Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c782040e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c782040e
编写于
3月 03, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add yolo box kernel; test=develop
上级
a8e02ef1
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
496 addition
and
328 deletion
+496
-328
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-1
paddle/fluid/operators/detection/yolo_box_op.cc
paddle/fluid/operators/detection/yolo_box_op.cc
+0
-3
paddle/fluid/operators/detection/yolo_box_op.cu
paddle/fluid/operators/detection/yolo_box_op.cu
+0
-143
paddle/fluid/operators/detection/yolo_box_op.h
paddle/fluid/operators/detection/yolo_box_op.h
+0
-180
paddle/phi/kernels/cpu/yolo_box_kernel.cc
paddle/phi/kernels/cpu/yolo_box_kernel.cc
+128
-0
paddle/phi/kernels/funcs/yolo_box_util.h
paddle/phi/kernels/funcs/yolo_box_util.h
+112
-0
paddle/phi/kernels/gpu/yolo_box_kernel.cu
paddle/phi/kernels/gpu/yolo_box_kernel.cu
+182
-0
paddle/phi/kernels/yolo_box_kernel.h
paddle/phi/kernels/yolo_box_kernel.h
+36
-0
paddle/phi/ops/compat/yolo_box_sig.cc
paddle/phi/ops/compat/yolo_box_sig.cc
+35
-0
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
+2
-1
未找到文件。
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
c782040e
...
...
@@ -62,7 +62,7 @@ detection_library(locality_aware_nms_op SRCS locality_aware_nms_op.cc DEPS gpc)
detection_library
(
matrix_nms_op SRCS matrix_nms_op.cc DEPS gpc
)
detection_library
(
box_clip_op SRCS box_clip_op.cc box_clip_op.cu
)
detection_library
(
yolov3_loss_op SRCS yolov3_loss_op.cc
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc
yolo_box_op.cu
)
detection_library
(
yolo_box_op SRCS yolo_box_op.cc
)
detection_library
(
box_decoder_and_assign_op SRCS box_decoder_and_assign_op.cc box_decoder_and_assign_op.cu
)
detection_library
(
sigmoid_focal_loss_op SRCS sigmoid_focal_loss_op.cc sigmoid_focal_loss_op.cu
)
detection_library
(
retinanet_detection_output_op SRCS retinanet_detection_output_op.cc
)
...
...
paddle/fluid/operators/detection/yolo_box_op.cc
浏览文件 @
c782040e
...
...
@@ -9,7 +9,6 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
...
...
@@ -240,8 +239,6 @@ REGISTER_OPERATOR(
yolo_box
,
ops
::
YoloBoxOp
,
ops
::
YoloBoxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
yolo_box
,
ops
::
YoloBoxKernel
<
float
>
,
ops
::
YoloBoxKernel
<
double
>
);
REGISTER_OP_VERSION
(
yolo_box
)
.
AddCheckpoint
(
...
...
paddle/fluid/operators/detection/yolo_box_op.cu
已删除
100644 → 0
浏览文件 @
a8e02ef1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
__global__
void
KeYoloBoxFw
(
const
T
*
input
,
const
int
*
imgsize
,
T
*
boxes
,
T
*
scores
,
const
float
conf_thresh
,
const
int
*
anchors
,
const
int
n
,
const
int
h
,
const
int
w
,
const
int
an_num
,
const
int
class_num
,
const
int
box_num
,
int
input_size_h
,
int
input_size_w
,
bool
clip_bbox
,
const
float
scale
,
const
float
bias
,
bool
iou_aware
,
const
float
iou_aware_factor
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
T
box
[
4
];
for
(;
tid
<
n
*
box_num
;
tid
+=
stride
)
{
int
grid_num
=
h
*
w
;
int
i
=
tid
/
box_num
;
int
j
=
(
tid
%
box_num
)
/
grid_num
;
int
k
=
(
tid
%
grid_num
)
/
w
;
int
l
=
tid
%
w
;
int
an_stride
=
(
5
+
class_num
)
*
grid_num
;
int
img_height
=
imgsize
[
2
*
i
];
int
img_width
=
imgsize
[
2
*
i
+
1
];
int
obj_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
4
,
iou_aware
);
T
conf
=
sigmoid
<
T
>
(
input
[
obj_idx
]);
if
(
iou_aware
)
{
int
iou_idx
=
GetIoUIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
);
T
iou
=
sigmoid
<
T
>
(
input
[
iou_idx
]);
conf
=
pow
(
conf
,
static_cast
<
T
>
(
1.
-
iou_aware_factor
))
*
pow
(
iou
,
static_cast
<
T
>
(
iou_aware_factor
));
}
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
,
iou_aware
);
GetYoloBox
<
T
>
(
box
,
input
,
anchors
,
l
,
k
,
j
,
h
,
w
,
input_size_h
,
input_size_w
,
box_idx
,
grid_num
,
img_height
,
img_width
,
scale
,
bias
);
box_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes
,
box
,
box_idx
,
img_height
,
img_width
,
clip_bbox
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
5
,
iou_aware
);
int
score_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
class_num
;
CalcLabelScore
<
T
>
(
scores
,
input
,
label_idx
,
score_idx
,
class_num
,
conf
,
grid_num
);
}
}
template
<
typename
T
>
class
YoloBoxOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
img_size
=
ctx
.
Input
<
Tensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
conf_thresh
=
ctx
.
Attr
<
float
>
(
"conf_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
bool
clip_bbox
=
ctx
.
Attr
<
bool
>
(
"clip_bbox"
);
bool
iou_aware
=
ctx
.
Attr
<
bool
>
(
"iou_aware"
);
float
iou_aware_factor
=
ctx
.
Attr
<
float
>
(
"iou_aware_factor"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale_x_y"
);
float
bias
=
-
0.5
*
(
scale
-
1.
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size_h
=
downsample_ratio
*
h
;
int
input_size_w
=
downsample_ratio
*
w
;
auto
&
dev_ctx
=
ctx
.
cuda_device_context
();
int
bytes
=
sizeof
(
int
)
*
anchors
.
size
();
auto
anchors_ptr
=
memory
::
Alloc
(
dev_ctx
,
sizeof
(
int
)
*
anchors
.
size
());
int
*
anchors_data
=
reinterpret_cast
<
int
*>
(
anchors_ptr
->
ptr
());
const
auto
gplace
=
ctx
.
GetPlace
();
const
auto
cplace
=
platform
::
CPUPlace
();
memory
::
Copy
(
gplace
,
anchors_data
,
cplace
,
anchors
.
data
(),
bytes
,
dev_ctx
.
stream
());
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
img_size
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
platform
::
CUDADeviceContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
boxes
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
scores
,
static_cast
<
T
>
(
0
));
platform
::
GpuLaunchConfig
config
=
platform
::
GetGpuLaunchConfig1D
(
ctx
.
cuda_device_context
(),
n
*
box_num
);
dim3
thread_num
=
config
.
thread_per_block
;
#ifdef WITH_NV_JETSON
if
(
config
.
compute_capability
==
53
||
config
.
compute_capability
==
62
)
{
thread_num
=
512
;
}
#endif
KeYoloBoxFw
<
T
><<<
config
.
block_per_grid
,
thread_num
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
input_data
,
imgsize_data
,
boxes_data
,
scores_data
,
conf_thresh
,
anchors_data
,
n
,
h
,
w
,
an_num
,
class_num
,
box_num
,
input_size_h
,
input_size_w
,
clip_bbox
,
scale
,
bias
,
iou_aware
,
iou_aware_factor
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
yolo_box
,
ops
::
YoloBoxOpCUDAKernel
<
float
>
,
ops
::
YoloBoxOpCUDAKernel
<
double
>
);
paddle/fluid/operators/detection/yolo_box_op.h
已删除
100644 → 0
浏览文件 @
a8e02ef1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/hostdevice.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
HOSTDEVICE
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
));
}
template
<
typename
T
>
HOSTDEVICE
inline
void
GetYoloBox
(
T
*
box
,
const
T
*
x
,
const
int
*
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size_h
,
int
grid_size_w
,
int
input_size_h
,
int
input_size_w
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
,
float
scale
,
float
bias
)
{
box
[
0
]
=
(
i
+
sigmoid
<
T
>
(
x
[
index
])
*
scale
+
bias
)
*
img_width
/
grid_size_w
;
box
[
1
]
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
])
*
scale
+
bias
)
*
img_height
/
grid_size_h
;
box
[
2
]
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
input_size_w
;
box
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size_h
;
}
HOSTDEVICE
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
,
bool
iou_aware
)
{
if
(
iou_aware
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
(
batch
*
an_num
+
an_num
+
entry
)
*
stride
+
hw_idx
;
}
else
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
}
HOSTDEVICE
inline
int
GetIoUIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
)
{
return
batch
*
an_num
*
an_stride
+
(
batch
*
an_num
+
an_idx
)
*
stride
+
hw_idx
;
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcDetectionBox
(
T
*
boxes
,
T
*
box
,
const
int
box_idx
,
const
int
img_height
,
const
int
img_width
,
bool
clip_bbox
)
{
boxes
[
box_idx
]
=
box
[
0
]
-
box
[
2
]
/
2
;
boxes
[
box_idx
+
1
]
=
box
[
1
]
-
box
[
3
]
/
2
;
boxes
[
box_idx
+
2
]
=
box
[
0
]
+
box
[
2
]
/
2
;
boxes
[
box_idx
+
3
]
=
box
[
1
]
+
box
[
3
]
/
2
;
if
(
clip_bbox
)
{
boxes
[
box_idx
]
=
boxes
[
box_idx
]
>
0
?
boxes
[
box_idx
]
:
static_cast
<
T
>
(
0
);
boxes
[
box_idx
+
1
]
=
boxes
[
box_idx
+
1
]
>
0
?
boxes
[
box_idx
+
1
]
:
static_cast
<
T
>
(
0
);
boxes
[
box_idx
+
2
]
=
boxes
[
box_idx
+
2
]
<
img_width
-
1
?
boxes
[
box_idx
+
2
]
:
static_cast
<
T
>
(
img_width
-
1
);
boxes
[
box_idx
+
3
]
=
boxes
[
box_idx
+
3
]
<
img_height
-
1
?
boxes
[
box_idx
+
3
]
:
static_cast
<
T
>
(
img_height
-
1
);
}
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcLabelScore
(
T
*
scores
,
const
T
*
input
,
const
int
label_idx
,
const
int
score_idx
,
const
int
class_num
,
const
T
conf
,
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
scores
[
score_idx
+
i
]
=
conf
*
sigmoid
<
T
>
(
input
[
label_idx
+
i
*
stride
]);
}
}
template
<
typename
T
>
class
YoloBoxKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
imgsize
=
ctx
.
Input
<
Tensor
>
(
"ImgSize"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
scores
=
ctx
.
Output
<
Tensor
>
(
"Scores"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
conf_thresh
=
ctx
.
Attr
<
float
>
(
"conf_thresh"
);
int
downsample_ratio
=
ctx
.
Attr
<
int
>
(
"downsample_ratio"
);
bool
clip_bbox
=
ctx
.
Attr
<
bool
>
(
"clip_bbox"
);
bool
iou_aware
=
ctx
.
Attr
<
bool
>
(
"iou_aware"
);
float
iou_aware_factor
=
ctx
.
Attr
<
float
>
(
"iou_aware_factor"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale_x_y"
);
float
bias
=
-
0.5
*
(
scale
-
1.
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size_h
=
downsample_ratio
*
h
;
int
input_size_w
=
downsample_ratio
*
w
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
Tensor
anchors_
;
auto
anchors_data
=
anchors_
.
mutable_data
<
int
>
({
an_num
*
2
},
ctx
.
GetPlace
());
std
::
copy
(
anchors
.
begin
(),
anchors
.
end
(),
anchors_data
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
imgsize
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
ctx
.
GetPlace
());
memset
(
boxes_data
,
0
,
boxes
->
numel
()
*
sizeof
(
T
));
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
ctx
.
GetPlace
());
memset
(
scores_data
,
0
,
scores
->
numel
()
*
sizeof
(
T
));
T
box
[
4
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
int
img_height
=
imgsize_data
[
2
*
i
];
int
img_width
=
imgsize_data
[
2
*
i
+
1
];
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
4
,
iou_aware
);
T
conf
=
sigmoid
<
T
>
(
input_data
[
obj_idx
]);
if
(
iou_aware
)
{
int
iou_idx
=
GetIoUIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
);
T
iou
=
sigmoid
<
T
>
(
input_data
[
iou_idx
]);
conf
=
pow
(
conf
,
static_cast
<
T
>
(
1.
-
iou_aware_factor
))
*
pow
(
iou
,
static_cast
<
T
>
(
iou_aware_factor
));
}
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
,
iou_aware
);
GetYoloBox
<
T
>
(
box
,
input_data
,
anchors_data
,
l
,
k
,
j
,
h
,
w
,
input_size_h
,
input_size_w
,
box_idx
,
stride
,
img_height
,
img_width
,
scale
,
bias
);
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
CalcDetectionBox
<
T
>
(
boxes_data
,
box
,
box_idx
,
img_height
,
img_width
,
clip_bbox
);
int
label_idx
=
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
5
,
iou_aware
);
int
score_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
class_num
;
CalcLabelScore
<
T
>
(
scores_data
,
input_data
,
label_idx
,
score_idx
,
class_num
,
conf
,
stride
);
}
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/kernels/cpu/yolo_box_kernel.cc
0 → 100644
浏览文件 @
c782040e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/yolo_box_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/yolo_box_util.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
YoloBoxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
img_size
,
const
std
::
vector
<
int
>&
anchors
,
int
class_num
,
float
conf_thresh
,
int
downsample_ratio
,
bool
clip_bbox
,
float
scale_x_y
,
bool
iou_aware
,
float
iou_aware_factor
,
DenseTensor
*
boxes
,
DenseTensor
*
scores
)
{
auto
*
input
=
&
x
;
auto
*
imgsize
=
&
img_size
;
float
scale
=
scale_x_y
;
float
bias
=
-
0.5
*
(
scale
-
1.
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size_h
=
downsample_ratio
*
h
;
int
input_size_w
=
downsample_ratio
*
w
;
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
DenseTensor
anchors_
;
auto
anchors_data
=
anchors_
.
mutable_data
<
int
>
({
an_num
*
2
},
dev_ctx
.
GetPlace
());
std
::
copy
(
anchors
.
begin
(),
anchors
.
end
(),
anchors_data
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
imgsize
->
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
dev_ctx
.
GetPlace
());
memset
(
boxes_data
,
0
,
boxes
->
numel
()
*
sizeof
(
T
));
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
dev_ctx
.
GetPlace
());
memset
(
scores_data
,
0
,
scores
->
numel
()
*
sizeof
(
T
));
T
box
[
4
];
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
int
img_height
=
imgsize_data
[
2
*
i
];
int
img_width
=
imgsize_data
[
2
*
i
+
1
];
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj_idx
=
funcs
::
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
4
,
iou_aware
);
T
conf
=
funcs
::
sigmoid
<
T
>
(
input_data
[
obj_idx
]);
if
(
iou_aware
)
{
int
iou_idx
=
funcs
::
GetIoUIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
);
T
iou
=
funcs
::
sigmoid
<
T
>
(
input_data
[
iou_idx
]);
conf
=
pow
(
conf
,
static_cast
<
T
>
(
1.
-
iou_aware_factor
))
*
pow
(
iou
,
static_cast
<
T
>
(
iou_aware_factor
));
}
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
funcs
::
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
0
,
iou_aware
);
funcs
::
GetYoloBox
<
T
>
(
box
,
input_data
,
anchors_data
,
l
,
k
,
j
,
h
,
w
,
input_size_h
,
input_size_w
,
box_idx
,
stride
,
img_height
,
img_width
,
scale
,
bias
);
box_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
4
;
funcs
::
CalcDetectionBox
<
T
>
(
boxes_data
,
box
,
box_idx
,
img_height
,
img_width
,
clip_bbox
);
int
label_idx
=
funcs
::
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
stride
,
5
,
iou_aware
);
int
score_idx
=
(
i
*
box_num
+
j
*
stride
+
k
*
w
+
l
)
*
class_num
;
funcs
::
CalcLabelScore
<
T
>
(
scores_data
,
input_data
,
label_idx
,
score_idx
,
class_num
,
conf
,
stride
);
}
}
}
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
yolo_box
,
CPU
,
ALL_LAYOUT
,
phi
::
YoloBoxKernel
,
float
,
double
)
{}
paddle/phi/kernels/funcs/yolo_box_util.h
0 → 100644
浏览文件 @
c782040e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
phi
{
namespace
funcs
{
template
<
typename
T
>
HOSTDEVICE
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
1.0
+
std
::
exp
(
-
x
));
}
template
<
typename
T
>
HOSTDEVICE
inline
void
GetYoloBox
(
T
*
box
,
const
T
*
x
,
const
int
*
anchors
,
int
i
,
int
j
,
int
an_idx
,
int
grid_size_h
,
int
grid_size_w
,
int
input_size_h
,
int
input_size_w
,
int
index
,
int
stride
,
int
img_height
,
int
img_width
,
float
scale
,
float
bias
)
{
box
[
0
]
=
(
i
+
sigmoid
<
T
>
(
x
[
index
])
*
scale
+
bias
)
*
img_width
/
grid_size_w
;
box
[
1
]
=
(
j
+
sigmoid
<
T
>
(
x
[
index
+
stride
])
*
scale
+
bias
)
*
img_height
/
grid_size_h
;
box
[
2
]
=
std
::
exp
(
x
[
index
+
2
*
stride
])
*
anchors
[
2
*
an_idx
]
*
img_width
/
input_size_w
;
box
[
3
]
=
std
::
exp
(
x
[
index
+
3
*
stride
])
*
anchors
[
2
*
an_idx
+
1
]
*
img_height
/
input_size_h
;
}
HOSTDEVICE
inline
int
GetEntryIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
,
int
entry
,
bool
iou_aware
)
{
if
(
iou_aware
)
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
(
batch
*
an_num
+
an_num
+
entry
)
*
stride
+
hw_idx
;
}
else
{
return
(
batch
*
an_num
+
an_idx
)
*
an_stride
+
entry
*
stride
+
hw_idx
;
}
}
HOSTDEVICE
inline
int
GetIoUIndex
(
int
batch
,
int
an_idx
,
int
hw_idx
,
int
an_num
,
int
an_stride
,
int
stride
)
{
return
batch
*
an_num
*
an_stride
+
(
batch
*
an_num
+
an_idx
)
*
stride
+
hw_idx
;
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcDetectionBox
(
T
*
boxes
,
T
*
box
,
const
int
box_idx
,
const
int
img_height
,
const
int
img_width
,
bool
clip_bbox
)
{
boxes
[
box_idx
]
=
box
[
0
]
-
box
[
2
]
/
2
;
boxes
[
box_idx
+
1
]
=
box
[
1
]
-
box
[
3
]
/
2
;
boxes
[
box_idx
+
2
]
=
box
[
0
]
+
box
[
2
]
/
2
;
boxes
[
box_idx
+
3
]
=
box
[
1
]
+
box
[
3
]
/
2
;
if
(
clip_bbox
)
{
boxes
[
box_idx
]
=
boxes
[
box_idx
]
>
0
?
boxes
[
box_idx
]
:
static_cast
<
T
>
(
0
);
boxes
[
box_idx
+
1
]
=
boxes
[
box_idx
+
1
]
>
0
?
boxes
[
box_idx
+
1
]
:
static_cast
<
T
>
(
0
);
boxes
[
box_idx
+
2
]
=
boxes
[
box_idx
+
2
]
<
img_width
-
1
?
boxes
[
box_idx
+
2
]
:
static_cast
<
T
>
(
img_width
-
1
);
boxes
[
box_idx
+
3
]
=
boxes
[
box_idx
+
3
]
<
img_height
-
1
?
boxes
[
box_idx
+
3
]
:
static_cast
<
T
>
(
img_height
-
1
);
}
}
template
<
typename
T
>
HOSTDEVICE
inline
void
CalcLabelScore
(
T
*
scores
,
const
T
*
input
,
const
int
label_idx
,
const
int
score_idx
,
const
int
class_num
,
const
T
conf
,
const
int
stride
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
scores
[
score_idx
+
i
]
=
conf
*
sigmoid
<
T
>
(
input
[
label_idx
+
i
*
stride
]);
}
}
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/gpu/yolo_box_kernel.cu
0 → 100644
浏览文件 @
c782040e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/yolo_box_util.h"
#include "paddle/phi/kernels/yolo_box_kernel.h"
namespace
phi
{
template
<
typename
T
>
__global__
void
KeYoloBoxFw
(
const
T
*
input
,
const
int
*
imgsize
,
T
*
boxes
,
T
*
scores
,
const
float
conf_thresh
,
const
int
*
anchors
,
const
int
n
,
const
int
h
,
const
int
w
,
const
int
an_num
,
const
int
class_num
,
const
int
box_num
,
int
input_size_h
,
int
input_size_w
,
bool
clip_bbox
,
const
float
scale
,
const
float
bias
,
bool
iou_aware
,
const
float
iou_aware_factor
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
T
box
[
4
];
for
(;
tid
<
n
*
box_num
;
tid
+=
stride
)
{
int
grid_num
=
h
*
w
;
int
i
=
tid
/
box_num
;
int
j
=
(
tid
%
box_num
)
/
grid_num
;
int
k
=
(
tid
%
grid_num
)
/
w
;
int
l
=
tid
%
w
;
int
an_stride
=
(
5
+
class_num
)
*
grid_num
;
int
img_height
=
imgsize
[
2
*
i
];
int
img_width
=
imgsize
[
2
*
i
+
1
];
int
obj_idx
=
funcs
::
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
4
,
iou_aware
);
T
conf
=
funcs
::
sigmoid
<
T
>
(
input
[
obj_idx
]);
if
(
iou_aware
)
{
int
iou_idx
=
funcs
::
GetIoUIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
);
T
iou
=
funcs
::
sigmoid
<
T
>
(
input
[
iou_idx
]);
conf
=
pow
(
conf
,
static_cast
<
T
>
(
1.
-
iou_aware_factor
))
*
pow
(
iou
,
static_cast
<
T
>
(
iou_aware_factor
));
}
if
(
conf
<
conf_thresh
)
{
continue
;
}
int
box_idx
=
funcs
::
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
0
,
iou_aware
);
funcs
::
GetYoloBox
<
T
>
(
box
,
input
,
anchors
,
l
,
k
,
j
,
h
,
w
,
input_size_h
,
input_size_w
,
box_idx
,
grid_num
,
img_height
,
img_width
,
scale
,
bias
);
box_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
4
;
funcs
::
CalcDetectionBox
<
T
>
(
boxes
,
box
,
box_idx
,
img_height
,
img_width
,
clip_bbox
);
int
label_idx
=
funcs
::
GetEntryIndex
(
i
,
j
,
k
*
w
+
l
,
an_num
,
an_stride
,
grid_num
,
5
,
iou_aware
);
int
score_idx
=
(
i
*
box_num
+
j
*
grid_num
+
k
*
w
+
l
)
*
class_num
;
funcs
::
CalcLabelScore
<
T
>
(
scores
,
input
,
label_idx
,
score_idx
,
class_num
,
conf
,
grid_num
);
}
}
template
<
typename
T
,
typename
Context
>
void
YoloBoxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
img_size
,
const
std
::
vector
<
int
>&
anchors
,
int
class_num
,
float
conf_thresh
,
int
downsample_ratio
,
bool
clip_bbox
,
float
scale_x_y
,
bool
iou_aware
,
float
iou_aware_factor
,
DenseTensor
*
boxes
,
DenseTensor
*
scores
)
{
auto
*
input
=
&
x
;
float
scale
=
scale_x_y
;
float
bias
=
-
0.5
*
(
scale
-
1.
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
box_num
=
boxes
->
dims
()[
1
];
const
int
an_num
=
anchors
.
size
()
/
2
;
int
input_size_h
=
downsample_ratio
*
h
;
int
input_size_w
=
downsample_ratio
*
w
;
int
bytes
=
sizeof
(
int
)
*
anchors
.
size
();
auto
anchors_ptr
=
paddle
::
memory
::
Alloc
(
dev_ctx
,
sizeof
(
int
)
*
anchors
.
size
());
int
*
anchors_data
=
reinterpret_cast
<
int
*>
(
anchors_ptr
->
ptr
());
const
auto
gplace
=
dev_ctx
.
GetPlace
();
const
auto
cplace
=
phi
::
CPUPlace
();
paddle
::
memory
::
Copy
(
gplace
,
anchors_data
,
cplace
,
anchors
.
data
(),
bytes
,
dev_ctx
.
stream
());
const
T
*
input_data
=
input
->
data
<
T
>
();
const
int
*
imgsize_data
=
img_size
.
data
<
int
>
();
T
*
boxes_data
=
boxes
->
mutable_data
<
T
>
({
n
,
box_num
,
4
},
dev_ctx
.
GetPlace
());
T
*
scores_data
=
scores
->
mutable_data
<
T
>
({
n
,
box_num
,
class_num
},
dev_ctx
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
phi
::
GPUContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
boxes
,
static_cast
<
T
>
(
0
));
set_zero
(
dev_ctx
,
scores
,
static_cast
<
T
>
(
0
));
backends
::
gpu
::
GpuLaunchConfig
config
=
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
n
*
box_num
);
dim3
thread_num
=
config
.
thread_per_block
;
#ifdef WITH_NV_JETSON
if
(
config
.
compute_capability
==
53
||
config
.
compute_capability
==
62
)
{
thread_num
=
512
;
}
#endif
KeYoloBoxFw
<
T
><<<
config
.
block_per_grid
,
thread_num
,
0
,
dev_ctx
.
stream
()
>>>
(
input_data
,
imgsize_data
,
boxes_data
,
scores_data
,
conf_thresh
,
anchors_data
,
n
,
h
,
w
,
an_num
,
class_num
,
box_num
,
input_size_h
,
input_size_w
,
clip_bbox
,
scale
,
bias
,
iou_aware
,
iou_aware_factor
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
yolo_box
,
GPU
,
ALL_LAYOUT
,
phi
::
YoloBoxKernel
,
float
,
double
)
{}
paddle/phi/kernels/yolo_box_kernel.h
0 → 100644
浏览文件 @
c782040e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
YoloBoxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
img_size
,
const
std
::
vector
<
int
>&
anchors
,
int
class_num
,
float
conf_thresh
,
int
downsample_ratio
,
bool
clip_bbox
,
float
scale_x_y
,
bool
iou_aware
,
float
iou_aware_factor
,
DenseTensor
*
boxes
,
DenseTensor
*
scores
);
}
// namespace phi
paddle/phi/ops/compat/yolo_box_sig.cc
0 → 100644
浏览文件 @
c782040e
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
YoloBoxOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"yolo_box"
,
{
"X"
,
"ImgSize"
},
{
"anchors"
,
"class_num"
,
"conf_thresh"
,
"downsample_ratio"
,
"clip_bbox"
,
"scale_x_y"
,
"iou_aware"
,
"iou_aware_factor"
},
{
"Boxes"
,
"Scores"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
yolo_box
,
phi
::
YoloBoxOpArgumentMapping
);
python/paddle/fluid/tests/unittests/test_yolo_box_op.py
浏览文件 @
c782040e
...
...
@@ -260,5 +260,6 @@ class TestYoloBoxOpHW(TestYoloBoxOp):
self
.
iou_aware_factor
=
0.5
if
(
__name__
==
'__main__'
):
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录