Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c9995289
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2301
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c9995289
编写于
9月 14, 2018
作者:
Z
Zhaolong Xing
提交者:
GitHub
9月 14, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13124 from NHZlX/fix_subgraph_bug
Fix tensorrt subgraph bug
上级
d4a5326a
8fb33c8a
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
227 addition
and
22 deletion
+227
-22
paddle/fluid/inference/analysis/data_flow_graph.cc
paddle/fluid/inference/analysis/data_flow_graph.cc
+5
-1
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
...fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
+15
-10
paddle/fluid/inference/analysis/subgraph_splitter.cc
paddle/fluid/inference/analysis/subgraph_splitter.cc
+189
-5
paddle/fluid/inference/analysis/subgraph_splitter_tester.cc
paddle/fluid/inference/analysis/subgraph_splitter_tester.cc
+1
-1
paddle/fluid/inference/tensorrt/convert/activation_op.cc
paddle/fluid/inference/tensorrt/convert/activation_op.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/concat_op.cc
paddle/fluid/inference/tensorrt/convert/concat_op.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
+4
-0
paddle/fluid/inference/tensorrt/convert/fc_op.cc
paddle/fluid/inference/tensorrt/convert/fc_op.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
+2
-0
paddle/fluid/operators/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt_engine_op.h
+1
-5
未找到文件。
paddle/fluid/inference/analysis/data_flow_graph.cc
浏览文件 @
c9995289
...
...
@@ -440,6 +440,7 @@ ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph) { // NOLINT
}
return
false
;
};
for
(
auto
&
node
:
graph
)
{
for
(
auto
*
in
:
node
->
inlinks
)
{
// The Value that is written by nodes inside a sub-graph shouldn't be the
...
...
@@ -459,6 +460,7 @@ ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph) { // NOLINT
std
::
vector
<
Node
*>
(
outputs
.
begin
(),
outputs
.
end
()));
}
// Filter the Intermediate results of the subgraph node.
void
FilterRedundantOutputOfSubGraph
(
DataFlowGraph
*
graph
)
{
std
::
vector
<
Node
*>
op_nodes
;
for
(
auto
&
node
:
GraphTraits
<
DataFlowGraph
>
(
*
graph
).
nodes_in_TS
())
{
...
...
@@ -480,9 +482,11 @@ void FilterRedundantOutputOfSubGraph(DataFlowGraph *graph) {
for
(
auto
*
out
:
op_nodes
[
i
]
->
outlinks
)
{
if
(
follow_up_input_names
.
count
(
out
->
name
()))
{
filtered_subgraph_outlinks
.
push_back
(
out
);
}
else
{
out
->
SetDeleted
();
}
}
PADDLE_ENFORCE_GE
(
filtered_subgraph_outlinks
.
size
(),
1UL
);
// The filtered_subgraph_outlinks may be empty.
op_nodes
[
i
]
->
outlinks
=
filtered_subgraph_outlinks
;
}
}
...
...
paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc
浏览文件 @
c9995289
...
...
@@ -106,20 +106,23 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph,
// collect inputs
std
::
unordered_set
<
std
::
string
>
input_names
;
std
::
unordered_set
<
std
::
string
>
input_names_with_id
;
for
(
auto
*
x
:
func
->
inlinks
)
{
input_names
.
insert
(
x
->
name
());
input_names_with_id
.
insert
(
x
->
name
()
+
std
::
to_string
(
x
->
id
()));
}
desc
.
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()));
std
::
unordered_set
<
std
::
string
>
output_names
;
std
::
unordered_set
<
std
::
string
>
output_names_with_id
;
for
(
auto
*
x
:
func
->
outlinks
)
{
output_names
.
insert
(
x
->
name
());
output_names_with_id
.
insert
(
x
->
name
()
+
std
::
to_string
(
x
->
id
()));
}
std
::
vector
<
std
::
string
>
output_temp
(
output_names
.
begin
(),
output_names
.
end
());
desc
.
SetOutput
(
"Ys"
,
output_temp
);
desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
(
output_names
.
begin
(),
output_names
.
end
()));
desc
.
SetType
(
"tensorrt_engine"
);
std
::
unordered_map
<
std
::
string
,
std
::
string
>
output_name_map
;
...
...
@@ -153,11 +156,12 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph,
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
in_var
->
arguments_size
();
k
++
)
{
std
::
string
arg_value
=
in_var
->
arguments
(
k
);
if
(
input_names
.
count
(
arg_value
))
{
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
input_names_with_id
.
count
(
arg_value_with_id
))
{
replaced_names
.
push_back
(
arg_value
);
}
else
{
replaced_names
.
push_back
(
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]));
replaced_names
.
push_back
(
arg_value_with_id
);
}
}
in_var
->
clear_arguments
();
...
...
@@ -176,11 +180,12 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph,
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
out_var
->
arguments_size
();
k
++
)
{
std
::
string
arg_value
=
out_var
->
arguments
(
k
);
if
(
output_names
.
count
(
arg_value
))
{
output_name_map
[
arg_value
]
=
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
output_names_with_id
.
count
(
arg_value_with_id
))
{
output_name_map
[
arg_value
]
=
arg_value_with_id
;
}
replaced_names
.
push_back
(
arg_value
+
std
::
to_string
(
var2id
[
arg_value
])
);
replaced_names
.
push_back
(
arg_value
_with_id
);
}
out_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
...
...
paddle/fluid/inference/analysis/subgraph_splitter.cc
浏览文件 @
c9995289
...
...
@@ -74,13 +74,134 @@ void UnionFindCombine(const node_map_t &node_map, size_t a, size_t b) {
node_map
.
at
(
b
)
->
attr
(
kUnionFindParent
).
Int32
()
=
a_ancestor
;
}
// This is a simple representation of a graph.
// The BriefNode hold the pointer of the Node.
// This is to avoid changing the original graph
// in the process of trt graph analysis.
struct
BriefNode
{
explicit
BriefNode
(
Node
*
n
)
{
node
=
n
;
}
Node
*
node
;
std
::
vector
<
BriefNode
*>
inlinks
;
std
::
vector
<
BriefNode
*>
outlinks
;
};
// Union two adjacent BriefNode.
// Suppose we have two adjacent nodes src and dst.
// We will perform the following operations:
// 1. add all inputs(except src) of dst to src inlinks.
// 2. add all outputs of dst to src outlinks.
// 3. change all the dst's inputs and outputs
// corresponding inlinks and outlinks to src node.
// 4. delete all dst's inlinks and outlinks.
void
UnionContractedNodes
(
const
std
::
unordered_map
<
int
,
BriefNode
*>
&
node_map
,
int
src_id
,
int
dst_id
)
{
// merge the two adjacent nodes into one node.
BriefNode
*
src_node
=
node_map
.
at
(
src_id
);
BriefNode
*
dst_node
=
node_map
.
at
(
dst_id
);
std
::
unordered_set
<
BriefNode
*>
inputs
(
src_node
->
inlinks
.
begin
(),
src_node
->
inlinks
.
end
());
std
::
unordered_set
<
BriefNode
*>
outputs
;
for
(
auto
*
n
:
src_node
->
outlinks
)
{
if
(
n
!=
dst_node
)
outputs
.
insert
(
n
);
}
// Add the inlinks and outlinks of dst node to src node.
std
::
vector
<
BriefNode
*>
dst_in_nodes
=
dst_node
->
inlinks
;
for
(
BriefNode
*
node
:
dst_in_nodes
)
{
if
(
node
!=
src_node
)
{
inputs
.
insert
(
node
);
}
}
std
::
vector
<
BriefNode
*>
dst_out_nodes
=
dst_node
->
outlinks
;
for
(
BriefNode
*
node
:
dst_out_nodes
)
{
outputs
.
insert
(
node
);
}
// update the dst and src node's inlinks and outlinks.
src_node
->
inlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
inputs
.
begin
(),
inputs
.
end
()));
src_node
->
outlinks
=
std
::
move
(
std
::
vector
<
BriefNode
*>
(
outputs
.
begin
(),
outputs
.
end
()));
dst_node
->
inlinks
.
clear
();
dst_node
->
outlinks
.
clear
();
auto
inlink_or_outlink_cleaner
=
[
&
](
std
::
vector
<
BriefNode
*>
&
nodes
)
{
for
(
auto
*&
n
:
nodes
)
{
if
(
n
==
src_node
||
n
==
dst_node
)
{
n
=
src_node
;
}
}
};
// Change all the dst inputs and outputs corresponding inlink and
// outlink to the src node.
for
(
auto
*
node
:
src_node
->
inlinks
)
{
inlink_or_outlink_cleaner
(
node
->
outlinks
);
}
for
(
auto
*
node
:
src_node
->
outlinks
)
{
inlink_or_outlink_cleaner
(
node
->
inlinks
);
}
}
// FlexibleDFS
// If reverse is true, do reverse dfs.
// If enter func is not nullptr, calls enter(node) before visiting any children
// of node.
// If leave func not nullptr, calls leave(node) after visiting all parents of
// node.
void
FlexibleDFS
(
const
std
::
vector
<
BriefNode
*>
&
source
,
bool
reverse
,
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
enter
,
const
std
::
function
<
bool
(
const
BriefNode
*
)
>
&
leave
)
{
typedef
struct
{
const
BriefNode
*
node
;
bool
leave
;
}
FNode
;
std
::
vector
<
FNode
>
stack
;
for
(
auto
&
node
:
source
)
{
stack
.
push_back
(
FNode
{
node
,
false
});
}
std
::
unordered_set
<
const
BriefNode
*>
visited
;
while
(
!
stack
.
empty
())
{
auto
fnode
=
stack
.
back
();
stack
.
pop_back
();
if
(
fnode
.
leave
)
{
if
(
leave
&&
!
leave
(
fnode
.
node
))
return
;
}
if
(
visited
.
count
(
fnode
.
node
))
continue
;
visited
.
insert
(
fnode
.
node
);
if
(
enter
&&
!
enter
(
fnode
.
node
))
return
;
if
(
leave
)
stack
.
push_back
(
FNode
{
fnode
.
node
,
true
});
const
std
::
vector
<
BriefNode
*>
iter_nodes
=
reverse
==
true
?
fnode
.
node
->
inlinks
:
fnode
.
node
->
outlinks
;
for
(
const
BriefNode
*
node
:
iter_nodes
)
{
if
(
!
visited
.
count
(
node
))
{
stack
.
push_back
(
FNode
{
node
,
false
});
}
}
}
}
std
::
vector
<
std
::
vector
<
Node
*>>
SubGraphSplitter
::
ExtractSubGraphs
()
{
// Run the Extract algorithm to find all subgraphs.
std
::
vector
<
Node
*>
marked_nodes
;
// We use brief_node_map to represent the original graph in order to avoid
// changing the original graph.
std
::
unordered_map
<
int
,
BriefNode
*>
brief_node_map
;
for
(
auto
&
node
:
GraphTraits
<
DataFlowGraph
>
(
*
graph_
).
nodes_in_TS
())
{
brief_node_map
[
node
.
id
()]
=
new
BriefNode
(
&
node
);
if
(
node
.
attr
(
kMarkerAttrName
).
Bool
())
{
marked_nodes
.
push_back
(
&
node
);
}
}
// extract sub-graphs in the marked node set, use Union Find algorithm.
node_map_t
node_map
;
// id to ptr
for
(
auto
*
n
:
marked_nodes
)
{
...
...
@@ -88,11 +209,73 @@ std::vector<std::vector<Node *>> SubGraphSplitter::ExtractSubGraphs() {
n
->
attr
(
kUnionFindParent
).
Int32
()
=
n
->
id
();
node_map
[
n
->
id
()]
=
n
;
}
std
::
unordered_set
<
Node
*>
visited
;
for
(
auto
*
n
:
marked_nodes
)
{
for
(
auto
*
out
:
n
->
outlinks
)
{
if
(
node_map
.
count
(
out
->
id
()))
{
UnionFindCombine
(
node_map
,
n
->
id
(),
out
->
id
());
// create breif node map
for
(
auto
&
itr
:
brief_node_map
)
{
for
(
Node
*
node
:
itr
.
second
->
node
->
inlinks
)
{
itr
.
second
->
inlinks
.
push_back
(
brief_node_map
[
node
->
id
()]);
}
for
(
Node
*
node
:
itr
.
second
->
node
->
outlinks
)
{
itr
.
second
->
outlinks
.
push_back
(
brief_node_map
[
node
->
id
()]);
}
}
for
(
auto
&
itr
:
brief_node_map
)
{
BriefNode
*
brief_node
=
itr
.
second
;
if
(
!
brief_node
->
node
->
attr
(
kMarkerAttrName
).
Bool
())
{
VLOG
(
4
)
<<
brief_node
->
node
->
id
()
<<
" node not a trt candicate."
;
continue
;
}
// Our algorithm must guarantee that:
// 1. The graph is always directed acyclic graph(DAG).
// 2. If there is a path in the subgraph from X to Y (X and Y are both
// nodes in the subgraph), then all paths from X to Y are in the
// subgraph.
//
// In order to achieve the above guarantee.
// For adjacent nodes src -> dst.
// 1. Get all dst input nodes except src.
// 2. Reverse DFS from those input nodes
// 3. If there is a path from input nodes to src,
// then the src and dst nodes can not be fused into one node,
// otherwise it can be done.
while
(
true
)
{
std
::
unordered_set
<
BriefNode
*>
contract_nodes
;
for
(
auto
*
out
:
brief_node
->
outlinks
)
{
// must be an trt candidate
if
(
!
out
->
node
->
attr
(
kMarkerAttrName
).
Bool
())
continue
;
// get all dst input nodes except src.
std
::
vector
<
BriefNode
*>
source_nodes
;
for
(
auto
*
n
:
out
->
inlinks
)
{
if
(
n
!=
brief_node
)
{
source_nodes
.
push_back
(
n
);
}
}
// Reverse DFS from the source_nodes.
bool
have_excess_path
=
false
;
FlexibleDFS
(
source_nodes
,
true
,
nullptr
,
[
&
have_excess_path
,
brief_node
](
const
BriefNode
*
n
)
{
if
(
n
==
brief_node
)
{
have_excess_path
=
true
;
return
false
;
}
return
true
;
});
if
(
have_excess_path
)
continue
;
contract_nodes
.
insert
(
out
);
}
if
(
contract_nodes
.
empty
())
break
;
for
(
auto
dst_node
:
contract_nodes
)
{
UnionFindCombine
(
node_map
,
brief_node
->
node
->
id
(),
dst_node
->
node
->
id
());
UnionContractedNodes
(
brief_node_map
,
brief_node
->
node
->
id
(),
dst_node
->
node
->
id
());
}
}
}
...
...
@@ -128,6 +311,7 @@ void SubGraphFuse::ReplaceNodesWithSubGraphs() {
auto
io
=
ExtractInputAndOutputOfSubGraph
(
subgraph
);
block_node
->
inlinks
=
std
::
move
(
io
.
first
);
block_node
->
outlinks
=
std
::
move
(
io
.
second
);
for
(
auto
*
node
:
subgraph
)
{
// TODO(Superjomn) need a unified mechanism to treat deleted node in each
// pass.
...
...
paddle/fluid/inference/analysis/subgraph_splitter_tester.cc
浏览文件 @
c9995289
...
...
@@ -82,7 +82,7 @@ TEST(SubGraphSplitter, Fuse) {
// At least one nodes should be deleted.
ASSERT_EQ
(
dfg
.
nodes
.
size
(),
count0
+
1
);
// added a new FunctionBlock
ASSERT_EQ
(
6
,
count1
);
ASSERT_EQ
(
11
,
count1
);
}
}
// namespace analysis
...
...
paddle/fluid/inference/tensorrt/convert/activation_op.cc
浏览文件 @
c9995289
...
...
@@ -35,6 +35,8 @@ class ReluOpConverter : public OpConverter {
engine_
,
Activation
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input_tensor
),
nvinfer1
::
ActivationType
::
kRELU
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
layer
->
setName
((
"relu (Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
// the test framework can not determine which is the
// output, so place the declaration inside.
...
...
paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc
浏览文件 @
c9995289
...
...
@@ -116,6 +116,8 @@ class BatchNormOpConverter : public OpConverter {
scale_weights
.
get
(),
power_weights
.
get
());
auto
output_name
=
op_desc
.
Output
(
"Y"
).
front
();
layer
->
setName
((
"batch_norm (Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
weight_map
[
op_desc
.
Input
(
"Bias"
).
front
()]
=
std
::
move
(
combile_bias_tensor
);
engine_
->
weight_map
[
op_desc
.
Input
(
"Scale"
).
front
()]
=
...
...
paddle/fluid/inference/tensorrt/convert/concat_op.cc
浏览文件 @
c9995289
...
...
@@ -42,6 +42,8 @@ class ConcatOpConverter : public OpConverter {
axis
=
axis
-
1
;
// Remove batch dim
layer
->
setAxis
(
axis
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
layer
->
setName
((
"concat (Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
// the test framework can not determine which is the
// output, so place the declaration inside.
...
...
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
浏览文件 @
c9995289
...
...
@@ -78,8 +78,10 @@ class Conv2dOpConverter : public OpConverter {
layer
->
setNbGroups
(
groups
);
auto
output_name
=
op_desc
.
Output
(
"Output"
).
front
();
layer
->
setName
((
"conv2d (Output: "
+
output_name
+
")"
).
c_str
());
engine_
->
weight_map
[
op_desc
.
Input
(
"Filter"
).
front
()]
=
std
::
move
(
weight_tensor
);
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
...
...
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
浏览文件 @
c9995289
...
...
@@ -89,6 +89,8 @@ class ElementwiseWeightOpConverter : public OpConverter {
shift_weights
.
get
(),
scale_weights
.
get
(),
power_weights
.
get
());
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
layer
->
setName
((
"elementwise_add (Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
weight_map
[
op_desc
.
Input
(
"Y"
).
front
()]
=
std
::
move
(
weight_tensor
);
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
// the test framework can not determine which is the
...
...
@@ -137,6 +139,8 @@ class ElementwiseTensorOpConverter : public OpConverter {
*
const_cast
<
nvinfer1
::
ITensor
*>
(
Y
),
op_pair
->
second
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
layer
->
setName
((
"elementwise (Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
// the test framework can not determine which is the
// output, so place the declaration inside.
...
...
paddle/fluid/inference/tensorrt/convert/fc_op.cc
浏览文件 @
c9995289
...
...
@@ -107,6 +107,8 @@ class FcOpConverter : public OpConverter {
n_output
,
tmp_weight
.
get
(),
bias
.
get
());
auto
output_name
=
op_desc
.
Output
(
"Out"
).
front
();
layer
->
setName
((
"fc (Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
engine_
->
weight_map
[
op_desc
.
Input
(
"Y"
).
front
()]
=
std
::
move
(
tmp
);
if
(
test_mode
)
{
...
...
paddle/fluid/inference/tensorrt/convert/pool2d_op.cc
浏览文件 @
c9995289
...
...
@@ -72,6 +72,8 @@ class Pool2dOpConverter : public OpConverter {
layer
->
setPadding
(
nv_paddings
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
layer
->
setName
((
"pool2d (Output: "
+
output_name
+
")"
).
c_str
());
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
...
...
paddle/fluid/operators/tensorrt_engine_op.h
浏览文件 @
c9995289
...
...
@@ -160,11 +160,7 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()).
device
)),
size
*
sizeof
(
float
));
//} else {
// engine->GetOutputInGPU(
// y, fluid_t->mutable_data<float>(platform::CUDAPlace()),
// size * sizeof(float));
//}
output_index
+=
1
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录