未验证 提交 c99c70cb 编写于 作者: L lyq 提交者: GitHub

[Phi] migrate sync_batch_norm to phi (#44369)

上级 b8d106e1
...@@ -13,17 +13,19 @@ See the License for the specific language governing permissions and ...@@ -13,17 +13,19 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/inplace_abn_op.h" #include "paddle/fluid/operators/inplace_abn_op.h"
#include <iostream>
#include "paddle/fluid/operators/batch_norm_op.h" #include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/sync_batch_norm_op.cu.h"
#include "paddle/phi/kernels/batch_norm_grad_kernel.h" #include "paddle/phi/kernels/batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/batch_norm_kernel.h" #include "paddle/phi/kernels/batch_norm_kernel.h"
#include "paddle/phi/kernels/gpu/sync_batch_norm_utils.h"
#include "paddle/phi/kernels/sync_batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/sync_batch_norm_kernel.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class InplaceABNKernel class InplaceABNKernel : public framework::OpKernel<T> {
: public paddle::operators::SyncBatchNormKernel<DeviceContext, T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* y = ctx.Output<Tensor>("Y"); auto* y = ctx.Output<Tensor>("Y");
...@@ -36,29 +38,49 @@ class InplaceABNKernel ...@@ -36,29 +38,49 @@ class InplaceABNKernel
GetInplaceABNActivationType(ctx.Attr<std::string>("activation")); GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));
auto& place = *ctx.template device_context<DeviceContext>().eigen_device(); auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto* mean = ctx.Input<Tensor>("Mean");
auto* variance = ctx.Input<Tensor>("Variance");
auto momentum = ctx.Attr<float>("momentum");
auto epsilon = ctx.Attr<float>("epsilon");
auto data_layout = ctx.Attr<std::string>("data_layout");
auto is_test = ctx.Attr<bool>("is_test");
auto use_global_stats = ctx.Attr<bool>("use_global_stats");
auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
auto* mean_out = ctx.Output<Tensor>("MeanOut");
auto* variance_out = ctx.Output<Tensor>("VarianceOut");
auto* saved_mean = ctx.Output<Tensor>("SavedMean");
auto* saved_variance = ctx.Output<Tensor>("SavedVariance");
auto* reserve_space = ctx.Output<Tensor>("ReserveSpace");
if (ctx.Attr<bool>("use_sync_bn")) { if (ctx.Attr<bool>("use_sync_bn")) {
SyncBatchNormKernel<DeviceContext, T>::Compute(ctx); auto& dev_ctx = ctx.device_context<DeviceContext>();
phi::SyncBatchNormKernel<T>(
static_cast<const typename framework::ConvertToPhiContext<
DeviceContext>::TYPE&>(dev_ctx),
*x,
*scale,
*bias,
*mean,
*variance,
momentum,
epsilon,
data_layout,
is_test,
use_global_stats,
trainable_statistics,
fuse_with_relu,
y,
mean_out,
variance_out,
saved_mean,
saved_variance,
reserve_space);
} else { } else {
// BatchNormKernel<DeviceContext, T>::Compute(ctx);
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto* mean = ctx.Input<Tensor>("Mean");
auto* variance = ctx.Input<Tensor>("Variance");
auto momentum = ctx.Attr<float>("momentum");
auto epsilon = ctx.Attr<float>("epsilon");
auto data_layout = ctx.Attr<std::string>("data_layout");
auto is_test = ctx.Attr<bool>("is_test");
auto use_global_stats = ctx.Attr<bool>("use_global_stats");
auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
auto* mean_out = ctx.Output<Tensor>("MeanOut");
auto* variance_out = ctx.Output<Tensor>("VarianceOut");
auto* saved_mean = ctx.Output<Tensor>("SavedMean");
auto* saved_variance = ctx.Output<Tensor>("SavedVariance");
auto* reserve_space = ctx.Output<Tensor>("ReserveSpace");
auto& dev_ctx = ctx.device_context<DeviceContext>(); auto& dev_ctx = ctx.device_context<DeviceContext>();
phi::BatchNormKernel<T>( phi::BatchNormKernel<T>(
static_cast<const typename framework::ConvertToPhiContext< static_cast<const typename framework::ConvertToPhiContext<
...@@ -92,8 +114,7 @@ class InplaceABNKernel ...@@ -92,8 +114,7 @@ class InplaceABNKernel
// Deriving the Gradient for the Backward Pass of Batch Normalization // Deriving the Gradient for the Backward Pass of Batch Normalization
// https://kevinzakka.github.io/2016/09/14/batch_normalization/ // https://kevinzakka.github.io/2016/09/14/batch_normalization/
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class InplaceABNGradKernel class InplaceABNGradKernel : public framework::OpKernel<T> {
: public paddle::operators::SyncBatchNormGradKernel<DeviceContext, T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
const auto* y = ctx.Input<Tensor>("Y"); const auto* y = ctx.Input<Tensor>("Y");
...@@ -115,29 +136,44 @@ class InplaceABNGradKernel ...@@ -115,29 +136,44 @@ class InplaceABNGradKernel
InplaceABNActivation<DeviceContext, T> functor; InplaceABNActivation<DeviceContext, T> functor;
functor.GradCompute(ctx, activation, place, cur_y, cur_y, cur_dy, cur_dy); functor.GradCompute(ctx, activation, place, cur_y, cur_y, cur_dy, cur_dy);
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto* saved_mean = ctx.Input<Tensor>("SavedMean");
auto* saved_variance = ctx.Input<Tensor>("SavedVariance");
auto momentum = ctx.Attr<float>("momentum");
auto epsilon = ctx.Attr<float>("epsilon");
auto data_layout = ctx.Attr<std::string>("data_layout");
auto is_test = ctx.Attr<bool>("is_test");
auto use_global_stats = ctx.Attr<bool>("use_global_stats");
auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
auto* scale_grad = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto* bias_grad = ctx.Output<Tensor>(framework::GradVarName("Bias"));
auto* reserve_space = ctx.Input<Tensor>("ReserveSpace");
auto* mean = ctx.Input<Tensor>("ReserveSpace");
auto* variance = ctx.Input<Tensor>("ReserveSpace");
if (ctx.Attr<bool>("use_sync_bn")) { if (ctx.Attr<bool>("use_sync_bn")) {
SyncBatchNormGradKernel<DeviceContext, T>::Compute(ctx); auto& dev_ctx = ctx.device_context<DeviceContext>();
phi::SyncBatchNormGradFunctor<T>(
static_cast<const typename framework::ConvertToPhiContext<
DeviceContext>::TYPE&>(dev_ctx),
nullptr,
y,
*scale,
*bias,
*saved_mean,
*saved_variance,
*d_y,
epsilon,
data_layout,
d_x,
scale_grad,
bias_grad);
} else { } else {
auto* scale = ctx.Input<Tensor>("Scale");
auto* bias = ctx.Input<Tensor>("Bias");
auto* saved_mean = ctx.Input<Tensor>("SavedMean");
auto* saved_variance = ctx.Input<Tensor>("SavedVariance");
auto momentum = ctx.Attr<float>("momentum");
auto epsilon = ctx.Attr<float>("epsilon");
auto data_layout = ctx.Attr<std::string>("data_layout");
auto is_test = ctx.Attr<bool>("is_test");
auto use_global_stats = ctx.Attr<bool>("use_global_stats");
auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
auto* scale_grad = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto* bias_grad = ctx.Output<Tensor>(framework::GradVarName("Bias"));
auto* reserve_space = ctx.Input<Tensor>("ReserveSpace");
auto* mean = ctx.Input<Tensor>("ReserveSpace");
auto* variance = ctx.Input<Tensor>("ReserveSpace");
paddle::optional<Tensor> space_opt; paddle::optional<Tensor> space_opt;
paddle::optional<Tensor> mean_opt; paddle::optional<Tensor> mean_opt;
paddle::optional<Tensor> variance_opt; paddle::optional<Tensor> variance_opt;
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sync_batch_norm_op.cu.h"
namespace paddle {
namespace operators {
template <typename T>
class SyncBatchNormKernel<platform::CUDADeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
const float momentum = ctx.Attr<float>("momentum");
const bool is_test = ctx.Attr<bool>("is_test");
const std::string layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout layout = framework::StringToDataLayout(layout_str);
const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
PADDLE_ENFORCE_EQ(use_global_stats,
false,
platform::errors::InvalidArgument(
"sync_batch_norm doesn't support "
"to set use_global_stats True. Please use batch_norm "
"in this case."));
const auto *x = ctx.Input<Tensor>("X");
auto *y = ctx.Output<Tensor>("Y");
const auto *est_mean = ctx.Input<Tensor>("Mean");
const auto *est_var = ctx.Input<Tensor>("Variance");
// moving mean/variance
auto *mean_out = ctx.Output<Tensor>("MeanOut");
auto *variance_out = ctx.Output<Tensor>("VarianceOut");
auto *saved_mean = ctx.Output<Tensor>("SavedMean");
auto *saved_inv_variance = ctx.Output<Tensor>("SavedVariance");
bool test_mode = is_test && (!trainable_stats);
SyncBatchNormFunctor<platform::CUDADeviceContext, T>(ctx,
layout,
x,
y,
est_mean,
est_var,
mean_out,
variance_out,
saved_mean,
saved_inv_variance,
epsilon,
momentum,
test_mode,
use_global_stats);
}
};
template <typename T>
class SyncBatchNormGradKernel<platform::CUDADeviceContext, T>
: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
PADDLE_ENFORCE_EQ(
platform::is_gpu_place(ctx.GetPlace()),
true,
platform::errors::InvalidArgument("It must use CUDAPlace."));
double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
const std::string layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout layout = framework::StringToDataLayout(layout_str);
const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
const auto *scale = ctx.Input<Tensor>("Scale");
const auto *bias = ctx.Input<Tensor>("Bias");
// init output
auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
const auto *saved_inv_var = ctx.Input<Tensor>("SavedVariance");
SyncBatchNormGradFunctor<platform::CUDADeviceContext, T>(ctx,
layout,
scale,
bias,
d_x,
d_y,
d_scale,
d_bias,
saved_mean,
saved_inv_var,
epsilon);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
sync_batch_norm,
ops::SyncBatchNormKernel<plat::CUDADeviceContext, float>,
ops::SyncBatchNormKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
sync_batch_norm_grad,
ops::SyncBatchNormGradKernel<plat::CUDADeviceContext, float>,
ops::SyncBatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);
#else
REGISTER_OP_CUDA_KERNEL(
sync_batch_norm,
ops::SyncBatchNormKernel<plat::CUDADeviceContext, float>,
ops::SyncBatchNormKernel<plat::CUDADeviceContext, double>,
ops::SyncBatchNormKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
sync_batch_norm_grad,
ops::SyncBatchNormGradKernel<plat::CUDADeviceContext, float>,
ops::SyncBatchNormGradKernel<plat::CUDADeviceContext, double>,
ops::SyncBatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);
#endif
// clang-format on
...@@ -2075,6 +2075,16 @@ ...@@ -2075,6 +2075,16 @@
func : swish func : swish
backward : swish_grad backward : swish_grad
# sync_batch_norm
- api : sync_batch_norm
args : (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
output : Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
infer_meta :
func : BatchNormInferMeta
kernel :
func : sync_batch_norm
backward : sync_batch_norm_grad
# take_along_axis # take_along_axis
- api : take_along_axis - api : take_along_axis
args : (Tensor x, Tensor index, int axis) args : (Tensor x, Tensor index, int axis)
......
...@@ -2085,6 +2085,18 @@ ...@@ -2085,6 +2085,18 @@
func : swish_grad func : swish_grad
inplace : (out_grad -> x_grad) inplace : (out_grad -> x_grad)
- backward_api : sync_batch_norm_grad
forward : sync_batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
infer_meta :
func : GeneralTernaryGradInferMeta
param : [x, scale, bias]
kernel :
func : sync_batch_norm_grad
data_type : out_grad
optional : mean_out, variance_out, reserve_space
- backward_api : take_along_axis_grad - backward_api : take_along_axis_grad
forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out) forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out)
args : (Tensor x, Tensor index, Tensor out_grad, int axis) args : (Tensor x, Tensor index, Tensor out_grad, int axis)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sync_batch_norm_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/sync_batch_norm_utils.h"
namespace phi {
template <typename T, typename Context>
void SyncBatchNormGradKernel(const Context& ctx,
const DenseTensor& x,
const DenseTensor& scale,
const DenseTensor& bias,
const paddle::optional<DenseTensor>& mean,
const paddle::optional<DenseTensor>& variance,
const DenseTensor& saved_mean,
const DenseTensor& saved_variance,
const paddle::optional<DenseTensor>& reserve_space,
const DenseTensor& y_grad,
float momentum,
float epsilon_f,
const std::string& data_layout_str,
bool is_test,
bool use_global_stats,
bool trainable_statistics,
bool fuse_with_relu,
DenseTensor* x_grad,
DenseTensor* scale_grad,
DenseTensor* bias_grad) {
SyncBatchNormGradFunctor<T, Context>(ctx,
&x,
nullptr,
scale,
bias,
saved_mean,
saved_variance,
y_grad,
epsilon_f,
data_layout_str,
x_grad,
scale_grad,
bias_grad);
}
} // namespace phi
#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(sync_batch_norm_grad,
GPU,
ALL_LAYOUT,
phi::SyncBatchNormGradKernel,
float,
phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(sync_batch_norm_grad,
GPU,
ALL_LAYOUT,
phi::SyncBatchNormGradKernel,
float,
double,
phi::dtype::float16) {}
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sync_batch_norm_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/sync_batch_norm_utils.h"
namespace phi {
template <typename T, typename Context>
void SyncBatchNormKernel(const Context &ctx,
const DenseTensor &x,
const DenseTensor &scale,
const DenseTensor &bias,
const DenseTensor &mean,
const DenseTensor &variance,
float momentum,
float epsilon_f,
const std::string &data_layout_str,
bool is_test,
bool use_global_stats,
bool trainable_statistics,
bool fuse_with_relu,
DenseTensor *y,
DenseTensor *mean_out,
DenseTensor *variance_out,
DenseTensor *saved_mean,
DenseTensor *saved_variance,
DenseTensor *reserve_space) {
PADDLE_ENFORCE_EQ(use_global_stats,
false,
phi::errors::InvalidArgument(
"sync_batch_norm doesn't support "
"to set use_global_stats True. Please use batch_norm "
"in this case."));
double epsilon = epsilon_f;
const bool trainable_stats = trainable_statistics;
const DataLayout layout =
paddle::framework::StringToDataLayout(data_layout_str);
bool test_mode = is_test && (!trainable_statistics);
const auto &x_dims = x.dims();
PADDLE_ENFORCE_GE(x_dims.size(),
2,
phi::errors::InvalidArgument(
"The Input dim size should be larger than 1."));
PADDLE_ENFORCE_LE(x_dims.size(),
5,
phi::errors::InvalidArgument(
"The Input dim size should be less than 6."));
int N, C, H, W, D;
funcs::ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D);
int x_numel = x.numel();
const T *x_d = x.template data<T>();
const auto *s_d = scale.template data<BatchNormParamType<T>>();
const auto *b_d = bias.template data<BatchNormParamType<T>>();
T *y_d = ctx.template Alloc<T>(y);
const BatchNormParamType<T> *mean_data = nullptr;
const BatchNormParamType<T> *var_data = nullptr;
auto stream = ctx.stream();
const int block = 512;
int max_threads = ctx.GetMaxPhysicalThreadCount();
paddle::memory::AllocationPtr alloc_ptr{nullptr};
if (test_mode) {
mean_data = mean.template data<BatchNormParamType<T>>();
var_data = variance.template data<BatchNormParamType<T>>();
} else {
// x, x^2, 1, here 1 is used to calc device num
// device num also can be got from platform::DeviceContextPool
const int bytes = (C * 2 + 1) * sizeof(BatchNormParamType<T>);
alloc_ptr = paddle::memory::Alloc(ctx, bytes);
auto *stats = reinterpret_cast<BatchNormParamType<T> *>(alloc_ptr->ptr());
const int threads = 256;
int grid = std::min(C, (max_threads + threads - 1) / threads);
if (layout == paddle::framework::DataLayout::kNCHW) {
KeLocalStats<T, threads, paddle::framework::DataLayout::kNCHW>
<<<grid, threads, 0, stream>>>(x_d, N, H * W * D, C, stats);
} else {
KeLocalStats<T, threads, paddle::framework::DataLayout::kNHWC>
<<<grid, threads, 0, stream>>>(x_d, N, H * W * D, C, stats);
}
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
auto *comm = ctx.nccl_comm();
if (comm) {
int dtype = paddle::platform::ToNCCLDataType(
paddle::framework::TransToProtoVarType(mean_out->dtype()));
// In-place operation
PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::ncclAllReduce(
stats,
stats,
2 * C + 1,
static_cast<ncclDataType_t>(dtype),
ncclSum,
comm,
stream));
}
#endif
auto *est_mean_data = ctx.template Alloc<BatchNormParamType<T>>(mean_out);
auto *est_var_data =
ctx.template Alloc<BatchNormParamType<T>>(variance_out);
auto *sv_mean_data = ctx.template Alloc<BatchNormParamType<T>>(saved_mean);
auto *sv_inv_var_data =
ctx.template Alloc<BatchNormParamType<T>>(saved_variance);
// Note, Input('Mean')/Input('Variance') share variable with
// Output('MeanOut')/Output('VarianceOut')
KeSyncAndMovingStats<T>
<<<(C + block - 1) / block, block, 0, stream>>>(stats,
stats + C,
stats + 2 * C,
C,
momentum,
epsilon,
sv_mean_data,
sv_inv_var_data,
est_mean_data,
est_var_data);
mean_data = sv_mean_data;
var_data = stats + C;
}
int grid2 = (std::min(x_numel, max_threads) + block - 1) / block;
if (layout == paddle::framework::DataLayout::kNCHW) {
KeNormAffine<T, paddle::framework::DataLayout::kNCHW>
<<<grid2, block, 0, stream>>>(x_d,
s_d,
b_d,
mean_data,
var_data,
epsilon,
C,
H * W * D,
x_numel,
y_d);
} else {
KeNormAffine<T, paddle::framework::DataLayout::kNHWC>
<<<grid2, block, 0, stream>>>(x_d,
s_d,
b_d,
mean_data,
var_data,
epsilon,
C,
H * W * D,
x_numel,
y_d);
}
}
} // namespace phi
#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(sync_batch_norm,
GPU,
ALL_LAYOUT,
phi::SyncBatchNormKernel,
float,
phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(sync_batch_norm,
GPU,
ALL_LAYOUT,
phi::SyncBatchNormKernel,
float,
double,
phi::dtype::float16) {}
#endif
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. /* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
...@@ -27,25 +27,20 @@ limitations under the License. */ ...@@ -27,25 +27,20 @@ limitations under the License. */
namespace cub = hipcub; namespace cub = hipcub;
#endif #endif
#include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/norm_utils.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h" #include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h" #include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/fluid/platform/float16.h" #include "paddle/phi/common/layout.h"
#include "paddle/phi/kernels/funcs/norm_utils.h"
namespace paddle { namespace phi {
namespace operators {
using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
template <typename T> template <typename T>
using CudnnDataType = platform::CudnnDataType<T>; using CudnnDataType = paddle::platform::CudnnDataType<T>;
template <typename T> template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType; using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
template <typename T, int BlockDim, framework::DataLayout layout> template <typename T, int BlockDim, DataLayout layout>
__global__ void KeLocalStats( __global__ void KeLocalStats(
const T *x, int N, int M, int C, BatchNormParamType<T> *mean_var) { const T *x, int N, int M, int C, BatchNormParamType<T> *mean_var) {
typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce; typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
...@@ -54,9 +49,8 @@ __global__ void KeLocalStats( ...@@ -54,9 +49,8 @@ __global__ void KeLocalStats(
BatchNormParamType<T> x_sum = 0.; BatchNormParamType<T> x_sum = 0.;
BatchNormParamType<T> x2_sum = 0.; BatchNormParamType<T> x2_sum = 0.;
for (int i = threadIdx.x; i < N * M; i += BlockDim) { for (int i = threadIdx.x; i < N * M; i += BlockDim) {
int id = layout == framework::DataLayout::kNCHW int id = layout == DataLayout::kNCHW ? (i / M) * C * M + k * M + i % M
? (i / M) * C * M + k * M + i % M : i * C + k;
: i * C + k;
auto x_in = static_cast<BatchNormParamType<T>>(x[id]); auto x_in = static_cast<BatchNormParamType<T>>(x[id]);
x_sum += x_in; x_sum += x_in;
x2_sum += x_in * x_in; x2_sum += x_in * x_in;
...@@ -109,7 +103,7 @@ __global__ void KeSyncAndMovingStats(BatchNormParamType<T> *means, ...@@ -109,7 +103,7 @@ __global__ void KeSyncAndMovingStats(BatchNormParamType<T> *means,
} }
} }
template <typename T, framework::DataLayout layout> template <typename T, DataLayout layout>
static __global__ void KeNormAffine(const T *x, static __global__ void KeNormAffine(const T *x,
const BatchNormParamType<T> *scale, const BatchNormParamType<T> *scale,
const BatchNormParamType<T> *bias, const BatchNormParamType<T> *bias,
...@@ -123,7 +117,7 @@ static __global__ void KeNormAffine(const T *x, ...@@ -123,7 +117,7 @@ static __global__ void KeNormAffine(const T *x,
int gid = blockIdx.x * blockDim.x + threadIdx.x; int gid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x; int stride = blockDim.x * gridDim.x;
for (int i = gid; i < num; i += stride) { for (int i = gid; i < num; i += stride) {
const int c = layout == framework::DataLayout::kNCHW ? (i / M) % C : i % C; const int c = layout == DataLayout::kNCHW ? (i / M) % C : i % C;
auto x_i = static_cast<BatchNormParamType<T>>(x[i]); auto x_i = static_cast<BatchNormParamType<T>>(x[i]);
auto y_i = auto y_i =
(x_i - mean[c]) / sqrt(variance[c] + epsilon) * scale[c] + bias[c]; (x_i - mean[c]) / sqrt(variance[c] + epsilon) * scale[c] + bias[c];
...@@ -131,146 +125,7 @@ static __global__ void KeNormAffine(const T *x, ...@@ -131,146 +125,7 @@ static __global__ void KeNormAffine(const T *x,
} }
} }
template <typename DeviceContext, typename T> template <typename T, const int BlockDim, DataLayout layout>
void SyncBatchNormFunctor(const framework::ExecutionContext &ctx,
const DataLayout layout,
const framework::Tensor *x,
framework::Tensor *y,
const framework::Tensor *mean,
const framework::Tensor *variance,
framework::Tensor *mean_out,
framework::Tensor *variance_out,
framework::Tensor *saved_mean,
framework::Tensor *saved_variance,
double epsilon,
const float momentum,
const bool is_test,
const bool use_global_stats
) {
const auto &x_dims = x->dims();
PADDLE_ENFORCE_GE(x_dims.size(),
2,
platform::errors::InvalidArgument(
"The Input dim size should be larger than 1."));
PADDLE_ENFORCE_LE(x_dims.size(),
5,
platform::errors::InvalidArgument(
"The Input dim size should be less than 6."));
int N, C, H, W, D;
ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D);
int x_numel = x->numel();
const T *x_d = x->data<T>();
const auto *s_d = ctx.Input<Tensor>("Scale")->data<BatchNormParamType<T>>();
const auto *b_d = ctx.Input<Tensor>("Bias")->data<BatchNormParamType<T>>();
T *y_d = y->mutable_data<T>(ctx.GetPlace());
const BatchNormParamType<T> *mean_data = nullptr;
const BatchNormParamType<T> *var_data = nullptr;
auto &dev_ctx = ctx.cuda_device_context();
auto stream = dev_ctx.stream();
const int block = 512;
int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
paddle::memory::AllocationPtr alloc_ptr{nullptr};
if (is_test) {
mean_data = mean->data<BatchNormParamType<T>>();
var_data = variance->data<BatchNormParamType<T>>();
} else {
// x, x^2, 1, here 1 is used to calc device num
// device num also can be got from platform::DeviceContextPool
const int bytes = (C * 2 + 1) * sizeof(BatchNormParamType<T>);
alloc_ptr = memory::Alloc(dev_ctx, bytes);
auto *stats = reinterpret_cast<BatchNormParamType<T> *>(alloc_ptr->ptr());
const int threads = 256;
int grid = std::min(C, (max_threads + threads - 1) / threads);
if (layout == framework::DataLayout::kNCHW) {
KeLocalStats<T, threads, framework::DataLayout::kNCHW>
<<<grid, threads, 0, stream>>>(x_d, N, H * W * D, C, stats);
} else {
KeLocalStats<T, threads, framework::DataLayout::kNHWC>
<<<grid, threads, 0, stream>>>(x_d, N, H * W * D, C, stats);
}
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
auto *comm = dev_ctx.nccl_comm();
if (comm) {
int dtype = platform::ToNCCLDataType(
framework::TransToProtoVarType(mean_out->dtype()));
// In-place operation
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::ncclAllReduce(stats,
stats,
2 * C + 1,
static_cast<ncclDataType_t>(dtype),
ncclSum,
comm,
stream));
}
#endif
auto *est_mean_data =
mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
auto *est_var_data =
variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
auto *sv_mean_data =
saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
auto *sv_inv_var_data =
saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
// Note, Input('Mean')/Input('Variance') share variable with
// Output('MeanOut')/Output('VarianceOut')
KeSyncAndMovingStats<T>
<<<(C + block - 1) / block, block, 0, stream>>>(stats,
stats + C,
stats + 2 * C,
C,
momentum,
epsilon,
sv_mean_data,
sv_inv_var_data,
est_mean_data,
est_var_data);
mean_data = sv_mean_data;
var_data = stats + C;
}
int grid2 = (std::min(x_numel, max_threads) + block - 1) / block;
if (layout == framework::DataLayout::kNCHW) {
KeNormAffine<T, framework::DataLayout::kNCHW>
<<<grid2, block, 0, stream>>>(x_d,
s_d,
b_d,
mean_data,
var_data,
epsilon,
C,
H * W * D,
x_numel,
y_d);
} else {
KeNormAffine<T, framework::DataLayout::kNHWC>
<<<grid2, block, 0, stream>>>(x_d,
s_d,
b_d,
mean_data,
var_data,
epsilon,
C,
H * W * D,
x_numel,
y_d);
}
}
template <typename T, const int BlockDim, framework::DataLayout layout>
__global__ void KeBackwardLocalStats(const T *dy, __global__ void KeBackwardLocalStats(const T *dy,
const T *x, const T *x,
const BatchNormParamType<T> *means, const BatchNormParamType<T> *means,
...@@ -285,9 +140,8 @@ __global__ void KeBackwardLocalStats(const T *dy, ...@@ -285,9 +140,8 @@ __global__ void KeBackwardLocalStats(const T *dy,
BatchNormParamType<T> sum2 = 0.; BatchNormParamType<T> sum2 = 0.;
auto mean = means[k]; auto mean = means[k];
for (int i = threadIdx.x; i < N * M; i += blockDim.x) { for (int i = threadIdx.x; i < N * M; i += blockDim.x) {
int id = layout == framework::DataLayout::kNCHW int id = layout == DataLayout::kNCHW ? (i / M) * C * M + k * M + i % M
? (i / M) * C * M + k * M + i % M : i * C + k;
: i * C + k;
auto g = static_cast<BatchNormParamType<T>>(dy[id]); auto g = static_cast<BatchNormParamType<T>>(dy[id]);
sum1 += g; sum1 += g;
auto x_i = static_cast<BatchNormParamType<T>>(x[id]); auto x_i = static_cast<BatchNormParamType<T>>(x[id]);
...@@ -311,7 +165,7 @@ __global__ void KeBackwardLocalStats(const T *dy, ...@@ -311,7 +165,7 @@ __global__ void KeBackwardLocalStats(const T *dy,
} }
} }
template <typename T, int BlockDim, framework::DataLayout layout> template <typename T, int BlockDim, DataLayout layout>
static __global__ void KeBNBackwardScaleBias( static __global__ void KeBNBackwardScaleBias(
const T *dy, const T *dy,
const T *x, const T *x,
...@@ -335,7 +189,7 @@ static __global__ void KeBNBackwardScaleBias( ...@@ -335,7 +189,7 @@ static __global__ void KeBNBackwardScaleBias(
auto inv_var_i = inv_variance[i]; auto inv_var_i = inv_variance[i];
auto mean_i = mean[i]; auto mean_i = mean[i];
for (int j = threadIdx.x; j < inner_size; j += blockDim.x) { for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
const int id = layout == framework::DataLayout::kNCHW const int id = layout == DataLayout::kNCHW
? ((j / HxW) * C + i) * HxW + (j % HxW) ? ((j / HxW) * C + i) * HxW + (j % HxW)
: j * outer_size + i; : j * outer_size + i;
auto x_i = static_cast<BatchNormParamType<T>>(x[id]); auto x_i = static_cast<BatchNormParamType<T>>(x[id]);
...@@ -356,7 +210,7 @@ static __global__ void KeBNBackwardScaleBias( ...@@ -356,7 +210,7 @@ static __global__ void KeBNBackwardScaleBias(
} }
} }
template <typename T, framework::DataLayout layout> template <typename T, DataLayout layout>
static __global__ void KeBNRestoreData(T *x, static __global__ void KeBNRestoreData(T *x,
const BatchNormParamType<T> *scale, const BatchNormParamType<T> *scale,
const BatchNormParamType<T> *bias, const BatchNormParamType<T> *bias,
...@@ -370,14 +224,14 @@ static __global__ void KeBNRestoreData(T *x, ...@@ -370,14 +224,14 @@ static __global__ void KeBNRestoreData(T *x,
int gid = blockIdx.x * blockDim.x + threadIdx.x; int gid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x; int stride = blockDim.x * gridDim.x;
for (int i = gid; i < num; i += stride) { for (int i = gid; i < num; i += stride) {
const int c = layout == framework::DataLayout::kNCHW ? (i / M) % C : i % C; const int c = layout == DataLayout::kNCHW ? (i / M) % C : i % C;
auto y_i = static_cast<BatchNormParamType<T>>(y[i]); auto y_i = static_cast<BatchNormParamType<T>>(y[i]);
auto x_i = (y_i - bias[c]) / scale[c] / sv_inv[c] + mean[c]; auto x_i = (y_i - bias[c]) / scale[c] / sv_inv[c] + mean[c];
x[i] = static_cast<T>(x_i); x[i] = static_cast<T>(x_i);
} }
} }
template <typename T, framework::DataLayout layout> template <typename T, DataLayout layout>
static __global__ void KeBNBackwardData( static __global__ void KeBNBackwardData(
const T *dy, const T *dy,
const T *x, const T *x,
...@@ -397,7 +251,7 @@ static __global__ void KeBNBackwardData( ...@@ -397,7 +251,7 @@ static __global__ void KeBNBackwardData(
auto scale = static_cast<BatchNormParamType<T>>(C) / num; auto scale = static_cast<BatchNormParamType<T>>(C) / num;
auto dev_num = num_dev[0]; auto dev_num = num_dev[0];
for (int i = gid; i < num; i += stride) { for (int i = gid; i < num; i += stride) {
const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C; const int c = layout == DataLayout::kNCHW ? i / HxW % C : i % C;
auto inv_var = inv_variance[c]; auto inv_var = inv_variance[c];
auto s_d = gamma[c]; auto s_d = gamma[c];
auto gvar = auto gvar =
...@@ -412,64 +266,80 @@ static __global__ void KeBNBackwardData( ...@@ -412,64 +266,80 @@ static __global__ void KeBNBackwardData(
} }
} }
template <typename DeviceContext, typename T> template <typename T, typename Context>
void SyncBatchNormGradFunctor(const framework::ExecutionContext &ctx, void SyncBatchNormGradFunctor(
const DataLayout layout, const Context &ctx,
const framework::Tensor *scale, const DenseTensor *input_x,
const framework::Tensor *bias, const DenseTensor *input_y,
framework::Tensor *d_x, const DenseTensor &scale,
const framework::Tensor *d_y, const DenseTensor &bias,
framework::Tensor *d_scale, // const paddle::optional<DenseTensor>& mean,
framework::Tensor *d_bias, // const paddle::optional<DenseTensor>& variance,
const framework::Tensor *mean, const DenseTensor &saved_mean,
const framework::Tensor *variance, const DenseTensor &saved_variance,
const double epsilon) { // const paddle::optional<DenseTensor>& reserve_space,
// sync_batch_norm with inplace as false will take X as grad input, which const DenseTensor &y_grad,
// is same as cuDNN batch_norm backward calculation, batch_norm // float momentum,
// with inplace as true only take Y as input and X should be calculate float epsilon_f,
// by inverse operation of batch_norm on Y const std::string &data_layout_str,
const Tensor *x; // bool is_test,
bool is_inplace; // bool use_global_stats,
if (ctx.HasInput("Y")) { // bool trainable_statistics,
x = ctx.Input<Tensor>("Y"); // bool fuse_with_relu,
DenseTensor *x_grad,
DenseTensor *scale_grad,
DenseTensor *bias_grad) {
double epsilon = static_cast<double>(epsilon_f);
const DataLayout layout =
paddle::framework::StringToDataLayout(data_layout_str);
const auto *d_y = &y_grad;
auto *d_x = x_grad;
auto *d_scale = scale_grad;
auto *d_bias = bias_grad;
const DenseTensor *x;
bool is_inplace = false;
if (input_y) {
is_inplace = true; is_inplace = true;
x = input_y;
} else { } else {
x = ctx.Input<Tensor>("X"); x = input_x;
is_inplace = false;
} }
const auto &x_dims = x->dims(); const auto &x_dims = x->dims();
PADDLE_ENFORCE_GE(x_dims.size(), PADDLE_ENFORCE_GE(x_dims.size(),
2, 2,
platform::errors::InvalidArgument( phi::errors::InvalidArgument(
"The Input X dim size should be larger than 1.")); "The Input X dim size should be larger than 1."));
PADDLE_ENFORCE_LE(x_dims.size(), PADDLE_ENFORCE_LE(x_dims.size(),
5, 5,
platform::errors::InvalidArgument( phi::errors::InvalidArgument(
"The Input X dim size should be less than 6.")); "The Input X dim size should be less than 6."));
int N, C, H, W, D; int N, C, H, W, D;
ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D); funcs::ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D);
PADDLE_ENFORCE_EQ(scale->dims()[0], PADDLE_ENFORCE_EQ(scale.dims()[0],
C, C,
platform::errors::InvalidArgument( phi::errors::InvalidArgument(
"Expected first dim for input parameter(scale) of " "Expected first dim for input parameter(scale) of "
"OP(sync_batch_norm) be (%d), but given (%d).", "OP(sync_batch_norm) be (%d), but given (%d).",
C, C,
scale->dims()[0])); scale.dims()[0]));
d_x->mutable_data<T>(ctx.GetPlace()); ctx.template Alloc<T>(d_x);
if (d_scale && d_bias) { if (d_scale && d_bias) {
d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace()); ctx.template Alloc<BatchNormParamType<T>>(d_scale);
d_bias->mutable_data<BatchNormParamType<T>>(ctx.GetPlace()); ctx.template Alloc<BatchNormParamType<T>>(d_bias);
} }
PADDLE_ENFORCE_EQ(scale->dims().size(), PADDLE_ENFORCE_EQ(scale.dims().size(),
1UL, 1UL,
platform::errors::InvalidArgument( phi::errors::InvalidArgument(
"Expected rank for input parameter(scale) of " "Expected rank for input parameter(scale) of "
"OP(sync_batch_norm) be (1), but given (%d).", "OP(sync_batch_norm) be (1), but given (%d).",
scale->dims().size())); scale.dims().size()));
std::vector<int> dims; std::vector<int> dims;
std::vector<int> strides; std::vector<int> strides;
...@@ -484,84 +354,85 @@ void SyncBatchNormGradFunctor(const framework::ExecutionContext &ctx, ...@@ -484,84 +354,85 @@ void SyncBatchNormGradFunctor(const framework::ExecutionContext &ctx,
auto px = *x; auto px = *x;
const T *dy_d = d_y->data<T>(); const T *dy_d = d_y->data<T>();
auto &dev_ctx = ctx.cuda_device_context(); auto stream = ctx.stream();
auto stream = dev_ctx.stream();
const auto *saved_mean = mean->data<BatchNormParamType<T>>(); const auto *saved_mean_ptr =
const auto *saved_inv_var = variance->data<BatchNormParamType<T>>(); saved_mean.template data<BatchNormParamType<T>>();
const auto *saved_inv_var =
saved_variance.template data<BatchNormParamType<T>>();
const int bytes = (C * 2 + 1) * sizeof(BatchNormParamType<T>); const int bytes = (C * 2 + 1) * sizeof(BatchNormParamType<T>);
auto alloc_ptr = memory::Alloc(dev_ctx, bytes); auto alloc_ptr = paddle::memory::Alloc(ctx, bytes);
auto *stats = reinterpret_cast<BatchNormParamType<T> *>(alloc_ptr->ptr()); auto *stats = reinterpret_cast<BatchNormParamType<T> *>(alloc_ptr->ptr());
const int block = 512; const int block = 512;
const int threads = 256; const int threads = 256;
int x_numel = x->numel(); int x_numel = x->numel();
int fsize = H * W * D; int fsize = H * W * D;
int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); int max_threads = ctx.GetMaxPhysicalThreadCount();
int grid = std::min(C, (max_threads + threads - 1) / threads); int grid = std::min(C, (max_threads + threads - 1) / threads);
int grid2 = (std::min(x_numel, max_threads) + block - 1) / block; int grid2 = (std::min(x_numel, max_threads) + block - 1) / block;
if (is_inplace) { if (is_inplace) {
if (layout == framework::DataLayout::kNCHW) { if (layout == DataLayout::kNCHW) {
KeBNRestoreData<T, framework::DataLayout::kNCHW> KeBNRestoreData<T, DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
<<<grid2, block, 0, stream>>>(px.mutable_data<T>(ctx.GetPlace()), ctx.template Alloc<T>(&px),
scale->data<BatchNormParamType<T>>(), scale.template data<BatchNormParamType<T>>(),
bias->data<BatchNormParamType<T>>(), bias.template data<BatchNormParamType<T>>(),
saved_mean, saved_mean_ptr,
saved_inv_var, saved_inv_var,
epsilon, epsilon,
C, C,
H * W * D, H * W * D,
x_numel, x_numel,
x->data<T>()); x->data<T>());
} else { } else {
KeBNRestoreData<T, framework::DataLayout::kNHWC> KeBNRestoreData<T, DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
<<<grid2, block, 0, stream>>>(px.mutable_data<T>(ctx.GetPlace()), ctx.template Alloc<T>(&px),
scale->data<BatchNormParamType<T>>(), scale.template data<BatchNormParamType<T>>(),
bias->data<BatchNormParamType<T>>(), bias.template data<BatchNormParamType<T>>(),
saved_mean, saved_mean_ptr,
saved_inv_var, saved_inv_var,
epsilon, epsilon,
C, C,
H * W * D, H * W * D,
x_numel, x_numel,
x->data<T>()); x->data<T>());
} }
} }
if (layout == framework::DataLayout::kNCHW) { if (layout == DataLayout::kNCHW) {
KeBackwardLocalStats<T, threads, framework::DataLayout::kNCHW> KeBackwardLocalStats<T, threads, DataLayout::kNCHW>
<<<grid, threads, 0, stream>>>( <<<grid, threads, 0, stream>>>(
dy_d, x_d, saved_mean, N, fsize, C, stats); dy_d, x_d, saved_mean_ptr, N, fsize, C, stats);
} else { } else {
KeBackwardLocalStats<T, threads, framework::DataLayout::kNHWC> KeBackwardLocalStats<T, threads, DataLayout::kNHWC>
<<<grid, threads, 0, stream>>>( <<<grid, threads, 0, stream>>>(
dy_d, x_d, saved_mean, N, fsize, C, stats); dy_d, x_d, saved_mean_ptr, N, fsize, C, stats);
} }
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
auto *comm = dev_ctx.nccl_comm(); auto *comm = ctx.nccl_comm();
if (comm) { if (comm) {
int dtype = platform::ToNCCLDataType( int dtype = paddle::platform::ToNCCLDataType(
framework::TransToProtoVarType(scale->dtype())); paddle::framework::TransToProtoVarType(scale.dtype()));
// In-place operation // In-place operation
PADDLE_ENFORCE_GPU_SUCCESS( PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::ncclAllReduce(
platform::dynload::ncclAllReduce(stats, stats,
stats, stats,
2 * C + 1, 2 * C + 1,
static_cast<ncclDataType_t>(dtype), static_cast<ncclDataType_t>(dtype),
ncclSum, ncclSum,
comm, comm,
stream)); stream));
} }
#endif #endif
if (layout == framework::DataLayout::kNCHW) { if (layout == DataLayout::kNCHW) {
if (d_scale && d_bias) { if (d_scale && d_bias) {
KeBNBackwardScaleBias<T, threads, framework::DataLayout::kNCHW> KeBNBackwardScaleBias<T, threads, DataLayout::kNCHW>
<<<grid, threads, 0, stream>>>(dy_d, <<<grid, threads, 0, stream>>>(dy_d,
x_d, x_d,
saved_mean, saved_mean_ptr,
saved_inv_var, saved_inv_var,
epsilon, epsilon,
N, N,
...@@ -571,27 +442,27 @@ void SyncBatchNormGradFunctor(const framework::ExecutionContext &ctx, ...@@ -571,27 +442,27 @@ void SyncBatchNormGradFunctor(const framework::ExecutionContext &ctx,
d_bias->data<BatchNormParamType<T>>()); d_bias->data<BatchNormParamType<T>>());
} }
if (d_x) { if (d_x) {
KeBNBackwardData<T, framework::DataLayout::kNCHW> KeBNBackwardData<T, DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
<<<grid2, block, 0, stream>>>(dy_d, dy_d,
x_d, x_d,
scale->data<BatchNormParamType<T>>(), scale.template data<BatchNormParamType<T>>(),
saved_mean, saved_mean_ptr,
saved_inv_var, saved_inv_var,
stats, stats,
stats + C, stats + C,
stats + 2 * C, stats + 2 * C,
epsilon, epsilon,
C, C,
fsize, fsize,
x->numel(), x->numel(),
d_x->data<T>()); d_x->data<T>());
} }
} else { } else {
if (d_scale && d_bias) { if (d_scale && d_bias) {
KeBNBackwardScaleBias<T, threads, framework::DataLayout::kNHWC> KeBNBackwardScaleBias<T, threads, DataLayout::kNHWC>
<<<grid, threads, 0, stream>>>(dy_d, <<<grid, threads, 0, stream>>>(dy_d,
x_d, x_d,
saved_mean, saved_mean_ptr,
saved_inv_var, saved_inv_var,
epsilon, epsilon,
N, N,
...@@ -601,37 +472,22 @@ void SyncBatchNormGradFunctor(const framework::ExecutionContext &ctx, ...@@ -601,37 +472,22 @@ void SyncBatchNormGradFunctor(const framework::ExecutionContext &ctx,
d_bias->data<BatchNormParamType<T>>()); d_bias->data<BatchNormParamType<T>>());
} }
if (d_x) { if (d_x) {
KeBNBackwardData<T, framework::DataLayout::kNHWC> KeBNBackwardData<T, DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
<<<grid2, block, 0, stream>>>(dy_d, dy_d,
x_d, x_d,
scale->data<BatchNormParamType<T>>(), scale.template data<BatchNormParamType<T>>(),
saved_mean, saved_mean_ptr,
saved_inv_var, saved_inv_var,
stats, stats,
stats + C, stats + C,
stats + 2 * C, stats + 2 * C,
epsilon, epsilon,
C, C,
fsize, fsize,
x->numel(), x->numel(),
d_x->data<T>()); d_x->data<T>());
} }
} }
} }
template <typename DeviceContext, typename T> } // namespace phi
class SyncBatchNormKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override;
};
// Deriving the Gradient for the Backward Pass of Batch Normalization
// https://kevinzakka.github.io/2016/09/14/batch_normalization/
template <typename DeviceContext, typename T>
class SyncBatchNormGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override;
};
} // namespace operators
} // namespace paddle
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void SyncBatchNormGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& scale,
const DenseTensor& bias,
const paddle::optional<DenseTensor>& mean,
const paddle::optional<DenseTensor>& variance,
const DenseTensor& saved_mean,
const DenseTensor& saved_variance,
const paddle::optional<DenseTensor>& reserve_space,
const DenseTensor& y_grad,
float momentum,
float epsilon,
const std::string& data_layout,
bool is_test,
bool use_global_stats,
bool trainable_statistics,
bool fuse_with_relu,
DenseTensor* x_grad,
DenseTensor* scale_grad,
DenseTensor* bias_grad);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void SyncBatchNormKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& scale,
const DenseTensor& bias,
const DenseTensor& mean,
const DenseTensor& variance,
float momentum,
float epsilon,
const std::string& data_layout,
bool is_test,
bool use_global_stats,
bool trainable_statistics,
bool fuse_with_relu,
DenseTensor* y,
DenseTensor* mean_out,
DenseTensor* variance_out,
DenseTensor* saved_mean,
DenseTensor* saved_variance,
DenseTensor* reserve_space);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature SyncBatchNormOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("sync_batch_norm",
{"X", "Scale", "Bias", "Mean", "Variance"},
{"momentum",
"epsilon",
"data_layout",
"is_test",
"use_global_stats",
"trainable_statistics",
"fuse_with_relu"},
{"Y",
"MeanOut",
"VarianceOut",
"SavedMean",
"SavedVariance",
"ReserveSpace"});
}
KernelSignature SyncBatchNormGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("sync_batch_norm_grad",
{
"X",
"Scale",
"Bias",
"Mean",
"Variance",
"SavedMean",
"SavedVariance",
"ReserveSpace",
"Y@GRAD",
},
{"momentum",
"epsilon",
"data_layout",
"is_test",
"use_global_stats",
"trainable_statistics",
"fuse_with_relu"},
{"X@GRAD", "Scale@GRAD", "Bias@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(sync_batch_norm,
phi::SyncBatchNormOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(sync_batch_norm_grad,
phi::SyncBatchNormGradOpArgumentMapping);
...@@ -49,6 +49,7 @@ from .. import functional as F ...@@ -49,6 +49,7 @@ from .. import functional as F
from paddle import _C_ops from paddle import _C_ops
from .. import Layer from .. import Layer
from paddle import in_dynamic_mode from paddle import in_dynamic_mode
from paddle.fluid.framework import in_dygraph_mode
__all__ = [] __all__ = []
...@@ -1100,7 +1101,14 @@ class SyncBatchNorm(_BatchNormBase): ...@@ -1100,7 +1101,14 @@ class SyncBatchNorm(_BatchNormBase):
### train mode: use mini-batch stats, eval mode: use global stats ### train mode: use mini-batch stats, eval mode: use global stats
### use_global_stats only support False in sync_batch_norm ### use_global_stats only support False in sync_batch_norm
if in_dynamic_mode(): if in_dygraph_mode():
sync_batch_norm_out, _, _, _, _, _ = _C_ops.final_state_sync_batch_norm(
x, self.weight, self.bias, self._mean, self._variance,
self._momentum, self._epsilon, self._data_format,
not self.training, False, False, False)
return sync_batch_norm_out
elif in_dynamic_mode():
attrs = ("momentum", self._momentum, "epsilon", self._epsilon, attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
"is_test", not self.training, "data_layout", "is_test", not self.training, "data_layout",
self._data_format, "use_mkldnn", False, "fuse_with_relu", self._data_format, "use_mkldnn", False, "fuse_with_relu",
...@@ -1109,7 +1117,6 @@ class SyncBatchNorm(_BatchNormBase): ...@@ -1109,7 +1117,6 @@ class SyncBatchNorm(_BatchNormBase):
sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm( sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm(
x, self.weight, self.bias, self._mean, self._variance, mean_out, x, self.weight, self.bias, self._mean, self._variance, mean_out,
variance_out, *attrs) variance_out, *attrs)
return sync_batch_norm_out return sync_batch_norm_out
check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'], check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册