提交 ca5d96bb 编写于 作者: Q Qiao Longfei

complete send lod tensor

上级 be72940b
...@@ -41,6 +41,8 @@ class Communicator { ...@@ -41,6 +41,8 @@ class Communicator {
void receive() {} void receive() {}
void prefetch() {}
void wait() {} void wait() {}
private: private:
......
...@@ -30,7 +30,7 @@ if(WITH_GRPC) ...@@ -30,7 +30,7 @@ if(WITH_GRPC)
else() else()
set(BRPC_SRCS brpc/brpc_client.cc brpc/brpc_server.cc brpc/brpc_sendrecvop_utils.cc brpc/brpc_variable_response.cc brpc/brpc_rdma_pool.cc) set(BRPC_SRCS brpc/brpc_client.cc brpc/brpc_server.cc brpc/brpc_sendrecvop_utils.cc brpc/brpc_variable_response.cc brpc/brpc_rdma_pool.cc)
set_source_files_properties(${BRPC_SRCS} parameter_prefetch.cc rpc_server_test.cc brpc/brpc_serde_test.cc collective_server.cc collective_server_test.cc collective_client.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(${BRPC_SRCS} parameter_prefetch.cc parameter_send.cc rpc_server_test.cc brpc/brpc_serde_test.cc collective_server.cc collective_server_test.cc collective_client.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
brpc_library(sendrecvop_rpc SRCS sendrecvop_utils.cc brpc_library(sendrecvop_rpc SRCS sendrecvop_utils.cc
request_handler_impl.cc rpc_client.cc rpc_server.cc request_handler_impl.cc rpc_client.cc rpc_server.cc
...@@ -50,6 +50,7 @@ cc_test(rpc_server_test SRCS rpc_server_test.cc ...@@ -50,6 +50,7 @@ cc_test(rpc_server_test SRCS rpc_server_test.cc
DEPS ${RPC_DEPS} executor proto_desc lookup_sparse_table_op SERIAL) DEPS ${RPC_DEPS} executor proto_desc lookup_sparse_table_op SERIAL)
cc_test(varhandle_test SRCS varhandle_test.cc DEPS profiler scope) cc_test(varhandle_test SRCS varhandle_test.cc DEPS profiler scope)
cc_library(parameter_prefetch SRCS parameter_prefetch.cc DEPS sendrecvop_rpc memory) cc_library(parameter_prefetch SRCS parameter_prefetch.cc DEPS sendrecvop_rpc memory)
cc_library(parameter_send SRCS parameter_send.cc DEPS sendrecvop_rpc memory)
if(WITH_GPU) if(WITH_GPU)
cc_test(collective_server_test SRCS collective_server_test.cc cc_test(collective_server_test SRCS collective_server_test.cc
DEPS sendrecvop_rpc executor ${RPC_DEPS} DEPS sendrecvop_rpc executor ${RPC_DEPS}
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <set>
#include <string>
#include <vector>
#include "paddle/fluid/operators/distributed/parameter_send.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
namespace paddle {
namespace operators {
namespace distributed {
using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
static size_t GetSectionIndex(int64_t id,
const std::vector<int64_t>& abs_sections) {
for (size_t i = 1; i < abs_sections.size(); ++i) {
if (id < abs_sections[i]) {
return i - 1;
}
}
return abs_sections.size() - 1;
}
static std::vector<int64_t> ToAbsoluteSection(
const std::vector<int>& height_sections) {
std::vector<int64_t> abs_sections;
abs_sections.resize(height_sections.size());
abs_sections[0] = 0;
for (size_t i = 1; i < height_sections.size(); ++i) {
abs_sections[i] = height_sections[i - 1] + abs_sections[i - 1];
}
return abs_sections;
}
static std::vector<std::vector<int64_t>> SplitIds(
const std::vector<int64_t>& ids_vector,
const std::vector<int>& height_section, framework::Scope* scope) {
std::set<int64_t> all_ids;
for (auto id : ids_vector) {
all_ids.insert(id);
}
auto abs_sections = ToAbsoluteSection(height_section);
std::vector<std::vector<int64_t>> splited_ids;
splited_ids.resize(height_section.size() + 1);
for (auto& id : all_ids) {
auto section_index = GetSectionIndex(id, abs_sections);
splited_ids[section_index].push_back(id - abs_sections[section_index]);
}
return splited_ids;
}
static void SplitIdsIntoMultipleVarsBySection(
const std::vector<std::string>& in_var_names,
const std::vector<int>& height_section,
const std::vector<std::vector<int64_t>>& splited_ids,
framework::Scope* scope) {
PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size(), "");
auto place = platform::CPUPlace();
for (size_t i = 0; i < in_var_names.size(); ++i) {
auto* id_tensor =
scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
auto& ids = splited_ids[i];
if (!ids.empty()) {
auto* id_tensor_data = id_tensor->mutable_data<int64_t>(
framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
}
}
}
void send(const std::string& var_name,
const std::vector<std::string>& send_varnames,
const std::vector<std::string>& epmap,
const std::vector<int>& height_sections,
const framework::ExecutionContext& context,
const framework::Scope& scope, bool sync) {
framework::Scope* local_scope = scope.NewTmpScope();
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& cpu_ctx = *pool.Get(platform::CPUPlace());
auto& actual_ctx = *pool.Get(context.GetPlace());
distributed::RPCClient* rpc_client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>(
context.Attr<int>("trainer_id"));
auto* send_var = scope.FindVar(var_name);
size_t out_num = send_varnames.size();
if (send_var->IsType<framework::LoDTensor>()) {
auto& send_tensor = send_var->Get<framework::LoDTensor>();
auto& send_tensor_dims = send_tensor.dims();
std::vector<framework::DDim> outs_dims;
outs_dims.reserve(out_num);
// infer output shape
int num = context.Attr<int>("num");
if (num > 0) {
int64_t in_axis_dim = send_tensor_dims[0];
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
"tensor split does not result"
" in an equal division");
size_t out_axis_dim = in_axis_dim / num;
for (size_t i = 0; i < out_num; ++i) {
auto dim = send_tensor_dims;
dim[0] = out_axis_dim;
outs_dims.push_back(dim);
}
} else if (height_sections.size() > 0) {
PADDLE_ENFORCE_EQ(height_sections.size(), out_num,
"tensor split sections size"
"should be equal to output size.");
for (size_t i = 0; i < out_num; ++i) {
auto dim = send_tensor_dims;
dim[0] = height_sections[i];
outs_dims.push_back(dim);
}
}
// create output var in local scope
size_t row_offset = 0;
for (auto i = 0; i < out_num; ++i) {
auto* out =
local_scope->Var(send_varnames[i])->GetMutable<framework::Tensor>();
*out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
row_offset += outs_dims[i][0];
}
} else if (send_var->IsType<framework::LoDTensor>()) {
// create output var in local scope
for (auto& name : send_varnames) {
local_scope->Var(name)->GetMutable<framework::SelectedRows>();
}
} else {
PADDLE_THROW("unsupported var type");
}
std::vector<distributed::VarHandlePtr> rets;
for (size_t i = 0; i < send_varnames.size(); i++) {
auto& send_var_name = send_varnames[i];
auto& endpoint = epmap[i];
if (NeedSend(*local_scope, send_var_name)) {
VLOG(3) << "sending " << send_var_name << " to " << endpoint;
rets.push_back(rpc_client->AsyncSendVar(endpoint, cpu_ctx, *local_scope,
send_var_name));
} else {
VLOG(3) << "don't send non-initialized variable: " << send_varnames[i];
}
}
if (sync) {
for (size_t i = 0; i < rets.size(); i++) {
PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
}
}
delete local_scope;
}
}; // namespace distributed
}; // namespace operators
}; // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
namespace paddle {
namespace operators {
namespace distributed {
void send(const std::string& var_name,
const std::vector<std::string>& send_varnames,
const std::vector<std::string>& epmap,
const std::vector<int>& height_sections,
const framework::ExecutionContext& context,
const framework::Scope& scope, bool sync);
}; // namespace distributed
}; // namespace operators
}; // namespace paddle
...@@ -88,6 +88,21 @@ This operator will send variables to listen_and_serve op at the parameter server ...@@ -88,6 +88,21 @@ This operator will send variables to listen_and_serve op at the parameter server
"Server endpoints in the order of input " "Server endpoints in the order of input "
"variables for mapping") "variables for mapping")
.SetDefault({"127.0.0.1:6164"}); .SetDefault({"127.0.0.1:6164"});
AddAttr<std::vector<int>>("sections",
"(vector<int>) "
"the length of each output along the "
"specified axis.")
.SetDefault(std::vector<int>{});
AddAttr<std::vector<std::string>>(
"send_varnames",
"(vector<string>) "
"the splited output varnames to send to pserver")
.SetDefault(std::vector<std::string>{});
AddAttr<int>("num",
"(int, default 0)"
"Number of sub-tensors. This must evenly divide "
"Input.dims()[axis]")
.SetDefault(0);
} }
}; };
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册