diff --git a/python/paddle/fluid/tests/unittests/test_dist_word2vec.py b/python/paddle/fluid/tests/unittests/test_dist_word2vec.py new file mode 100644 index 0000000000000000000000000000000000000000..712fd5849d80b1915ae3b2ae5108bedee8d88a2c --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_dist_word2vec.py @@ -0,0 +1,203 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import argparse +import time +import math +import paddle +import paddle.fluid as fluid +import paddle.fluid.profiler as profiler +from paddle.fluid import core +import unittest +from multiprocessing import Process +import os +import signal + +IS_SPARSE = True +EMBED_SIZE = 32 +HIDDEN_SIZE = 256 +N = 5 +BATCH_SIZE = 32 +ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy + + +def get_model(): + def __network__(words): + embed_first = fluid.layers.embedding( + input=words[0], + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + embed_second = fluid.layers.embedding( + input=words[1], + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + embed_third = fluid.layers.embedding( + input=words[2], + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + embed_forth = fluid.layers.embedding( + input=words[3], + size=[dict_size, EMBED_SIZE], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr='shared_w') + + concat_embed = fluid.layers.concat( + input=[embed_first, embed_second, embed_third, embed_forth], axis=1) + hidden1 = fluid.layers.fc(input=concat_embed, + size=HIDDEN_SIZE, + act='sigmoid') + predict_word = fluid.layers.fc(input=hidden1, + size=dict_size, + act='softmax') + cost = fluid.layers.cross_entropy(input=predict_word, label=words[4]) + avg_cost = fluid.layers.mean(cost) + return avg_cost, predict_word + + word_dict = paddle.dataset.imikolov.build_dict() + dict_size = len(word_dict) + + first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64') + second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64') + third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64') + forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64') + next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64') + avg_cost, predict_word = __network__( + [first_word, second_word, third_word, forth_word, next_word]) + + inference_program = paddle.fluid.default_main_program().clone() + + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) + sgd_optimizer.minimize(avg_cost) + + train_reader = paddle.batch( + paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) + test_reader = paddle.batch( + paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE) + + return inference_program, avg_cost, train_reader, test_reader, predict_word + + +def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers): + t = fluid.DistributeTranspiler() + t.transpile( + trainer_id=trainer_id, + program=main_program, + pservers=pserver_endpoints, + trainers=trainers) + return t + + +def run_pserver(pserver_endpoints, trainers, current_endpoint): + get_model() + t = get_transpiler(0, + fluid.default_main_program(), pserver_endpoints, + trainers) + pserver_prog = t.get_pserver_program(current_endpoint) + startup_prog = t.get_startup_program(current_endpoint, pserver_prog) + + place = fluid.CPUPlace() + exe = fluid.Executor(place) + exe.run(startup_prog) + + exe.run(pserver_prog) + + +class TestDistMnist(unittest.TestCase): + def setUp(self): + self._trainers = 1 + self._pservers = 1 + self._ps_endpoints = "127.0.0.1:9123" + + def start_pserver(self, endpoint): + p = Process( + target=run_pserver, + args=(self._ps_endpoints, self._trainers, endpoint)) + p.start() + return p.pid + + def _wait_ps_ready(self, pid): + retry_times = 5 + while True: + assert retry_times >= 0, "wait ps ready failed" + time.sleep(1) + try: + # the listen_and_serv_op would touch a file which contains the listen port + # on the /tmp directory until it was ready to process all the RPC call. + os.stat("/tmp/paddle.%d.port" % pid) + return + except os.error: + retry_times -= 1 + + def stop_pserver(self, pid): + os.kill(pid, signal.SIGKILL) + + def test_with_place(self): + p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( + ) else fluid.CPUPlace() + + pserver_pid = self.start_pserver(self._ps_endpoints) + self._wait_ps_ready(pserver_pid) + + self.run_trainer(p, 0) + + self.stop_pserver(pserver_pid) + + def run_trainer(self, place, trainer_id): + test_program, avg_cost, train_reader, test_reader, predict = get_model() + t = get_transpiler(trainer_id, + fluid.default_main_program(), self._ps_endpoints, + self._trainers) + + trainer_prog = t.get_trainer_program() + + exe = fluid.Executor(place) + exe.run(fluid.default_startup_program()) + + use_gpu = True if core.is_compiled_with_cuda() else False + + exec_strategy = ExecutionStrategy() + exec_strategy.use_cuda = use_gpu + train_exe = fluid.ParallelExecutor( + use_cuda=use_gpu, + main_program=trainer_prog, + loss_name=avg_cost.name, + exec_strategy=exec_strategy) + + feed_var_list = [ + var for var in trainer_prog.global_block().vars.itervalues() + if var.is_data + ] + + feeder = fluid.DataFeeder(feed_var_list, place) + for pass_id in xrange(10): + for batch_id, data in enumerate(train_reader()): + avg_loss_np = train_exe.run(feed=feeder.feed(data), + fetch_list=[avg_cost.name]) + loss = np.array(avg_loss_np).mean() + if float(loss) < 5.0: + return + if math.isnan(loss): + assert ("Got Nan loss, training failed") + + +if __name__ == "__main__": + unittest.main()