Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cac5f5a7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cac5f5a7
编写于
1月 06, 2023
作者:
W
Weilong Wu
提交者:
GitHub
1月 06, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Eager] polish adaptive series api (#49574)
上级
0019ef0c
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
32 addition
and
40 deletion
+32
-40
python/paddle/nn/functional/pooling.py
python/paddle/nn/functional/pooling.py
+32
-40
未找到文件。
python/paddle/nn/functional/pooling.py
浏览文件 @
cac5f5a7
...
@@ -1456,11 +1456,6 @@ def adaptive_avg_pool1d(x, output_size, name=None):
...
@@ -1456,11 +1456,6 @@ def adaptive_avg_pool1d(x, output_size, name=None):
# pool_out shape: [1, 3, 16])
# pool_out shape: [1, 3, 16])
"""
"""
pool_type
=
'avg'
pool_type
=
'avg'
if
not
in_dynamic_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'adaptive_pool2d'
)
check_type
(
output_size
,
'pool_size'
,
(
int
),
'adaptive_pool1d'
)
_check_input
(
x
,
3
)
_check_input
(
x
,
3
)
pool_size
=
[
1
]
+
utils
.
convert_to_list
(
output_size
,
1
,
'pool_size'
)
pool_size
=
[
1
]
+
utils
.
convert_to_list
(
output_size
,
1
,
'pool_size'
)
...
@@ -1483,7 +1478,10 @@ def adaptive_avg_pool1d(x, output_size, name=None):
...
@@ -1483,7 +1478,10 @@ def adaptive_avg_pool1d(x, output_size, name=None):
return
squeeze
(
pool_out
,
[
2
])
return
squeeze
(
pool_out
,
[
2
])
else
:
else
:
l_type
=
"pool2d"
l_type
=
"pool2d"
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'adaptive_pool2d'
)
check_type
(
output_size
,
'pool_size'
,
(
int
),
'adaptive_pool1d'
)
helper
=
LayerHelper
(
l_type
,
**
locals
())
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
...
@@ -1562,12 +1560,6 @@ def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
...
@@ -1562,12 +1560,6 @@ def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
# out.shape is [2, 3, 3, 3]
# out.shape is [2, 3, 3, 3]
"""
"""
if
not
in_dynamic_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'adaptive_avg_pool2d'
)
check_type
(
data_format
,
'data_format'
,
str
,
'adaptive_avg_pool2d'
)
if
data_format
not
in
[
"NCHW"
,
"NHWC"
]:
if
data_format
not
in
[
"NCHW"
,
"NHWC"
]:
raise
ValueError
(
raise
ValueError
(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
...
@@ -1615,7 +1607,10 @@ def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
...
@@ -1615,7 +1607,10 @@ def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
else
:
else
:
l_type
=
'pool2d'
l_type
=
'pool2d'
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'adaptive_avg_pool2d'
)
check_type
(
data_format
,
'data_format'
,
str
,
'adaptive_avg_pool2d'
)
helper
=
LayerHelper
(
l_type
,
**
locals
())
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
...
@@ -1700,12 +1695,6 @@ def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
...
@@ -1700,12 +1695,6 @@ def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
# out.shape is [2, 3, 3, 3, 3]
# out.shape is [2, 3, 3, 3, 3]
"""
"""
if
not
in_dynamic_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'adaptive_avg_pool3d'
)
check_type
(
data_format
,
'data_format'
,
str
,
'adaptive_avg_pool3d'
)
if
data_format
not
in
[
"NCDHW"
,
"NDHWC"
]:
if
data_format
not
in
[
"NCDHW"
,
"NDHWC"
]:
raise
ValueError
(
raise
ValueError
(
"Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
"Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
...
@@ -1746,6 +1735,11 @@ def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
...
@@ -1746,6 +1735,11 @@ def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
else
:
else
:
l_type
=
'pool3d'
l_type
=
'pool3d'
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'adaptive_avg_pool2d'
)
check_type
(
data_format
,
'data_format'
,
str
,
'adaptive_avg_pool2d'
)
helper
=
LayerHelper
(
l_type
,
**
locals
())
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
...
@@ -1810,13 +1804,6 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
...
@@ -1810,13 +1804,6 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
# pool_out shape: [1, 3, 16] indices shape: [1, 3, 16]
# pool_out shape: [1, 3, 16] indices shape: [1, 3, 16]
"""
"""
pool_type
=
'max'
if
not
in_dynamic_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'adaptive_max_pool1d'
)
check_type
(
output_size
,
'pool_size'
,
int
,
'adaptive_max_pool1d'
)
check_type
(
return_mask
,
'return_mask'
,
bool
,
'adaptive_max_pool1d'
)
_check_input
(
x
,
3
)
_check_input
(
x
,
3
)
pool_size
=
[
1
]
+
utils
.
convert_to_list
(
output_size
,
1
,
'pool_size'
)
pool_size
=
[
1
]
+
utils
.
convert_to_list
(
output_size
,
1
,
'pool_size'
)
...
@@ -1834,6 +1821,12 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
...
@@ -1834,6 +1821,12 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
else
:
else
:
l_type
=
'max_pool2d_with_index'
l_type
=
'max_pool2d_with_index'
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'adaptive_max_pool1d'
)
check_type
(
output_size
,
'pool_size'
,
int
,
'adaptive_max_pool1d'
)
check_type
(
return_mask
,
'return_mask'
,
bool
,
'adaptive_max_pool1d'
)
helper
=
LayerHelper
(
l_type
,
**
locals
())
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
...
@@ -1846,7 +1839,7 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
...
@@ -1846,7 +1839,7 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
inputs
=
{
"X"
:
x
},
inputs
=
{
"X"
:
x
},
outputs
=
outputs
,
outputs
=
outputs
,
attrs
=
{
attrs
=
{
"pooling_type"
:
pool_type
,
"pooling_type"
:
'max'
,
"ksize"
:
pool_size
,
"ksize"
:
pool_size
,
"adaptive"
:
True
,
"adaptive"
:
True
,
},
},
...
@@ -1899,12 +1892,6 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
...
@@ -1899,12 +1892,6 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
output_size=[3, 3])
output_size=[3, 3])
# out.shape is [2, 3, 3, 3]
# out.shape is [2, 3, 3, 3]
"""
"""
if
not
in_dynamic_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'adaptive_max_pool2d'
)
check_type
(
return_mask
,
'return_mask'
,
bool
,
'adaptive_max_pool2d'
)
# check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
_check_input
(
x
,
4
)
_check_input
(
x
,
4
)
in_h
,
in_w
=
x
.
shape
[
2
:
4
]
in_h
,
in_w
=
x
.
shape
[
2
:
4
]
...
@@ -1924,6 +1911,12 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
...
@@ -1924,6 +1911,12 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
else
:
else
:
l_type
=
'max_pool2d_with_index'
l_type
=
'max_pool2d_with_index'
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'adaptive_max_pool2d'
)
check_type
(
return_mask
,
'return_mask'
,
bool
,
'adaptive_max_pool2d'
)
# check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
helper
=
LayerHelper
(
l_type
,
**
locals
())
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
...
@@ -1988,13 +1981,6 @@ def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
...
@@ -1988,13 +1981,6 @@ def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
output_size=[3, 3, 3])
output_size=[3, 3, 3])
# out.shape is [2, 3, 3, 3, 3]
# out.shape is [2, 3, 3, 3, 3]
"""
"""
if
not
in_dynamic_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'adaptive_max_pool3d'
)
check_type
(
return_mask
,
'return_mask'
,
bool
,
'adaptive_max_pool3d'
)
# check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
_check_input
(
x
,
5
)
_check_input
(
x
,
5
)
in_l
,
in_h
,
in_w
=
x
.
shape
[
2
:
5
]
in_l
,
in_h
,
in_w
=
x
.
shape
[
2
:
5
]
...
@@ -2018,6 +2004,12 @@ def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
...
@@ -2018,6 +2004,12 @@ def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
else
:
else
:
l_type
=
'max_pool3d_with_index'
l_type
=
'max_pool3d_with_index'
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'adaptive_max_pool3d'
)
check_type
(
return_mask
,
'return_mask'
,
bool
,
'adaptive_max_pool3d'
)
# check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
helper
=
LayerHelper
(
l_type
,
**
locals
())
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录