提交 ca392c7e 编写于 作者: M minqiyang

Implement infer var type context

上级 0b49e43d
......@@ -68,11 +68,11 @@ class SplitOpMaker : public OpProtoAndCheckerMaker {
class DummyVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc& op_desc, BlockDesc* block) const override {
auto& inputs = op_desc.Input("X");
auto type = block->Var(inputs.front())->GetType();
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(type);
void operator()(framework::InferVarTypeContext& ctx) const override {
auto& inputs = ctx.Input("X");
auto type = ctx.GetType(inputs.front());
auto out_var_name = ctx.Output("Out").front();
ctx.SetType(out_var_name, type);
}
};
......
......@@ -127,9 +127,9 @@ struct OpInfoFiller<T, kGradOpDescMaker> {
template <typename T>
struct OpInfoFiller<T, kVarTypeInference> {
void operator()(const char* op_type, OpInfo* info) const {
info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) {
info->infer_var_type_ = [](InferVarTypeContext& context) {
T inference;
inference(fwd_op, block);
inference(context);
};
}
};
......
......@@ -43,20 +43,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
class SumOpVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc &op_desc, BlockDesc *block) const override {
auto &inputs = op_desc.Input("X");
void operator()(InferVarTypeContext &ctx) const override {
auto &inputs = ctx.Input("X");
auto default_var_type = proto::VarType::SELECTED_ROWS;
bool any_input_is_lod_tensor = std::any_of(
inputs.begin(), inputs.end(), [block](const std::string &name) {
return block->Var(name)->GetType() == proto::VarType::LOD_TENSOR;
inputs.begin(), inputs.end(), [ctx](const std::string &name) {
return ctx.GetType(name) == proto::VarType::LOD_TENSOR;
});
if (any_input_is_lod_tensor) {
default_var_type = proto::VarType::LOD_TENSOR;
}
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(default_var_type);
auto out_var_name = ctx.Output("Out").front();
ctx.SetType(out_var_name, default_var_type);
}
};
......@@ -71,7 +71,7 @@ class DummyOpMaker : public OpProtoAndCheckerMaker {
class DummyOpVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc &op_desc, BlockDesc *block) const override {}
void operator()(framework::InferVarTypeContext &ctx) const override {}
};
} // namespace framework
} // namespace paddle
......
......@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace paddle {
namespace framework {
......@@ -677,7 +678,8 @@ void OpDesc::InferVarType(BlockDesc *block) const {
// var type inference. Hence, we don't do any "default" setting here.
auto &info = OpInfoMap::Instance().Get(this->Type());
if (info.infer_var_type_) {
info.infer_var_type_(*this, block);
InferVarTypeContext context(this, block);
info.infer_var_type_(context);
}
}
......
......@@ -27,6 +27,7 @@ namespace framework {
class OperatorBase;
class OpDesc;
class InferShapeContext;
class InferVarTypeContext;
class BlockDesc;
class Variable;
......@@ -53,7 +54,7 @@ using GradOpMakerFN = std::function<std::vector<std::unique_ptr<OpDesc>>(
const std::vector<BlockDesc*>& grad_block)>;
using InferVarTypeFN =
std::function<void(const OpDesc& /*op_desc*/, BlockDesc* /*block*/)>;
std::function<void(framework::InferVarTypeContext& /*context*/)>;
using InferShapeFN = std::function<void(InferShapeContext*)>;
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/type_defs.h"
......@@ -21,26 +22,113 @@ limitations under the License. */
namespace paddle {
namespace framework {
class OpDesc;
class BlockDesc;
// default infer var type context
class InferVarTypeContext {
public:
InferVarTypeContext(const OpDesc* op, BlockDesc* block)
: op_(op), block_(block) {}
Attribute GetAttr(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->GetAttr(name);
}
inline bool HasVar(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindVarRecursive(name) != nullptr;
}
inline bool HasInput(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Inputs().count(name) > 0;
}
inline bool HasOutput(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Outputs().count(name) > 0;
}
inline const std::vector<std::string>& Input(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Input(name);
}
inline const std::vector<std::string>& Output(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(op_);
return op_->Output(name);
}
inline proto::VarType::Type GetType(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindRecursiveOrCreateVar(name).GetType();
}
inline void SetType(const std::string& name, proto::VarType::Type type) {
PADDLE_ENFORCE_NOT_NULL(block_);
block_->FindRecursiveOrCreateVar(name).SetType(type);
}
inline proto::VarType::Type GetDataType(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindRecursiveOrCreateVar(name).GetDataType();
}
inline void SetDataType(const std::string& name, proto::VarType::Type type) {
PADDLE_ENFORCE_NOT_NULL(block_);
block_->FindRecursiveOrCreateVar(name).SetDataType(type);
}
inline std::vector<int64_t> GetShape(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindRecursiveOrCreateVar(name).GetShape();
}
inline void SetShape(const std::string& name,
const std::vector<int64_t>& dims) {
PADDLE_ENFORCE_NOT_NULL(block_);
block_->FindRecursiveOrCreateVar(name).SetShape(dims);
}
inline int32_t GetLoDLevel(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(block_);
return block_->FindRecursiveOrCreateVar(name).GetLoDLevel();
}
inline void SetLoDLevel(const std::string& name, int32_t lod_level) {
PADDLE_ENFORCE_NOT_NULL(block_);
block_->FindRecursiveOrCreateVar(name).SetLoDLevel(lod_level);
}
private:
const OpDesc* op_;
BlockDesc* block_;
};
// infer var type context for imperative mode
class RuntimeInferVarTypeContext : public InferVarTypeContext {
public:
RuntimeInferVarTypeContext() : InferVarTypeContext(nullptr, nullptr) {}
};
class VarTypeInference {
public:
virtual ~VarTypeInference() {}
virtual void operator()(const OpDesc& op_desc, BlockDesc* block) const = 0;
virtual void operator()(InferVarTypeContext& context) const = 0; // NOLINT
};
class PassInDtypeAndVarTypeToOutput : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const final {
void operator()(framework::InferVarTypeContext& ctx) const final { // NOLINT
auto in_out_var_names = this->GetInputOutputWithSameType();
for (auto& i_o_n : in_out_var_names) {
auto& x_name = op_desc.Input(i_o_n.first).at(0);
auto& out_name = op_desc.Output(i_o_n.second).at(0);
auto& x_name = ctx.Input(i_o_n.first).at(0);
auto& out_name = ctx.Output(i_o_n.second).at(0);
auto& x = block->FindRecursiveOrCreateVar(x_name);
auto& out = block->FindRecursiveOrCreateVar(out_name);
out.SetType(x.GetType());
out.SetDataType(x.GetDataType());
ctx.SetType(out_name, ctx.GetType(x_name));
ctx.SetDataType(out_name, ctx.GetDataType(x_name));
}
}
......
......@@ -44,20 +44,20 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
class SumOpVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc &op_desc, BlockDesc *block) const override {
auto &inputs = op_desc.Input("X");
void operator()(framework::InferVarTypeContext &ctx) const override {
auto &inputs = ctx.Input("X");
auto default_var_type = proto::VarType::SELECTED_ROWS;
bool any_input_is_lod_tensor = std::any_of(
inputs.begin(), inputs.end(), [block](const std::string &name) {
return block->Var(name)->GetType() == proto::VarType::LOD_TENSOR;
inputs.begin(), inputs.end(), [ctx](const std::string &name) {
return ctx.GetType(name) == proto::VarType::LOD_TENSOR;
});
if (any_input_is_lod_tensor) {
default_var_type = proto::VarType::LOD_TENSOR;
}
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(default_var_type);
auto out_var_name = ctx.Output("Out").front();
ctx.SetType(out_var_name, default_var_type);
}
};
} // namespace framework
......
......@@ -203,15 +203,12 @@ class BeamSearchDecodeInferShape : public framework::InferShapeBase {
class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
for (auto& o : op_desc.Output("SentenceIds")) {
auto& sentence_ids = block->FindRecursiveOrCreateVar(o);
sentence_ids.SetType(framework::proto::VarType::LOD_TENSOR);
void operator()(framework::InferVarTypeContext& ctx) const override {
for (auto& o : ctx.Output("SentenceIds")) {
ctx.SetType(o, framework::proto::VarType::LOD_TENSOR);
}
for (auto& o : op_desc.Output("SentenceScores")) {
auto& sentence_scores = block->FindRecursiveOrCreateVar(o);
sentence_scores.SetType(framework::proto::VarType::LOD_TENSOR);
for (auto& o : ctx.Output("SentenceScores")) {
ctx.SetType(o, framework::proto::VarType::LOD_TENSOR);
}
}
};
......
......@@ -120,15 +120,12 @@ class BeamSearchOp : public framework::OperatorWithKernel {
class BeamSearchInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &o : op_desc.Output("selected_ids")) {
auto &selected_ids = block->FindRecursiveOrCreateVar(o);
selected_ids.SetType(framework::proto::VarType::LOD_TENSOR);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &o : ctx.Output("selected_ids")) {
ctx.SetType(o, framework::proto::VarType::LOD_TENSOR);
}
for (auto &o : op_desc.Output("selected_scores")) {
auto &selected_scores = block->FindRecursiveOrCreateVar(o);
selected_scores.SetType(framework::proto::VarType::LOD_TENSOR);
for (auto &o : ctx.Output("selected_scores")) {
ctx.SetType(o, framework::proto::VarType::LOD_TENSOR);
}
}
};
......
......@@ -93,11 +93,9 @@ execution.
class GetPlacesInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &o_name : op_desc.Output("Out")) {
block->FindRecursiveOrCreateVar(o_name).SetType(
framework::proto::VarType::PLACE_LIST);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &o_name : ctx.Output("Out")) {
ctx.SetType(o_name, framework::proto::VarType::PLACE_LIST);
}
}
};
......
......@@ -100,16 +100,13 @@ class WriteToArrayInferShape : public framework::InferShapeBase {
class WriteToArrayInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto x_name = op_desc.Input("X")[0];
auto out_name = op_desc.Output("Out")[0];
void operator()(framework::InferVarTypeContext &ctx) const override {
auto x_name = ctx.Input("X")[0];
auto out_name = ctx.Output("Out")[0];
VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY";
auto &out = block->FindRecursiveOrCreateVar(out_name);
out.SetType(framework::proto::VarType::LOD_TENSOR_ARRAY);
auto *x = block->FindVarRecursive(x_name);
if (x != nullptr) {
out.SetDataType(x->GetDataType());
ctx.SetType(out_name, framework::proto::VarType::LOD_TENSOR_ARRAY);
if (ctx.HasVar(x_name)) {
ctx.SetDataType(out_name, ctx.GetDataType(x_name));
}
}
};
......
......@@ -114,11 +114,10 @@ class MergeIdsOp : public framework::OperatorWithKernel {
class MergeIdsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto *input_var = block->Var(op_desc.Input("Ids")[0]);
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(input_var->GetType());
void operator()(framework::InferVarTypeContext &ctx) const override {
auto input_type = ctx.GetType(ctx.Input("Ids")[0]);
for (auto &out_var : ctx.Output("Out")) {
ctx.SetType(out_var, input_type);
}
}
};
......
......@@ -71,11 +71,10 @@ class SplitIdsOp : public framework::OperatorWithKernel {
class SplitIdsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto *input_var = block->Var(op_desc.Input("Ids")[0]);
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(input_var->GetType());
void operator()(framework::InferVarTypeContext &ctx) const override {
auto input_type = ctx.GetType(ctx.Input("Ids")[0]);
for (auto &out_var : ctx.Output("Out")) {
ctx.SetType(out_var, input_type);
}
}
};
......
......@@ -39,12 +39,11 @@ class FillConstantOp : public framework::OperatorWithKernel {
class FillConstantOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
void operator()(framework::InferVarTypeContext& ctx) const override {
auto data_type = static_cast<framework::proto::VarType::Type>(
boost::get<int>(op_desc.GetAttr("dtype")));
auto& out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetDataType(data_type);
boost::get<int>(ctx.GetAttr("dtype")));
auto& out_var_name = ctx.Output("Out").front();
ctx.SetDataType(out_var_name, data_type);
}
};
......
......@@ -137,22 +137,20 @@ class FusedEmbeddingSeqPoolOpGrad : public framework::OperatorWithKernel {
class FusedEmbeddingSeqPoolOpGradVarTypeInference
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
auto attr = op_desc.GetAttr("is_sparse");
void operator()(framework::InferVarTypeContext& ctx) const override {
auto out_var_name = ctx.Output(framework::GradVarName("W")).front();
auto attr = ctx.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(3) << "fused_embedding_seq_pool_grad op "
<< framework::GradVarName("W") << " is set to SelectedRows";
block->Var(out_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
ctx.SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(3) << "fused_embedding_seq_pool_grad op "
<< framework::GradVarName("W") << " is set to LoDTensor";
block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
}
block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
ctx.SetDataType(out_var_name, ctx.GetDataType(ctx.Input("W")[0]));
}
};
......
......@@ -81,15 +81,12 @@ GetTensorFromSelectedRows is used to get the tensor from SelectedRows.
class GetTensorFromSelectedRowsOpVarTypeInference
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const final {
auto out_var_name = op_desc.Output("Out").front();
auto in_var_name = op_desc.Input("X").front();
auto out_var = block->FindRecursiveOrCreateVar(out_var_name);
auto in_var = block->FindRecursiveOrCreateVar(in_var_name);
out_var.SetType(framework::proto::VarType::LOD_TENSOR);
out_var.SetDataType(in_var.GetDataType());
void operator()(framework::InferVarTypeContext &ctx) const { // NOLINT
auto out_var_name = ctx.Output("Out").front();
auto in_var_name = ctx.Input("X").front();
ctx.SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
ctx.SetDataType(out_var_name, ctx.GetDataType(in_var_name));
}
};
......
......@@ -197,38 +197,32 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
class HierarchicalSigmoidGradOpGradVarTypeInference
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto w_grad_var_name = op_desc.Output(framework::GradVarName("W")).front();
auto bias_grad_var_name_vec =
op_desc.Output(framework::GradVarName("Bias"));
void operator()(framework::InferVarTypeContext& ctx) const override {
auto w_grad_var_name = ctx.Output(framework::GradVarName("W")).front();
auto bias_grad_var_name_vec = ctx.Output(framework::GradVarName("Bias"));
std::string bias_grad_var_name;
bool hasBias = false;
if (bias_grad_var_name_vec.size()) {
hasBias = true;
bias_grad_var_name =
op_desc.Output(framework::GradVarName("Bias")).front();
bias_grad_var_name = ctx.Output(framework::GradVarName("Bias")).front();
}
auto attr = op_desc.GetAttr("is_sparse");
auto attr = ctx.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
<< " is set to SelectedRows";
block->Var(w_grad_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
ctx.SetType(w_grad_var_name, framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
<< " is set to LoDTensor";
block->Var(w_grad_var_name)
->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(w_grad_var_name, framework::proto::VarType::LOD_TENSOR);
}
if (hasBias) {
VLOG(30) << "hierarchical_sigmoid_grad op "
<< framework::GradVarName("Bias") << " is set to LoDTensor";
block->Var(bias_grad_var_name)
->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(bias_grad_var_name, framework::proto::VarType::LOD_TENSOR);
}
block->Var(w_grad_var_name)->SetDataType(block->Var("W")->GetDataType());
ctx.SetDataType(w_grad_var_name, ctx.GetDataType(ctx.Input("W")[0]));
}
};
......
......@@ -64,11 +64,9 @@ class LoDRankTableInferShape : public framework::InferShapeBase {
class LoDRankTableInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &o : op_desc.Output("Out")) {
block->FindRecursiveOrCreateVar(o).SetType(
framework::proto::VarType::LOD_RANK_TABLE);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &o : ctx.Output("Out")) {
ctx.SetType(o, framework::proto::VarType::LOD_RANK_TABLE);
}
}
};
......
......@@ -201,10 +201,9 @@ class LoDTensorToArrayInferShape : public framework::InferShapeBase {
class LoDTensorToArrayInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR_ARRAY);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &out_var : ctx.Output("Out")) {
ctx.SetType(out_var, framework::proto::VarType::LOD_TENSOR_ARRAY);
}
}
};
......
......@@ -147,22 +147,20 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
auto attr = op_desc.GetAttr("is_sparse");
void operator()(framework::InferVarTypeContext& ctx) const override {
auto out_var_name = ctx.Output(framework::GradVarName("W")).front();
auto attr = ctx.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
<< " is set to SelectedRows";
block->Var(out_var_name)
->SetType(framework::proto::VarType::SELECTED_ROWS);
ctx.SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
<< " is set to LoDTensor";
block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
}
block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
ctx.SetDataType(out_var_name, ctx.GetDataType(ctx.Input("W")[0]));
}
};
......
......@@ -237,23 +237,21 @@ class NCEOpGrad : public framework::OperatorWithKernel {
class NCEOpGradVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto weight_grad = op_desc.Output(framework::GradVarName("Weight")).front();
void operator()(framework::InferVarTypeContext &ctx) const override {
auto weight_grad = ctx.Output(framework::GradVarName("Weight")).front();
auto attr = op_desc.GetAttr("is_sparse");
auto attr = ctx.GetAttr("is_sparse");
bool is_sparse = boost::get<bool>(attr);
if (is_sparse) {
VLOG(3) << "nce_op_grad op " << weight_grad << " and "
<< " is set to SelectedRows";
block->Var(weight_grad)
->SetType(framework::proto::VarType::SELECTED_ROWS);
ctx.SetType(weight_grad, framework::proto::VarType::SELECTED_ROWS);
} else {
VLOG(3) << "nce_op_grad op " << weight_grad << " and "
<< " is set to LoDTensor";
block->Var(weight_grad)->SetType(framework::proto::VarType::LOD_TENSOR);
ctx.SetType(weight_grad, framework::proto::VarType::LOD_TENSOR);
}
block->Var(weight_grad)->SetDataType(block->Var("Input")->GetDataType());
ctx.SetDataType(weight_grad, ctx.GetDataType(ctx.Input("Input")[0]));
}
};
......
......@@ -37,8 +37,7 @@ class NgraphEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class NgraphEngineInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {}
void operator()(framework::InferVarTypeContext &ctx) const override {}
};
} // namespace operators
......
......@@ -72,8 +72,7 @@ use L2 regularizers in case of using LARS.
class LarsMomentumOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {}
void operator()(framework::InferVarTypeContext &ctx) const override {}
};
} // namespace operators
} // namespace paddle
......
......@@ -21,18 +21,14 @@ using Tensor = framework::Tensor;
class MomentumOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto input_var = op_desc.Input("Param")[0];
for (auto& out_var : op_desc.Output("ParamOut")) {
if (block->FindRecursiveOrCreateVar(input_var).GetType() ==
framework::proto::VarType::SELECTED_ROWS) {
block->FindRecursiveOrCreateVar(out_var).SetType(
framework::proto::VarType::SELECTED_ROWS);
} else if (block->FindRecursiveOrCreateVar(input_var).GetType() ==
void operator()(framework::InferVarTypeContext& ctx) const override {
auto& input_var = ctx.Input("Param")[0];
for (auto& out_var : ctx.Output("ParamOut")) {
if (ctx.GetType(input_var) == framework::proto::VarType::SELECTED_ROWS) {
ctx.SetType(out_var, framework::proto::VarType::SELECTED_ROWS);
} else if (ctx.GetType(input_var) ==
framework::proto::VarType::LOD_TENSOR) {
block->FindRecursiveOrCreateVar(out_var).SetType(
framework::proto::VarType::LOD_TENSOR);
ctx.SetType(out_var, framework::proto::VarType::LOD_TENSOR);
} else {
PADDLE_THROW(
"Only support LodTensor and SelectedRows, Unexpected Input Type.");
......
......@@ -50,20 +50,18 @@ class SGDOp : public framework::OperatorWithKernel {
class SGDOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto input_var_n = op_desc.Input("Param")[0];
auto in_var_type = block->FindRecursiveOrCreateVar(input_var_n).GetType();
void operator()(framework::InferVarTypeContext &ctx) const override {
auto &input_var_n = ctx.Input("Param")[0];
auto in_var_type = ctx.GetType(input_var_n);
PADDLE_ENFORCE(in_var_type == framework::proto::VarType::SELECTED_ROWS ||
in_var_type == framework::proto::VarType::LOD_TENSOR,
"The input Var's type should be LoDtensor or SelectedRows,"
" but the received var(%s)'s type is %s",
input_var_n, in_var_type);
for (auto &out_var_n : op_desc.Output("ParamOut")) {
auto &out_var = block->FindRecursiveOrCreateVar(out_var_n);
if (out_var.GetType() != in_var_type) {
out_var.SetType(in_var_type);
for (auto &out_var_n : ctx.Output("ParamOut")) {
if (ctx.GetType(out_var_n) != in_var_type) {
ctx.SetType(out_var_n, in_var_type);
}
}
}
......
......@@ -91,15 +91,12 @@ static void CallPythonFunc(py::object *callable,
}
}
class PyFuncOpVarTypInference : public framework::VarTypeInference {
class PyFuncOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op,
framework::BlockDesc *block) const override {
auto &outs = op.Outputs();
bool has_out = (outs.count("Out") > 0 && !outs.at("Out").empty());
void operator()(framework::InferVarTypeContext &ctx) const override {
bool has_out = (ctx.HasOutput("Out") && !ctx.Output("Out").empty());
auto &ins = op.Inputs();
bool has_in = (ins.count("X") > 0 && !ins.at("X").empty());
bool has_in = (ctx.HasInput("X") && !ctx.Input("Out").empty());
/**
* X or Out can be empty, so that py_func can be more flexible
......@@ -107,7 +104,7 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
*/
PADDLE_ENFORCE(has_in || has_out, "Input(X) or Output(Out) must exist");
PADDLE_ENFORCE_GE(boost::get<int>(op.GetAttr(kForwardPythonCallableId)), 0,
PADDLE_ENFORCE_GE(boost::get<int>(ctx.GetAttr(kForwardPythonCallableId)), 0,
"Function id cannot be less than 0");
if (!has_out) return;
......@@ -118,7 +115,7 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
* the corresponding forward variable
*/
const std::string kGradVarSuffix = framework::kGradVarSuffix;
auto &out_var_names = outs.at("Out");
auto &out_var_names = ctx.Output("Out");
for (auto &out_var_name : out_var_names) {
if (out_var_name == framework::kEmptyVarName ||
out_var_name.size() < kGradVarSuffix.size()) {
......@@ -128,18 +125,17 @@ class PyFuncOpVarTypInference : public framework::VarTypeInference {
size_t len = out_var_name.size() - kGradVarSuffix.size();
if (out_var_name.substr(len) == kGradVarSuffix) {
auto fwd_var_name = out_var_name.substr(0, len);
auto *out_var_desc = block->FindVarRecursive(out_var_name);
auto *fwd_var_desc = block->FindVarRecursive(fwd_var_name);
PADDLE_ENFORCE_NOT_NULL(out_var_desc, "Backward variable %s not found",
out_var_name);
PADDLE_ENFORCE_NOT_NULL(fwd_var_desc, "Forward variable %s not found",
fwd_var_name);
PADDLE_ENFORCE(ctx.HasVar(out_var_name),
"Backward variable %s not found", out_var_name);
PADDLE_ENFORCE(ctx.HasVar(fwd_var_name),
"Backward variable %s not found", fwd_var_name);
VLOG(10) << "Infer var_desc of Output(" << out_var_name << ") as Input("
<< fwd_var_name << ")";
out_var_desc->SetShape(fwd_var_desc->GetShape());
out_var_desc->SetDataType(fwd_var_desc->GetDataType());
out_var_desc->SetLoDLevel(fwd_var_desc->GetLoDLevel());
out_var_desc->SetType(fwd_var_desc->GetType());
ctx.SetShape(out_var_name, ctx.GetShape(fwd_var_name));
ctx.SetDataType(out_var_name, ctx.GetDataType(fwd_var_name));
ctx.SetLoDLevel(out_var_name, ctx.GetLoDLevel(fwd_var_name));
ctx.SetType(out_var_name, ctx.GetType(fwd_var_name));
}
}
}
......@@ -309,5 +305,5 @@ class PyFuncOp : public framework::OperatorBase {
namespace ops = paddle::operators;
REGISTER_OPERATOR(py_func, ops::PyFuncOp, ops::PyFuncOpMaker,
ops::PyFuncOpVarTypInference, ops::PyFuncOpShapeInference,
ops::PyFuncOpVarTypeInference, ops::PyFuncOpShapeInference,
ops::PyFuncOpGradDescMaker);
......@@ -123,23 +123,22 @@ class CustomReaderInferShape : public framework::InferShapeBase {
class CustomReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
framework::VarDesc* out_reader = block->FindVar(op_desc.Output("Out")[0]);
PADDLE_ENFORCE_NOT_NULL(out_reader);
out_reader->SetType(framework::proto::VarType::READER);
void operator()(const framework::InferVarTypeContext& ctx) const override {
auto& out_var_name = ctx.Output("Out")[0];
PADDLE_ENFORCE(ctx.HasVar(out_var_name));
ctx.SetType(out_var_name, framework::proto::VarType::READER);
auto sink_var_names =
boost::get<std::vector<std::string>>(op_desc.GetAttr("sink_var_names"));
boost::get<std::vector<std::string>>(ctx.GetAttr("sink_var_names"));
const auto* sub_block =
boost::get<framework::BlockDesc*>(op_desc.GetAttr("sub_block"));
boost::get<framework::BlockDesc*>(ctx.GetAttr("sub_block"));
std::vector<framework::proto::VarType::Type> res_data_types;
for (const std::string& var_name : sink_var_names) {
framework::VarDesc* var = sub_block->FindVar(var_name);
PADDLE_ENFORCE_NOT_NULL(var);
res_data_types.emplace_back(var->GetDataType());
}
out_reader->SetDataTypes(res_data_types);
ctx.SetDataTypes(out_var_name, res_data_types);
}
};
......
......@@ -51,19 +51,16 @@ class ReadInferShape : public framework::InferShapeBase {
class ReadInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
bool infer_out = boost::get<bool>(op_desc.GetAttr("infer_out"));
void operator()(const framework::InferVarTypeContext& ctx) const override {
bool infer_out = boost::get<bool>(ctx.GetAttr("infer_out"));
if (infer_out) {
std::string reader_name = op_desc.Input("Reader")[0];
std::vector<std::string> out_names = op_desc.Output("Out");
framework::VarDesc* reader = block->FindVarRecursive(reader_name);
auto dtypes = reader->GetDataTypes();
std::string reader_name = ctx.Input("Reader")[0];
std::vector<std::string> out_names = ctx.Output("Out");
auto dtypes = ctx.GetDataTypes(reader_name);
PADDLE_ENFORCE_EQ(dtypes.size(), out_names.size());
for (size_t i = 0; i < dtypes.size(); ++i) {
framework::VarDesc& out = block->FindRecursiveOrCreateVar(out_names[i]);
out.SetType(framework::proto::VarType::LOD_TENSOR);
out.SetDataType(dtypes[i]);
ctx.SetType(out_names[i], framework::proto::VarType::LOD_TENSOR);
ctx.SetDataType(out_names[i], dtypes[i]);
}
}
}
......
......@@ -59,8 +59,7 @@ class FileReaderInferShape : public framework::InferShapeBase {
class FileReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override;
void operator()(framework::InferVarTypeContext& ctx) const override;
};
// general infershape for decorated reader
......@@ -72,8 +71,7 @@ class DecoratedReaderInferShape : public framework::InferShapeBase {
// general var type inference for decorated reader
class DecoratedReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override;
void operator()(framework::InferVarTypeContext& ctx) const override;
};
class DecoratedReaderMakerBase : public framework::OpProtoAndCheckerMaker {
......
......@@ -159,12 +159,9 @@ This operator will serialize and write LoDTensor / SelectedRows variable to file
class SaveOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto out_var_name = op_desc.Output(LOOKUP_TABLE_PATH).front();
auto &out_var = block->FindRecursiveOrCreateVar(out_var_name);
auto var_type = framework::proto::VarType::RAW;
out_var.SetType(var_type);
void operator()(framework::InferVarTypeContext &ctx) const override {
auto out_var_name = ctx.Output(LOOKUP_TABLE_PATH).front();
ctx.SetType(out_var_name, framework::proto::VarType::RAW);
}
};
......
......@@ -69,17 +69,13 @@ $$Out = scale*(X + bias)$$
class ScaleOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto &in_var_name = op_desc.Input("X").front();
auto &in_var = detail::Ref(block->FindVarRecursive(in_var_name));
auto out_var_name = op_desc.Output("Out").front();
auto *out_var = block->FindVarRecursive(out_var_name);
void operator()(framework::InferVarTypeContext &ctx) const override {
auto &in_var_name = ctx.Input("X").front();
auto out_var_name = ctx.Output("Out").front();
if (in_var_name != out_var_name) {
out_var->SetType(in_var.GetType());
out_var->SetDataType(in_var.GetDataType());
ctx.SetType(out_var_name, ctx.GetType(in_var_name));
ctx.SetDataType(out_var_name, ctx.GetDataType(in_var_name));
}
}
};
......
......@@ -60,10 +60,9 @@ class SplitSelectedRowsOp : public framework::OperatorWithKernel {
class SplitSelectedRowsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(framework::proto::VarType::SELECTED_ROWS);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &out_var : ctx.Output("Out")) {
ctx.SetType(out_var, framework::proto::VarType::SELECTED_ROWS);
}
}
};
......
......@@ -159,24 +159,20 @@ the LoD information with the first input.
class SumOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto& inputs = op_desc.Input("X");
void operator()(framework::InferVarTypeContext& ctx) const override {
auto& inputs = ctx.Input("X");
auto var_type = framework::proto::VarType::SELECTED_ROWS;
for (auto& name : op_desc.Input("X")) {
VLOG(10) << name << " "
<< block->FindRecursiveOrCreateVar(name).GetType();
for (auto& name : ctx.Input("X")) {
VLOG(10) << name << " " << ctx.GetType(name);
}
bool any_input_is_lod_tensor = std::any_of(
inputs.begin(), inputs.end(), [block](const std::string& name) {
return block->FindRecursiveOrCreateVar(name).GetType() ==
framework::proto::VarType::LOD_TENSOR;
inputs.begin(), inputs.end(), [ctx](const std::string& name) {
return ctx.GetType(name) == framework::proto::VarType::LOD_TENSOR;
});
auto is_tensor_array = [block](const std::string& name) {
return block->FindRecursiveOrCreateVar(name).GetType() ==
framework::proto::VarType::LOD_TENSOR_ARRAY;
auto is_tensor_array = [ctx](const std::string& name) {
return ctx.GetType(name) == framework::proto::VarType::LOD_TENSOR_ARRAY;
};
bool any_input_is_tensor_array =
......@@ -188,8 +184,7 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
if (!all_inputs_are_tensor_array) {
std::ostringstream os;
for (auto& each : inputs) {
os << " " << each << " type is "
<< block->FindRecursiveOrCreateVar(each).GetType() << "\n";
os << " " << each << " type is " << ctx.GetType(each) << "\n";
}
PADDLE_ENFORCE(all_inputs_are_tensor_array,
"Not all inputs are tensor array:\n%s", os.str());
......@@ -199,11 +194,9 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
var_type = framework::proto::VarType::LOD_TENSOR;
}
auto out_var_name = op_desc.Output("Out").front();
auto& out_var = block->FindRecursiveOrCreateVar(out_var_name);
out_var.SetType(var_type);
auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
out_var.SetDataType(in_var.GetDataType());
auto out_var_name = ctx.Output("Out").front();
ctx.SetType(out_var_name, var_type);
ctx.SetDataType(out_var_name, ctx.GetDataType(inputs.front()));
}
};
......
......@@ -177,10 +177,9 @@ class LoDTensorArray2TensorGradInferShape : public framework::InferShapeBase {
class LoDTensorArray2TensorGradInferVarType
: public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &out_var : op_desc.Output(framework::GradVarName("X"))) {
block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR_ARRAY);
void operator()(framework::InferVarTypeContext &ctx) const override {
for (auto &out_var : ctx.Output(framework::GradVarName("X"))) {
ctx.SetType(out_var, framework::proto::VarType::LOD_TENSOR_ARRAY);
}
}
};
......
......@@ -46,8 +46,7 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
class TensorRTEngineInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {}
void operator()(framework::InferVarTypeContext &ctx) const override {}
};
} // namespace operators
......
......@@ -112,17 +112,15 @@ uniform distribution. The random result is in set [min, max].
class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto out_var_name = op_desc.Output("Out").front();
void operator()(framework::InferVarTypeContext &ctx) const override {
auto out_var_name = ctx.Output("Out").front();
auto var_data_type = static_cast<framework::proto::VarType::Type>(
boost::get<int>(op_desc.GetAttr("dtype")));
boost::get<int>(ctx.GetAttr("dtype")));
auto out_var = block->FindRecursiveOrCreateVar(out_var_name);
if (out_var.GetType() != framework::proto::VarType::SELECTED_ROWS) {
out_var.SetType(framework::proto::VarType::LOD_TENSOR);
if (ctx.GetType(out_var_name) != framework::proto::VarType::SELECTED_ROWS) {
ctx.SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
}
out_var.SetDataType(var_data_type);
ctx.SetDataType(out_var_name, var_data_type);
}
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册