diff --git a/python/paddle/fluid/contrib/layers/rnn_impl.py b/python/paddle/fluid/contrib/layers/rnn_impl.py index a901f2aaf120bfc259852ea3a0f36945c80b70d0..2c232320cb1bac2d3df8bbc413ac0bb6fa9ac033 100644 --- a/python/paddle/fluid/contrib/layers/rnn_impl.py +++ b/python/paddle/fluid/contrib/layers/rnn_impl.py @@ -156,7 +156,7 @@ class BasicGRUUnit(Layer): gate_input = paddle.add(gate_input, self._gate_bias) gate_input = self._gate_activation(gate_input) - r, u = layers.split(gate_input, num_or_sections=2, dim=1) + r, u = paddle.split(gate_input, num_or_sections=2, axis=1) r_hidden = r * pre_hidden @@ -877,7 +877,7 @@ class BasicLSTMUnit(Layer): gate_input = paddle.matmul(x=concat_input_hidden, y=self._weight) gate_input = paddle.add(gate_input, self._bias) - i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) + i, j, f, o = paddle.split(gate_input, num_or_sections=4, axis=-1) new_cell = paddle.add( paddle.multiply( pre_cell, diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 541270c5c628b41b7ae130c92a139c43da6ffce0..e0588530e68252532684992c5e73054e38ac2fa4 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -66,8 +66,6 @@ __all__ = [ 'fc', 'embedding', 'conv2d', - 'split', - 'l2_normalize', 'row_conv', 'layer_norm', 'spectral_norm', @@ -1420,252 +1418,6 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None): return out -def split(input, num_or_sections, dim=-1, name=None): - """ - Split the input tensor into multiple sub-Tensors. - - Args: - input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64. - num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections`` - indicates the number of equal sized sub-Tensors that the ``input`` - will be divided into. If ``num_or_sections`` is a list or tuple, the length of it - indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors' - dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim. - dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or - a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`, - the dimension to split along is :math:`rank(input) + dim`. Default is -1. - name (str, optional): The default value is None. Normally there is no need for user to set this property. - For more information, please refer to :ref:`api_guide_Name` . - - Returns: - list(Tensor): The list of segmented Tensors. - - Example: - .. code-block:: python - - import paddle.fluid as fluid - - # input is a Tensor which shape is [3, 9, 5] - input = fluid.data( - name="input", shape=[3, 9, 5], dtype="float32") - - out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1) - # out0.shape [3, 3, 5] - # out1.shape [3, 3, 5] - # out2.shape [3, 3, 5] - - out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1) - # out0.shape [3, 2, 5] - # out1.shape [3, 3, 5] - # out2.shape [3, 4, 5] - - out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1) - # out0.shape [3, 2, 5] - # out1.shape [3, 3, 5] - # out2.shape [3, 4, 5] - - # dim is negative, the real dim is (rank(input) + axis) which real - # value is 1. - out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2) - # out0.shape [3, 3, 5] - # out1.shape [3, 3, 5] - # out2.shape [3, 3, 5] - - """ - if _non_static_mode(): - num = None - attrs = () - - if isinstance(dim, Variable): - dim = dim.numpy() - dim = dim.item(0) - assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0" - dim = (len(input.shape) + dim) if dim < 0 else dim - attrs += ('axis', dim) - - if isinstance(num_or_sections, int): - num = num_or_sections - attrs += ('num', num_or_sections) - elif isinstance(num_or_sections, (list, tuple)): - num = len(num_or_sections) - if utils._contain_var(num_or_sections): - for index, item in enumerate(num_or_sections): - if isinstance(item, Variable): - num_or_sections[index] = num_or_sections[index].numpy()[ - 0 - ] - attrs += ('sections', list(num_or_sections)) - else: - attrs += ('sections', list(num_or_sections)) - else: - raise TypeError( - "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but " - "received %s." % (type(num_or_sections)) - ) - if in_dygraph_mode(): - if isinstance(num_or_sections, int): - return _C_ops.split_with_num(input, num_or_sections, dim) - else: - return _C_ops.split(input, num_or_sections, dim) - elif _in_legacy_dygraph(): - out = [_varbase_creator() for n in range(num)] - _legacy_C_ops.split(input, out, *attrs) - return out - - check_variable_and_dtype( - input, - 'input', - ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], - 'split', - ) - check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split') - check_type(dim, 'dim', (int, Variable), 'split') - if isinstance(dim, Variable): - check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split') - - helper = LayerHelper('split', **locals()) - - input_shape = input.shape - inputs = {'X': input} - attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0} - - def _get_SectionsTensorList(one_list): - tensor_list = [] - unk_dim_idx = -1 - for idx, dim_size in enumerate(one_list): - if isinstance(dim_size, Variable): - dim_size.stop_gradient = True - tensor_list.append(dim_size) - else: - assert isinstance(dim_size, int) - if dim_size == -1: - assert unk_dim_idx == -1, ( - "Only one value of 'num_or_section' in split can " - "be -1. But received num_or_section[%d] is also -1." - % idx - ) - unk_dim_idx = idx - temp_out = helper.create_variable_for_type_inference('int32') - fill_constant( - [1], 'int32', dim_size, force_cpu=True, out=temp_out - ) - tensor_list.append(temp_out) - return tensor_list - - if isinstance(dim, Variable): - dim.stop_gradient = True - inputs['AxisTensor'] = dim - else: - assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0" - dim = (len(input_shape) + dim) if dim < 0 else dim - attrs['axis'] = dim - - if isinstance(num_or_sections, int): - assert num_or_sections > 1, 'num_or_sections must be more than 1.' - if isinstance(dim, int) and input_shape[dim] > 0: - assert input_shape[dim] % num_or_sections == 0, ( - "The input's size along the split dimension " - "must be evenly divisible by Attr(num_or_sections). " - "But %d is not evenly divisible by %d. " - % (num_or_sections, input_shape[dim]) - ) - num = num_or_sections - else: - if isinstance(dim, int) and input_shape[dim] > 0: - assert ( - len(num_or_sections) <= input_shape[dim] - ), 'len(num_or_sections) must not be more than input.shape[dim].' - num = len(num_or_sections) - attrs['sections'] = list( - map( - lambda ele: -1 if isinstance(ele, Variable) else ele, - num_or_sections, - ) - ) - if utils._contain_var(num_or_sections): - inputs['SectionsTensorList'] = _get_SectionsTensorList( - num_or_sections - ) - - outs = [ - helper.create_variable_for_type_inference(dtype=helper.input_dtype()) - for i in range(num) - ] - helper.append_op( - type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs - ) - return outs - - -def l2_normalize(x, axis, epsilon=1e-12, name=None): - r""" - - This op normalizes `x` along dimension `axis` using an L2 - norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes - - .. math:: - - y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }} - - For `x` with more dimensions, this layer independently normalizes each 1-D - slice along dimension `axis`. - - Args: - x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64. - axis(int): The axis on which to apply normalization. If `axis < 0`, \ - the dimension to normalization is rank(X) + axis. -1 is the - last dimension. - epsilon(float): The epsilon value is used to avoid division by zero, \ - the default value is 1e-12. - name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` - - Returns: - Variable: The output has the same shape and data type with `x`. - - Examples: - - .. code-block:: python - :name: code-example1 - - import paddle - - X = paddle.randn(shape=[3, 5], dtype='float64') - out = paddle.fluid.layers.l2_normalize(X, axis=-1) - print(out) - - # [[ 0.21558504 0.56360189 0.47466096 0.46269539 -0.44326736] - # [-0.70602414 -0.52745777 0.37771788 -0.2804768 -0.04449922] - # [-0.33972208 -0.43014923 0.31772556 0.76617881 -0.10761525]] - - """ - if len(x.shape) == 1: - axis = 0 - if _non_static_mode(): - if in_dygraph_mode(): - out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False) - elif _in_legacy_dygraph(): - _, out = _legacy_C_ops.norm( - x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon - ) - return out - - check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm") - - helper = LayerHelper("l2_normalize", **locals()) - out = helper.create_variable_for_type_inference(dtype=x.dtype) - norm = helper.create_variable_for_type_inference(dtype=x.dtype) - helper.append_op( - type="norm", - inputs={"X": x}, - outputs={"Out": out, "Norm": norm}, - attrs={ - "axis": 1 if axis is None else axis, - "epsilon": epsilon, - }, - ) - return out - - @templatedoc() def row_conv(input, future_context_size, param_attr=None, act=None): """ diff --git a/python/paddle/fluid/nets.py b/python/paddle/fluid/nets.py index a34e0aacb58c1ca9a815813a2701cb8552e6764c..0c42f07b39c051b8551f12112919f7c5a2d55813 100644 --- a/python/paddle/fluid/nets.py +++ b/python/paddle/fluid/nets.py @@ -397,7 +397,7 @@ def glu(input, dim=-1): check_variable_and_dtype( input, 'input', ['float16', 'float32', 'float64'], "glu" ) - a, b = layers.split(input, num_or_sections=2, dim=dim) + a, b = paddle.split(input, num_or_sections=2, axis=dim) act_b = paddle.nn.functional.sigmoid(x=b) out = paddle.multiply(x=a, y=act_b) return out diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/seq2seq_dygraph_model.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/seq2seq_dygraph_model.py index c8dd637992cf7bbe3500993d343ce91ca237a74f..a52762060f98d2f186db0de73c44167be9a98c08 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/seq2seq_dygraph_model.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/seq2seq_dygraph_model.py @@ -73,7 +73,7 @@ class BasicLSTMUnit(Layer): gate_input = paddle.matmul(x=concat_input_hidden, y=self._weight) gate_input = paddle.add(gate_input, self._bias) - i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) + i, j, f, o = paddle.split(gate_input, num_or_sections=4, axis=-1) new_cell = paddle.add( paddle.multiply( pre_cell, paddle.nn.functional.sigmoid(f + self._forget_bias) diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_partial_program.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_partial_program.py index 132b6c555de580a254b68975d5f53f6c7c48bee9..a1a934c3060e65e3e9f75fac0d168904ccb04e72 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_partial_program.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_partial_program.py @@ -188,7 +188,7 @@ class GPT2LMHeadModel(fluid.dygraph.Layer): @declarative def forward(self, x): x = paddle.reshape(x, shape=[-1, 6]) - x1, x2, x3 = fluid.layers.split(input=x, dim=1, num_or_sections=3) + x1, x2, x3 = paddle.split(x=x, axis=1, num_or_sections=3) return x1 diff --git a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py index a02be715061395ebbdefc4920ca58e55f8da67f5..07600f738de4f23d69fab49aa67c6504cf029428 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py +++ b/python/paddle/fluid/tests/unittests/dygraph_to_static/test_ptb_lm.py @@ -96,8 +96,8 @@ class SimpleLSTMRNN(fluid.Layer): gate_input = paddle.matmul(x=nn, y=weight_1) gate_input = paddle.add(gate_input, bias) - i, j, f, o = fluid.layers.split( - gate_input, num_or_sections=4, dim=-1 + i, j, f, o = paddle.split( + gate_input, num_or_sections=4, axis=-1 ) c = pre_cell * paddle.nn.functional.sigmoid( f diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py index 74a09dd9eabb1b15e2c6ef16af2b272c7c58a374..b9a35e7bd5a21fd10a503ace95255c61f47674fd 100644 --- a/python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py @@ -89,7 +89,7 @@ class TensorRTSubgraphPassSplitTest(InferencePassTest): data = fluid.data( name="data", shape=[-1, 3, 64, 64], dtype="float32" ) - split_out = fluid.layers.split(data, dim=-1, num_or_sections=2) + split_out = paddle.split(data, axis=-1, num_or_sections=2) out = nn.batch_norm(split_out[0], is_test=True) self.feeds = { "data": np.random.random([1, 3, 64, 64]).astype("float32"), @@ -115,7 +115,7 @@ class TensorRTSubgraphPassSplitSerializeTest(InferencePassTest): data = fluid.data( name="data", shape=[-1, 3, 64, 64], dtype="float32" ) - split_out = fluid.layers.split(data, dim=-1, num_or_sections=2) + split_out = paddle.split(data, axis=-1, num_or_sections=2) out = nn.batch_norm(split_out[0], is_test=True) self.feeds = { "data": np.random.random([1, 3, 64, 64]).astype("float32"), @@ -143,7 +143,7 @@ class TensorRTSubgraphPassDynamicSplitFp16SerializeTest(InferencePassTest): data = fluid.data( name="data", shape=[-1, 3, 64, 64], dtype="float32" ) - split_out = fluid.layers.split(data, dim=-1, num_or_sections=2) + split_out = paddle.split(data, axis=-1, num_or_sections=2) out = nn.batch_norm(split_out[0], is_test=True) self.feeds = { "data": np.random.random([1, 3, 64, 64]).astype("float32"), diff --git a/python/paddle/fluid/tests/unittests/npu/test_norm_op_npu.py b/python/paddle/fluid/tests/unittests/npu/test_norm_op_npu.py index c59daf979fb89d46f97e94e1d8a8ce08562f24c3..ca6979a7615e238503b81bffd220e59dd529f4f4 100644 --- a/python/paddle/fluid/tests/unittests/npu/test_norm_op_npu.py +++ b/python/paddle/fluid/tests/unittests/npu/test_norm_op_npu.py @@ -107,7 +107,7 @@ class API_NormTest(unittest.TestCase): def test_norm_x_type(): data = fluid.data(name="x", shape=[3, 3], dtype="float64") - out = fluid.layers.l2_normalize(data) + out = paddle.nn.functional.normalize(data) self.assertRaises(TypeError, test_norm_x_type) @@ -127,4 +127,4 @@ class TestNPUNormOpFP16(TestNPUNormOp): if __name__ == '__main__': - unittest.main() + unittest.main() \ No newline at end of file diff --git a/python/paddle/fluid/tests/unittests/test_calc_gradient.py b/python/paddle/fluid/tests/unittests/test_calc_gradient.py index c6dcbc0cb7bca30dff5d7a2268e8eb23765c8389..4da464f9fb810667c59d5587983acd9ae5f9f5c7 100644 --- a/python/paddle/fluid/tests/unittests/test_calc_gradient.py +++ b/python/paddle/fluid/tests/unittests/test_calc_gradient.py @@ -89,7 +89,7 @@ class TestGradientWithPrune(unittest.TestCase): with paddle.fluid.scope_guard(paddle.static.Scope()): x = fluid.data(name='x', shape=[3], dtype='float32') x.stop_gradient = False - x1, x2, x3 = fluid.layers.split(x, dim=0, num_or_sections=3) + x1, x2, x3 = paddle.split(x, axis=0, num_or_sections=3) y = x1 * 2 x1_grad = fluid.gradients(y, x) diff --git a/python/paddle/fluid/tests/unittests/test_eager_deletion_padding_rnn.py b/python/paddle/fluid/tests/unittests/test_eager_deletion_padding_rnn.py index 990a41b43539d4364c4279e4de8475a4455a3526..18588f5c53111ca42375dd1b5718afbec96e5c5a 100644 --- a/python/paddle/fluid/tests/unittests/test_eager_deletion_padding_rnn.py +++ b/python/paddle/fluid/tests/unittests/test_eager_deletion_padding_rnn.py @@ -277,8 +277,8 @@ def lm_model( cell_array.append(pre_cell) res = [] - sliced_inputs = layers.split( - input_embedding, num_or_sections=len, dim=1 + sliced_inputs = paddle.split( + input_embedding, num_or_sections=len, axis=1 ) for index in range(len): @@ -294,7 +294,9 @@ def lm_model( gate_input = paddle.matmul(x=nn, y=weight_1) gate_input = paddle.add(gate_input, bias) - i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) + i, j, f, o = paddle.split( + gate_input, num_or_sections=4, axis=-1 + ) c = pre_cell * paddle.nn.functional.sigmoid( f diff --git a/python/paddle/fluid/tests/unittests/test_imperative_auto_prune.py b/python/paddle/fluid/tests/unittests/test_imperative_auto_prune.py index 2036ee83e95adbabb98ef006d37cbfbcf854276a..32fa927c15a9111ce88a46d12cbb1d531f320e8d 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_auto_prune.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_auto_prune.py @@ -105,9 +105,7 @@ class AutoPruneLayer3(fluid.Layer): def forward(self, x, label, test_num): feature = self.linear(x) - part1, part2 = fluid.layers.split( - feature, num_or_sections=[10, 10], dim=1 - ) + part1, part2 = paddle.split(feature, num_or_sections=[10, 10], axis=1) # Note that: part2 is not used. loss = paddle.nn.functional.cross_entropy( input=part1, label=label, reduction='none', use_softmax=False diff --git a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py index 714bb17bdd0b6151fd98f70e587c71c33181987d..b24b24ebc6255527a4b6dd575f86fe044623f64e 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py @@ -110,8 +110,8 @@ class SimpleLSTMRNN(fluid.Layer): gate_input = paddle.matmul(x=nn, y=weight_1) gate_input = paddle.add(gate_input, bias) - i, j, f, o = fluid.layers.split( - gate_input, num_or_sections=4, dim=-1 + i, j, f, o = paddle.split( + gate_input, num_or_sections=4, axis=-1 ) c = pre_cell * paddle.nn.functional.sigmoid( f diff --git a/python/paddle/fluid/tests/unittests/test_imperative_save_load.py b/python/paddle/fluid/tests/unittests/test_imperative_save_load.py index 333683ef81cd969f271e049b2d89d6786251ec50..adefda695245ade070f784f3763509525c02a1ff 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_save_load.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_save_load.py @@ -107,8 +107,8 @@ class SimpleLSTMRNN(fluid.Layer): gate_input = paddle.matmul(x=nn, y=weight_1) gate_input = paddle.add(gate_input, bias) - i, j, f, o = fluid.layers.split( - gate_input, num_or_sections=4, dim=-1 + i, j, f, o = paddle.split( + gate_input, num_or_sections=4, axis=-1 ) c = pre_cell * paddle.nn.functional.sigmoid( f diff --git a/python/paddle/fluid/tests/unittests/test_imperative_save_load_v2.py b/python/paddle/fluid/tests/unittests/test_imperative_save_load_v2.py index db54b70c43b3056e27ddce7442eb24f0ddba1aaa..3eff719a92839699360893db28615883f57152d6 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_save_load_v2.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_save_load_v2.py @@ -108,8 +108,8 @@ class SimpleLSTMRNN(fluid.Layer): gate_input = paddle.matmul(x=nn, y=weight_1) gate_input = paddle.add(gate_input, bias) - i, j, f, o = fluid.layers.split( - gate_input, num_or_sections=4, dim=-1 + i, j, f, o = paddle.split( + gate_input, num_or_sections=4, axis=-1 ) c = pre_cell * paddle.nn.functional.sigmoid( f diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index c96074a9284da8628101bbcd83ae81fd028dc767..ba56a8d1969e8d9deb2b7bde7dc843cb9d318306 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -922,21 +922,21 @@ class TestLayer(LayerTest): with self.dynamic_graph(): with _test_eager_guard(): input = fluid.dygraph.to_variable(np.random.random((3, 8, 5))) - x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1) - x00, x11 = fluid.layers.split( + x0, x1 = paddle.split(input, num_or_sections=2, axis=1) + x00, x11 = paddle.split( input, num_or_sections=2, - dim=fluid.dygraph.to_variable(np.array([1])), + axis=fluid.dygraph.to_variable(np.array([1])), ) np.testing.assert_array_equal(x0.numpy(), x00.numpy()) np.testing.assert_array_equal(x1.numpy(), x11.numpy()) input = fluid.dygraph.to_variable(np.random.random((3, 8, 5))) - x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1) - x00, x11 = fluid.layers.split( + x0, x1 = paddle.split(input, num_or_sections=2, axis=1) + x00, x11 = paddle.split( input, num_or_sections=2, - dim=fluid.dygraph.to_variable(np.array([1])), + axis=fluid.dygraph.to_variable(np.array([1])), ) np.testing.assert_array_equal(x0.numpy(), x00.numpy()) np.testing.assert_array_equal(x1.numpy(), x11.numpy()) @@ -2368,7 +2368,7 @@ class TestBook(LayerTest): fluid.default_main_program(), fluid.default_startup_program() ): x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32") - output = layers.l2_normalize(x, axis=1) + output = paddle.nn.functional.normalize(x, axis=1) return output def make_shape(self): diff --git a/python/paddle/fluid/tests/unittests/test_norm_op.py b/python/paddle/fluid/tests/unittests/test_norm_op.py index 232d5ceda412be302dc5371695d1a9bc74fdc779..73938f2d1b1c0e23a30c158a99ac78f7d58d82db 100644 --- a/python/paddle/fluid/tests/unittests/test_norm_op.py +++ b/python/paddle/fluid/tests/unittests/test_norm_op.py @@ -32,7 +32,7 @@ def l2_norm(x, axis, epsilon): class TestNormOp(OpTest): def setUp(self): self.op_type = "norm" - self.python_api = paddle.fluid.layers.l2_normalize + self.python_api = paddle.nn.functional.normalize self.init_test_case() self.init_dtype() x = np.random.random(self.shape).astype(self.dtype) @@ -155,7 +155,7 @@ class API_NormTest(unittest.TestCase): def test_norm_x_type(): data = fluid.data(name="x", shape=[3, 3], dtype="int64") - out = fluid.layers.l2_normalize(data) + out = paddle.nn.functional.normalize(data) self.assertRaises(TypeError, test_norm_x_type) diff --git a/python/paddle/fluid/tests/unittests/test_normalization_wrapper.py b/python/paddle/fluid/tests/unittests/test_normalization_wrapper.py index 0ed4be44b6d0f5ff25745444e2f67d80cb94391a..60cc8c7665edb9536d012bcb179fc1b20e01c60c 100644 --- a/python/paddle/fluid/tests/unittests/test_normalization_wrapper.py +++ b/python/paddle/fluid/tests/unittests/test_normalization_wrapper.py @@ -39,7 +39,9 @@ class TestNormalization(unittest.TestCase): append_batch_size=False, ) data.stop_gradient = False - l2_norm = fluid.layers.l2_normalize(x=data, axis=axis, epsilon=epsilon) + l2_norm = paddle.nn.functional.normalize( + data, axis=axis, epsilon=epsilon + ) out = paddle.sum(l2_norm, axis=None) fluid.backward.append_backward(loss=out) diff --git a/python/paddle/fluid/tests/unittests/test_sgd_op.py b/python/paddle/fluid/tests/unittests/test_sgd_op.py index b87d67c7130476b19cbd20897586c8898aa781f7..12f0217c5d66083d9083a3dec4ac7bad28b963b6 100644 --- a/python/paddle/fluid/tests/unittests/test_sgd_op.py +++ b/python/paddle/fluid/tests/unittests/test_sgd_op.py @@ -202,7 +202,7 @@ class TestSGDOpWithLargeInput(unittest.TestCase): shape=[1, 150], value=0.5, dtype='float32' ) emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32') - out = fluid.layers.l2_normalize(x=emb, axis=-1) + out = paddle.nn.functional.normalize(x=emb, axis=-1) cost = paddle.nn.functional.square_error_cost(input=out, label=label) avg_cost = paddle.mean(cost) diff --git a/python/paddle/fluid/tests/unittests/test_split_op.py b/python/paddle/fluid/tests/unittests/test_split_op.py index 9137d264dae23401a13f3f75c5eb57bdda3567a5..943861ab2f57b3c06d3eaf18a5f530d08648109e 100644 --- a/python/paddle/fluid/tests/unittests/test_split_op.py +++ b/python/paddle/fluid/tests/unittests/test_split_op.py @@ -272,16 +272,16 @@ class TestSplitAPI(unittest.TestCase): x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1') x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2') - out_0, out_1, out_2 = fluid.layers.split( - input=x_1, + out_0, out_1, out_2 = paddle.split( + x=x_1, num_or_sections=[positive_2_int64, positive_1_int32, -1], - dim=positive_1_int64, + axis=positive_1_int64, ) - out_3, out_4, out_5 = fluid.layers.split( - input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32 + out_3, out_4, out_5 = paddle.split( + x=x_1, num_or_sections=[2, 1, 2], axis=positive_1_int32 ) - fluid.layers.split(input=x_2, num_or_sections=2, dim=2) + paddle.split(x=x_2, num_or_sections=2, axis=2) exe = fluid.Executor(place=fluid.CPUPlace()) [res_0, res_1, res_2, res_3, res_4, res_5] = exe.run( @@ -305,7 +305,7 @@ class TestSplitOpError(unittest.TestCase): # The type of axis in split_op should be int or Variable. def test_axis_type(): x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3') - fluid.layers.split(input=x6, num_or_sections=2, dim=3.2) + paddle.split(x=x6, num_or_sections=2, axis=3.2) self.assertRaises(TypeError, test_axis_type) @@ -313,14 +313,14 @@ class TestSplitOpError(unittest.TestCase): def test_axis_variable_type(): x9 = fluid.layers.data(shape=[4], dtype='float16', name='x9') x10 = fluid.layers.data(shape=[1], dtype='float16', name='x10') - fluid.layers.split(input=x9, num_or_sections=2, dim=x10) + paddle.split(x=x9, num_or_sections=2, axis=x10) self.assertRaises(TypeError, test_axis_variable_type) # The type of num_or_sections in split_op should be int, tuple or list. def test_num_or_sections_type(): x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4') - fluid.layers.split(input=x6, num_or_sections=2.1, dim=3) + paddle.split(x=x6, num_or_sections=2.1, axis=3) self.assertRaises(TypeError, test_num_or_sections_type) @@ -447,7 +447,7 @@ class API_TestDygraphFluidSplit(unittest.TestCase): input_1 = np.random.random([4, 6, 6]).astype("int32") # input is a variable which shape is [4, 6, 6] input = paddle.to_tensor(input_1) - x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1) + x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1) x0_out = x0.numpy() x1_out = x1.numpy() x2_out = x2.numpy() @@ -455,7 +455,7 @@ class API_TestDygraphFluidSplit(unittest.TestCase): # input is a variable which shape is [4, 6, 6] input = paddle.to_tensor(input_1) input.stop_gradient = False - x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1) + x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1) eager_x0_out = x0.numpy() eager_x1_out = x1.numpy() eager_x2_out = x2.numpy() @@ -477,7 +477,7 @@ class API_TestDygraphFluidSplit(unittest.TestCase): input_1 = np.random.random([4, 6, 6]).astype("int32") # input is a variable which shape is [4, 6, 6] input = paddle.to_tensor(input_1) - x0, x1, x2 = fluid.layers.split(input, [2, 2, 2], dim=1) + x0, x1, x2 = paddle.split(input, [2, 2, 2], axis=1) x0_out = x0.numpy() x1_out = x1.numpy() x2_out = x2.numpy() @@ -485,7 +485,7 @@ class API_TestDygraphFluidSplit(unittest.TestCase): # input is a variable which shape is [4, 6, 6] input = paddle.to_tensor(input_1) input.stop_gradient = False - x0, x1, x2 = fluid.layers.split(input, [2, 2, 2], dim=1) + x0, x1, x2 = paddle.split(input, [2, 2, 2], axis=1) eager_x0_out = x0.numpy() eager_x1_out = x1.numpy() eager_x2_out = x2.numpy() diff --git a/python/paddle/fluid/tests/unittests/test_static_save_load.py b/python/paddle/fluid/tests/unittests/test_static_save_load.py index cc6e13d5ac120be48ba12bb35ed75ebdb5c22f8d..a2007e6c144eb410fda555d2827cadf0c3a4fe53 100644 --- a/python/paddle/fluid/tests/unittests/test_static_save_load.py +++ b/python/paddle/fluid/tests/unittests/test_static_save_load.py @@ -118,8 +118,8 @@ class SimpleLSTMRNN(fluid.Layer): gate_input = paddle.matmul(x=nn, y=weight_1) gate_input = paddle.add(gate_input, bias) - i, j, f, o = fluid.layers.split( - gate_input, num_or_sections=4, dim=-1 + i, j, f, o = paddle.split( + gate_input, num_or_sections=4, axis=-1 ) c = pre_cell * paddle.nn.functional.sigmoid( f diff --git a/python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py b/python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py index 46ecff205f79b60eeb78ef928d073479cadfe6db..06abe1f76b0cbf8f3810f6748679185e41780c6e 100644 --- a/python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py +++ b/python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py @@ -73,7 +73,7 @@ class TestSGDOpWithLargeInput(unittest.TestCase): shape=[1, 150], value=0.5, dtype='float32' ) emb = fluid.embedding(input=data, size=(10000, 150), dtype='float32') - out = fluid.layers.l2_normalize(x=emb, axis=-1) + out = paddle.nn.functional.normalize(x=emb, axis=-1) cost = paddle.nn.functional.square_error_cost(input=out, label=label) avg_cost = paddle.mean(cost) diff --git a/python/paddle/nn/utils/weight_norm_hook.py b/python/paddle/nn/utils/weight_norm_hook.py old mode 100755 new mode 100644 index 3afcf775d87a31ab012c706df53e9709e08d26e8..ca06bee40d764f27fca6923cb3f60a2904b2e55d --- a/python/paddle/nn/utils/weight_norm_hook.py +++ b/python/paddle/nn/utils/weight_norm_hook.py @@ -14,7 +14,6 @@ import paddle from paddle import _C_ops -from ...fluid import layers as F from ...fluid.data_feeder import check_variable_and_dtype from ...fluid.layer_helper import LayerHelper from ...framework import in_dygraph_mode @@ -74,11 +73,11 @@ def _weight_norm(v, g, dim): v_normalized = v / (paddle.sqrt(paddle.sum(paddle.square(v))) + 1e-12) elif dim == 0: p_matrix = paddle.reshape(v, (shape[0], -1)) - v_normalized = F.l2_normalize(p_matrix, axis=1) + v_normalized = paddle.nn.functional.normalize(p_matrix, axis=1) v_normalized = paddle.reshape(v_normalized, shape) elif dim == ndims - 1: p_matrix = paddle.reshape(v, (-1, shape[-1])) - v_normalized = F.l2_normalize(p_matrix, axis=0) + v_normalized = paddle.nn.functional.normalize(p_matrix, axis=0) v_normalized = paddle.reshape(v_normalized, shape) else: perm = list(range(ndims)) @@ -87,7 +86,7 @@ def _weight_norm(v, g, dim): p_transposed = paddle.transpose(v, perm) transposed_shape = p_transposed.shape p_matrix = paddle.reshape(p_transposed, (p_transposed.shape[0], -1)) - v_normalized = F.l2_normalize(p_matrix, axis=1) + v_normalized = paddle.nn.functional.normalize(p_matrix, axis=1) v_normalized = paddle.reshape(v_normalized, transposed_shape) v_normalized = paddle.transpose(v_normalized, perm) weight = paddle.tensor.math._multiply_with_axis(