未验证 提交 c8497414 编写于 作者: Z zqw_1997 提交者: GitHub

remove detection_output, iou_similarity and bipartite_match (#48773)

上级 83c41459
...@@ -42,14 +42,11 @@ __all__ = [ ...@@ -42,14 +42,11 @@ __all__ = [
'prior_box', 'prior_box',
'density_prior_box', 'density_prior_box',
'multi_box_head', 'multi_box_head',
'bipartite_match',
'detection_output',
'anchor_generator', 'anchor_generator',
'roi_perspective_transform', 'roi_perspective_transform',
'generate_proposal_labels', 'generate_proposal_labels',
'generate_proposals', 'generate_proposals',
'generate_mask_labels', 'generate_mask_labels',
'iou_similarity',
'box_coder', 'box_coder',
'polygon_box_transform', 'polygon_box_transform',
'box_clip', 'box_clip',
...@@ -63,205 +60,6 @@ __all__ = [ ...@@ -63,205 +60,6 @@ __all__ = [
] ]
def detection_output(
loc,
scores,
prior_box,
prior_box_var,
background_label=0,
nms_threshold=0.3,
nms_top_k=400,
keep_top_k=200,
score_threshold=0.01,
nms_eta=1.0,
return_index=False,
):
"""
Given the regression locations, classification confidences and prior boxes,
calculate the detection outputs by performing following steps:
1. Decode input bounding box predictions according to the prior boxes and
regression locations.
2. Get the final detection results by applying multi-class non maximum
suppression (NMS).
Please note, this operation doesn't clip the final output bounding boxes
to the image window.
Args:
loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
predicted locations of M bounding bboxes. Data type should be
float32 or float64. N is the batch size,
and each bounding box has four coordinate values and the layout
is [xmin, ymin, xmax, ymax].
scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
predicted confidence predictions. Data type should be float32
or float64. N is the batch size, C is the
class number, M is number of bounding boxes.
prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
each box is represented as [xmin, ymin, xmax, ymax]. Data type
should be float32 or float64.
prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
of variance. Data type should be float32 or float64.
background_label(int): The index of background label,
the background label will be ignored. If set to -1, then all
categories will be considered. Default: 0.
nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
nms_top_k(int): Maximum number of detections to be kept according
to the confidences after filtering detections based on
score_threshold and before NMS. Default: 400.
keep_top_k(int): Number of total bboxes to be kept per image after
NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
score_threshold(float): Threshold to filter out bounding boxes with
low confidence score. If not provided, consider all boxes.
Default: 0.01.
nms_eta(float): The parameter for adaptive NMS. It works only when the
value is less than 1.0. Default: 1.0.
return_index(bool): Whether return selected index. Default: False
Returns:
A tuple with two Variables: (Out, Index) if return_index is True,
otherwise, a tuple with one Variable(Out) is returned.
Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
Data type is the same as input (loc). Each row has six values:
[label, confidence, xmin, ymin, xmax, ymax]. `No` is
the total number of detections in this mini-batch. For each instance,
the offsets in first dimension are called LoD, the offset number is
N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
detected results, if it is 0, the i-th image has no detected results.
Index (Variable): Only return when return_index is True. A 2-D LoDTensor
with shape [No, 1] represents the selected index which type is Integer.
The index is the absolute value cross batches. No is the same number
as Out. If the index is used to gather other attribute such as age,
one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
N is the batch size and M is the number of boxes.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.enable_static()
pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
nmsed_outs, index = fluid.layers.detection_output(scores=scores,
loc=loc,
prior_box=pb,
prior_box_var=pbv,
return_index=True)
"""
helper = LayerHelper("detection_output", **locals())
decoded_box = box_coder(
prior_box=prior_box,
prior_box_var=prior_box_var,
target_box=loc,
code_type='decode_center_size',
)
scores = paddle.nn.functional.softmax(scores)
scores = paddle.transpose(scores, perm=[0, 2, 1])
scores.stop_gradient = True
nmsed_outs = helper.create_variable_for_type_inference(
dtype=decoded_box.dtype
)
if return_index:
index = helper.create_variable_for_type_inference(dtype='int')
helper.append_op(
type="multiclass_nms2",
inputs={'Scores': scores, 'BBoxes': decoded_box},
outputs={'Out': nmsed_outs, 'Index': index},
attrs={
'background_label': 0,
'nms_threshold': nms_threshold,
'nms_top_k': nms_top_k,
'keep_top_k': keep_top_k,
'score_threshold': score_threshold,
'nms_eta': 1.0,
},
)
index.stop_gradient = True
else:
helper.append_op(
type="multiclass_nms",
inputs={'Scores': scores, 'BBoxes': decoded_box},
outputs={'Out': nmsed_outs},
attrs={
'background_label': 0,
'nms_threshold': nms_threshold,
'nms_top_k': nms_top_k,
'keep_top_k': keep_top_k,
'score_threshold': score_threshold,
'nms_eta': 1.0,
},
)
nmsed_outs.stop_gradient = True
if return_index:
return nmsed_outs, index
return nmsed_outs
@templatedoc()
def iou_similarity(x, y, box_normalized=True, name=None):
"""
:alias_main: paddle.nn.functional.iou_similarity
:alias: paddle.nn.functional.iou_similarity,paddle.nn.functional.loss.iou_similarity
:old_api: paddle.fluid.layers.iou_similarity
${comment}
Args:
x (Variable): ${x_comment}.The data type is float32 or float64.
y (Variable): ${y_comment}.The data type is float32 or float64.
box_normalized(bool): Whether treat the priorbox as a normalized box.
Set true by default.
Returns:
Variable: ${out_comment}.The data type is same with x.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
use_gpu = False
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
x = fluid.data(name='x', shape=[None, 4], dtype='float32')
y = fluid.data(name='y', shape=[None, 4], dtype='float32')
iou = fluid.layers.iou_similarity(x=x, y=y)
exe.run(fluid.default_startup_program())
test_program = fluid.default_main_program().clone(for_test=True)
[out_iou] = exe.run(test_program,
fetch_list=iou,
feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
[0., 0., 1.0, 1.0]]).astype('float32'),
'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
# out_iou is [[0.2857143],
# [0. ]] with shape: [2, 1]
"""
helper = LayerHelper("iou_similarity", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="iou_similarity",
inputs={"X": x, "Y": y},
attrs={"box_normalized": box_normalized},
outputs={"Out": out},
)
return out
@templatedoc() @templatedoc()
def box_coder( def box_coder(
prior_box, prior_box,
...@@ -533,97 +331,6 @@ def detection_map( ...@@ -533,97 +331,6 @@ def detection_map(
return map_out return map_out
def bipartite_match(
dist_matrix, match_type=None, dist_threshold=None, name=None
):
"""
This operator implements a greedy bipartite matching algorithm, which is
used to obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row (matched means the largest distance),
also can find the matched row for each column. And this operator only
calculate matched indices from column to row. For each instance,
the number of matched indices is the column number of the input distance
matrix. **The OP only supports CPU**.
There are two outputs, matched indices and distance.
A simple description, this algorithm matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.
NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.
NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
layer. Please consider to use :code:`ssd_loss` instead.
Args:
dist_matrix(Variable): This input is a 2-D LoDTensor with shape
[K, M]. The data type is float32 or float64. It is pair-wise
distance matrix between the entities represented by each row and
each column. For example, assumed one entity is A with shape [K],
another entity is B with shape [M]. The dist_matrix[i][j] is the
distance between A[i] and B[j]. The bigger the distance is, the
better matching the pairs are. NOTE: This tensor can contain LoD
information to represent a batch of inputs. One instance of this
batch can contain different numbers of entities.
match_type(str, optional): The type of matching method, should be
'bipartite' or 'per_prediction'. None ('bipartite') by default.
dist_threshold(float32, optional): If `match_type` is 'per_prediction',
this threshold is to determine the extra matching bboxes based
on the maximum distance, 0.5 by default.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
Tuple:
matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
type is int32. N is the batch size. If match_indices[i][j] is -1, it
means B[j] does not match any entity in i-th instance.
Otherwise, it means B[j] is matched to row
match_indices[i][j] in i-th instance. The row number of
i-th instance is saved in match_indices[i][j].
matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
type is float32. N is batch size. If match_indices[i][j] is -1,
match_distance[i][j] is also -1.0. Otherwise, assumed
match_distance[i][j] = d, and the row offsets of each instance
are called LoD. Then match_distance[i][j] =
dist_matrix[d+LoD[i]][j].
Examples:
>>> import paddle.fluid as fluid
>>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
>>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
>>> iou = fluid.layers.iou_similarity(x=x, y=y)
>>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
"""
helper = LayerHelper('bipartite_match', **locals())
match_indices = helper.create_variable_for_type_inference(dtype='int32')
match_distance = helper.create_variable_for_type_inference(
dtype=dist_matrix.dtype
)
helper.append_op(
type='bipartite_match',
inputs={'DistMat': dist_matrix},
attrs={
'match_type': match_type,
'dist_threshold': dist_threshold,
},
outputs={
'ColToRowMatchIndices': match_indices,
'ColToRowMatchDist': match_distance,
},
)
return match_indices, match_distance
def prior_box( def prior_box(
input, input,
image, image,
......
...@@ -77,49 +77,6 @@ class LayerTest(unittest.TestCase): ...@@ -77,49 +77,6 @@ class LayerTest(unittest.TestCase):
class TestDetection(unittest.TestCase): class TestDetection(unittest.TestCase):
def test_detection_output(self):
program = Program()
with program_guard(program):
pb = layers.data(
name='prior_box',
shape=[10, 4],
append_batch_size=False,
dtype='float32',
)
pbv = layers.data(
name='prior_box_var',
shape=[10, 4],
append_batch_size=False,
dtype='float32',
)
loc = layers.data(
name='target_box',
shape=[2, 10, 4],
append_batch_size=False,
dtype='float32',
)
scores = layers.data(
name='scores',
shape=[2, 10, 20],
append_batch_size=False,
dtype='float32',
)
out = layers.detection_output(
scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv
)
out2, index = layers.detection_output(
scores=scores,
loc=loc,
prior_box=pb,
prior_box_var=pbv,
return_index=True,
)
self.assertIsNotNone(out)
self.assertIsNotNone(out2)
self.assertIsNotNone(index)
self.assertEqual(out.shape[-1], 6)
print(str(program))
def test_box_coder_api(self): def test_box_coder_api(self):
program = Program() program = Program()
with program_guard(program): with program_guard(program):
......
...@@ -2414,15 +2414,6 @@ class TestBook(LayerTest): ...@@ -2414,15 +2414,6 @@ class TestBook(LayerTest):
out = paddle.scale(input, scale=scale_var) out = paddle.scale(input, scale=scale_var)
return out return out
def make_iou_similarity(self):
with program_guard(
fluid.default_main_program(), fluid.default_startup_program()
):
x = self._get_data(name="x", shape=[4], dtype="float32")
y = self._get_data(name="y", shape=[4], dtype="float32")
out = layers.iou_similarity(x, y, name='iou_similarity')
return out
def make_bilinear_tensor_product_layer(self): def make_bilinear_tensor_product_layer(self):
with program_guard( with program_guard(
fluid.default_main_program(), fluid.default_startup_program() fluid.default_main_program(), fluid.default_startup_program()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册