020
)
main_program
,
startup_program
,
fetch_list
=
build_program
()
fetch_list
=
[
x
.
name
for
x
in
fetch_list
]
p
=
core
.
Place
()
p
.
set_place
(
self
.
place
)
executor
=
StandaloneExecutor
(
p
,
startup_program
.
desc
,
main_program
.
desc
,
core
.
Scope
())
helper_profiler
=
profiler
.
Profiler
(
targets
=
[
profiler
.
ProfilerTarget
.
CPU
],
scheduler
=
(
1
,
2
))
helper_profiler
.
start
()
for
i
in
range
(
self
.
iter_n
):
executor
.
run
({},
fetch_list
)
helper_profiler
.
step
()
helper_profiler
.
stop
()
perfstat_filepath
=
os
.
environ
[
'FLAGS_static_executor_perfstat_filepath'
]
self
.
assertTrue
(
os
.
path
.
exists
(
perfstat_filepath
))
with
open
(
perfstat_filepath
,
'r'
)
as
load_f
:
stat_res
=
json
.
load
(
load_f
)
self
.
assertTrue
(
len
(
stat_res
)
>
0
)
os
.
remove
(
perfstat_filepath
)
shutil
.
rmtree
(
'./profiler_log'
)
def
test_parallel_executor_statistics
(
self
):
if
os
.
getenv
(
"FLAGS_static_executor_perfstat_filepath"
)
is
None
:
return
paddle
.
seed
(
2020
)
main_program
,
startup_program
,
fetch_list
=
build_program
()
fetch_list
=
[
x
.
name
for
x
in
fetch_list
]
main_program
=
paddle
.
fluid
.
compiler
.
CompiledProgram
(
main_program
)
os
.
environ
[
'FLAGS_USE_STANDALONE_EXECUTOR'
]
=
'0'
executor
=
paddle
.
static
.
Executor
(
self
.
place
)
os
.
environ
[
'FLAGS_USE_STANDALONE_EXECUTOR'
]
=
'1'
executor
.
run
(
startup_program
)
helper_profiler
=
profiler
.
Profiler
(
targets
=
[
profiler
.
ProfilerTarget
.
CPU
],
scheduler
=
(
1
,
2
))
helper_profiler
.
start
()
for
i
in
range
(
self
.
iter_n
):
executor
.
run
(
main_program
,
fetch_list
=
fetch_list
)
helper_profiler
.
step
()
helper_profiler
.
stop
()
perfstat_filepath
=
os
.
environ
[
'FLAGS_static_executor_perfstat_filepath'
]
self
.
assertTrue
(
os
.
path
.
exists
(
perfstat_filepath
))
with
open
(
perfstat_filepath
,
'r'
)
as
load_f
:
stat_res
=
json
.
load
(
load_f
)
self
.
assertTrue
(
len
(
stat_res
)
>
0
)
os
.
remove
(
perfstat_filepath
)
shutil
.
rmtree
(
'./profiler_log'
)
def
test_executor_statistics
(
self
):
if
os
.
getenv
(
"FLAGS_static_executor_perfstat_filepath"
)
is
None
:
return
paddle
.
seed
(
2020
)
main_program
,
startup_program
,
fetch_list
=
build_program
()
fetch_list
=
[
x
.
name
for
x
in
fetch_list
]
os
.
environ
[
'FLAGS_USE_STANDALONE_EXECUTOR'
]
=
'0'
executor
=
paddle
.
static
.
Executor
(
self
.
place
)
os
.
environ
[
'FLAGS_USE_STANDALONE_EXECUTOR'
]
=
'1'
executor
.
run
(
startup_program
)
helper_profiler
=
profiler
.
Profiler
(
targets
=
[
profiler
.
ProfilerTarget
.
CPU
],
scheduler
=
(
1
,
2
))
helper_profiler
.
start
()
for
i
in
range
(
self
.
iter_n
):
executor
.
run
(
main_program
,
fetch_list
=
fetch_list
)
helper_profiler
.
step
()
helper_profiler
.
stop
()
perfstat_filepath
=
os
.
environ
[
'FLAGS_static_executor_perfstat_filepath'
]
self
.
assertTrue
(
os
.
path
.
exists
(
perfstat_filepath
))
with
open
(
perfstat_filepath
,
'r'
)
as
load_f
:
stat_res
=
json
.
load
(
load_f
)
self
.
assertTrue
(
len
(
stat_res
)
>
0
)
os
.
remove
(
perfstat_filepath
)
shutil
.
rmtree
(
'./profiler_log'
)
class
MultiStreamModelTestCase
(
unittest
.
TestCase
):
class
MultiStreamModelTestCase
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
iter_n
=
2
self
.
iter_n
=
2
...
@@ -155,6 +259,7 @@ class MultiStreamModelTestCase(unittest.TestCase):
...
@@ -155,6 +259,7 @@ class MultiStreamModelTestCase(unittest.TestCase):
p
.
set_place
(
self
.
place
)
p
.
set_place
(
self
.
place
)
inter_core
=
StandaloneExecutor
(
p
,
startup_program
.
desc
,
inter_core
=
StandaloneExecutor
(
p
,
startup_program
.
desc
,
main_program
.
desc
,
core
.
Scope
())
main_program
.
desc
,
core
.
Scope
())
outs
=
[]
outs
=
[]
for
i
in
range
(
self
.
iter_n
):
for
i
in
range
(
self
.
iter_n
):
outs
.
append
(
outs
.
append
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录