提交 c7762da3 编写于 作者: Y Yu Yang 提交者: GitHub

Merge branch 'master' into merge_icode

...@@ -245,10 +245,10 @@ addto_layer ...@@ -245,10 +245,10 @@ addto_layer
:members: addto_layer :members: addto_layer
:noindex: :noindex:
convex_comb_layer linear_comb_layer
----------------- -----------------
.. automodule:: paddle.trainer_config_helpers.layers .. automodule:: paddle.trainer_config_helpers.layers
:members: convex_comb_layer :members: linear_comb_layer
:noindex: :noindex:
interpolation_layer interpolation_layer
...@@ -281,6 +281,12 @@ tensor_layer ...@@ -281,6 +281,12 @@ tensor_layer
:members: tensor_layer :members: tensor_layer
:noindex: :noindex:
cos_sim
-------
.. automodule:: paddle.trainer_config_helpers.layers
:members: cos_sim
:noindex:
trans_layer trans_layer
------------ ------------
.. automodule:: paddle.trainer_config_helpers.layers .. automodule:: paddle.trainer_config_helpers.layers
...@@ -341,12 +347,6 @@ rank_cost ...@@ -341,12 +347,6 @@ rank_cost
:members: rank_cost :members: rank_cost
:noindex: :noindex:
cos_sim
-------
.. automodule:: paddle.trainer_config_helpers.layers
:members: cos_sim
:noindex:
crf_layer crf_layer
----------------- -----------------
.. automodule:: paddle.trainer_config_helpers.layers .. automodule:: paddle.trainer_config_helpers.layers
......
...@@ -150,7 +150,7 @@ CUDNN_DNN_ROUTINE_EACH_AFTER_R3(DYNAMIC_LOAD_CUDNN_WRAP) ...@@ -150,7 +150,7 @@ CUDNN_DNN_ROUTINE_EACH_AFTER_R3(DYNAMIC_LOAD_CUDNN_WRAP)
// APIs available after R4: // APIs available after R4:
#if CUDNN_VERSION >= 4000 #if CUDNN_VERSION >= 4007
#define CUDNN_DNN_ROUTINE_EACH_AFTER_R4(__macro) \ #define CUDNN_DNN_ROUTINE_EACH_AFTER_R4(__macro) \
__macro(cudnnBatchNormalizationForwardTraining) \ __macro(cudnnBatchNormalizationForwardTraining) \
__macro(cudnnBatchNormalizationForwardInference) \ __macro(cudnnBatchNormalizationForwardInference) \
...@@ -999,7 +999,7 @@ void hl_batch_norm_forward_training(hl_tensor_descriptor inputDesc, ...@@ -999,7 +999,7 @@ void hl_batch_norm_forward_training(hl_tensor_descriptor inputDesc,
double epsilon, double epsilon,
real *savedMean, real *savedMean,
real *savedVar) { real *savedVar) {
#if CUDNN_VERSION >= 4000 #if CUDNN_VERSION >= 4007
if ((NULL != runningMean && NULL == runningInvVar) || if ((NULL != runningMean && NULL == runningInvVar) ||
(NULL == runningMean && NULL != runningInvVar)) { (NULL == runningMean && NULL != runningInvVar)) {
LOG(FATAL) << "runningMean and runningInvVar can be NULL " LOG(FATAL) << "runningMean and runningInvVar can be NULL "
...@@ -1024,7 +1024,7 @@ void hl_batch_norm_forward_training(hl_tensor_descriptor inputDesc, ...@@ -1024,7 +1024,7 @@ void hl_batch_norm_forward_training(hl_tensor_descriptor inputDesc,
CHECK_SYNC("hl_batch_norm_forward_training failed"); CHECK_SYNC("hl_batch_norm_forward_training failed");
#else #else
LOG(FATAL) << "CudnnBatchNorm requires cudnn version >= 4000. " LOG(FATAL) << "CudnnBatchNorm requires cudnn version >= 4007. "
<< "But cudnn lib version is " << g_cudnn_lib_version; << "But cudnn lib version is " << g_cudnn_lib_version;
#endif #endif
} }
...@@ -1039,7 +1039,7 @@ void hl_batch_norm_forward_inference(hl_tensor_descriptor inputDesc, ...@@ -1039,7 +1039,7 @@ void hl_batch_norm_forward_inference(hl_tensor_descriptor inputDesc,
real *estimatedMean, real *estimatedMean,
real *estimatedInvVar, real *estimatedInvVar,
double epsilon) { double epsilon) {
#if CUDNN_VERSION >= 4000 #if CUDNN_VERSION >= 4007
cudnnTensorDescriptor_t xDesc = GET_TENSOR_DESCRIPTOR(inputDesc); cudnnTensorDescriptor_t xDesc = GET_TENSOR_DESCRIPTOR(inputDesc);
cudnnTensorDescriptor_t yDesc = GET_TENSOR_DESCRIPTOR(outputDesc); cudnnTensorDescriptor_t yDesc = GET_TENSOR_DESCRIPTOR(outputDesc);
cudnnTensorDescriptor_t bnDesc = GET_TENSOR_DESCRIPTOR(bnParamDesc); cudnnTensorDescriptor_t bnDesc = GET_TENSOR_DESCRIPTOR(bnParamDesc);
...@@ -1053,7 +1053,7 @@ void hl_batch_norm_forward_inference(hl_tensor_descriptor inputDesc, ...@@ -1053,7 +1053,7 @@ void hl_batch_norm_forward_inference(hl_tensor_descriptor inputDesc,
CHECK_SYNC("hl_batch_norm_forward_inference failed"); CHECK_SYNC("hl_batch_norm_forward_inference failed");
#else #else
LOG(FATAL) << "CudnnBatchNorm requires cudnn version >= 4000. " LOG(FATAL) << "CudnnBatchNorm requires cudnn version >= 4007. "
<< "But cudnn lib version is " << g_cudnn_lib_version; << "But cudnn lib version is " << g_cudnn_lib_version;
#endif #endif
} }
...@@ -1071,7 +1071,7 @@ void hl_batch_norm_backward(hl_tensor_descriptor inputDesc, ...@@ -1071,7 +1071,7 @@ void hl_batch_norm_backward(hl_tensor_descriptor inputDesc,
double epsilon, double epsilon,
real *savedMean, real *savedMean,
real *savedInvVar) { real *savedInvVar) {
#if CUDNN_VERSION >= 4000 #if CUDNN_VERSION >= 4007
if ((NULL != savedMean && NULL == savedInvVar) || if ((NULL != savedMean && NULL == savedInvVar) ||
(NULL == savedMean && NULL != savedInvVar)) { (NULL == savedMean && NULL != savedInvVar)) {
LOG(FATAL) << "savedMean and savedVar can be NULL " LOG(FATAL) << "savedMean and savedVar can be NULL "
...@@ -1087,16 +1087,14 @@ void hl_batch_norm_backward(hl_tensor_descriptor inputDesc, ...@@ -1087,16 +1087,14 @@ void hl_batch_norm_backward(hl_tensor_descriptor inputDesc,
cudnnBatchNormMode_t mode = CUDNN_BATCHNORM_SPATIAL; cudnnBatchNormMode_t mode = CUDNN_BATCHNORM_SPATIAL;
CHECK_CUDNN(dynload::cudnnBatchNormalizationBackward( CHECK_CUDNN(dynload::cudnnBatchNormalizationBackward(
t_resource.cudnn_handle, mode, &alpha, &beta, t_resource.cudnn_handle, mode, &alpha, &beta,
#if CUDNN_VERSION >= 5000
&alpha, &beta, &alpha, &beta,
#endif
xDesc, input, dyDesc, outGrad, dxDesc, inGrad, xDesc, input, dyDesc, outGrad, dxDesc, inGrad,
bnDesc, scale, scaleGrad, biasGrad, epsilon, bnDesc, scale, scaleGrad, biasGrad, epsilon,
savedMean, savedInvVar)); savedMean, savedInvVar));
CHECK_SYNC("hl_batch_norm_backward failed"); CHECK_SYNC("hl_batch_norm_backward failed");
#else #else
LOG(FATAL) << "CudnnBatchNorm requires cudnn version >= 4000. " LOG(FATAL) << "CudnnBatchNorm requires cudnn version >= 4007. "
<< "But cudnn lib version is " << g_cudnn_lib_version; << "But cudnn lib version is " << g_cudnn_lib_version;
#endif #endif
} }
...@@ -277,6 +277,7 @@ void NeuralNetwork::getState(MachineState& machineState) { ...@@ -277,6 +277,7 @@ void NeuralNetwork::getState(MachineState& machineState) {
} }
void NeuralNetwork::backward(const UpdateCallback& callback) { void NeuralNetwork::backward(const UpdateCallback& callback) {
gLayerStackTrace.pop(""); // tell layer trace is during backward.
FOR_EACH_R(layer, layers_) { FOR_EACH_R(layer, layers_) {
REGISTER_TIMER_INFO("BackwardTimer", (*layer)->getName().c_str()); REGISTER_TIMER_INFO("BackwardTimer", (*layer)->getName().c_str());
if ((*layer)->needGradient()) { if ((*layer)->needGradient()) {
......
...@@ -21,18 +21,20 @@ limitations under the License. */ ...@@ -21,18 +21,20 @@ limitations under the License. */
namespace paddle { namespace paddle {
/** /**
* @brief A layer for convex weighted average of vectors, * @brief A layer for weighted sum of vectors,
* which is used in NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND * which is used in NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND
* TRANSLATE * TRANSLATE
* - Input: the first input contains the convex weights (batchSize x weightDim), * - Input: the the size of the first input is weightDim,
* and the shape of second input is (batchSize x (weightdim*dataDim)). * and the size of the second input is weightdim * dataDim.
* - Output: the shape of output is (batchSize x dataDim). * - Output: the sizeof the output is dataDim
* \f[ * \f[
* out[i][j] = \sum_{j}(in0(i, j) * in1(i,j + i * dataDim)), * out(j) = \sum_{i}(in0(i) * in1(i,j + i * dataDim)),
* i = 0,1,...,(batchSize-1); j = 0, 1,...,(dataDim-1) * i = 0,1,...,(weightDim-1); j = 0, 1,...,(dataDim-1)
* \f] * \f]
* Note that the above computation is for one sample. Multiple samples are
* processed in one batch.
* *
* The config file api is convex_comb_layer. * The config file api is linear_comb_layer.
*/ */
class ConvexCombinationLayer : public Layer { class ConvexCombinationLayer : public Layer {
protected: protected:
......
...@@ -48,7 +48,7 @@ void CosSimLayer::forward(PassType passType) { ...@@ -48,7 +48,7 @@ void CosSimLayer::forward(PassType passType) {
REGISTER_TIMER_INFO("CosFwAtvTimer", getName().c_str()); REGISTER_TIMER_INFO("CosFwAtvTimer", getName().c_str());
MatrixPtr prevOut1 = getInputValue(0); MatrixPtr prevOut1 = getInputValue(0);
MatrixPtr prevOut2 = getInputValue(1); MatrixPtr prevOut2 = getInputValue(1);
outV->cosSim(*prevOut1, *prevOut2, kCosSimScale_); outV->cosSim(*prevOut1, *prevOut2, config_.cos_scale());
} }
} }
...@@ -59,7 +59,7 @@ void CosSimLayer::backward(const UpdateCallback& callback) { ...@@ -59,7 +59,7 @@ void CosSimLayer::backward(const UpdateCallback& callback) {
outG->cosSimDerivative(*this->getOutputValue(), *getInputValue(0), outG->cosSimDerivative(*this->getOutputValue(), *getInputValue(0),
*getInputValue(1), *getInputGrad(0), *getInputValue(1), *getInputGrad(0),
*getInputGrad(1), kCosSimScale_); *getInputGrad(1), config_.cos_scale());
} }
} }
......
...@@ -36,7 +36,7 @@ namespace paddle { ...@@ -36,7 +36,7 @@ namespace paddle {
class CosSimLayer : public Layer { class CosSimLayer : public Layer {
public: public:
explicit CosSimLayer(const LayerConfig& config) explicit CosSimLayer(const LayerConfig& config)
: Layer(config), kCosSimScale_(5.0f) {} : Layer(config) {}
~CosSimLayer() {} ~CosSimLayer() {}
...@@ -44,8 +44,6 @@ public: ...@@ -44,8 +44,6 @@ public:
void forward(PassType passType); void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr); void backward(const UpdateCallback& callback = nullptr);
const real kCosSimScale_;
}; };
} // namespace paddle } // namespace paddle
...@@ -115,29 +115,11 @@ void CudnnBatchNormLayer::backward(const UpdateCallback& callback) { ...@@ -115,29 +115,11 @@ void CudnnBatchNormLayer::backward(const UpdateCallback& callback) {
create(tmpBiasGrad_, 1, channels_, &betaGrad); create(tmpBiasGrad_, 1, channels_, &betaGrad);
} }
// because of the different api of cudnn v4 and v5.
if (hl_get_cudnn_lib_version() < 5000) {
if (weight_->getWGrad()) {
create(tmpWGrad_, 1, channels_, &gammaGrad);
}
if (biases_ && biases_->getWGrad()) {
create(tmpBiasGrad_, 1, channels_, &betaGrad);
}
}
hl_batch_norm_backward(ioDesc_, input, ioDesc_, outGrad, hl_batch_norm_backward(ioDesc_, input, ioDesc_, outGrad,
ioDesc_, inGrad, bnParamDesc_, ioDesc_, inGrad, bnParamDesc_,
gamma, gammaGrad, betaGrad, gamma, gammaGrad, betaGrad,
EPS, savedMean, savedInvVar); EPS, savedMean, savedInvVar);
// because of the different api of cudnn v4 and v5.
if (hl_get_cudnn_lib_version() < 5000) {
if (weight_->getWGrad() && biases_->getWGrad()) {
weight_->getWGrad()->add(*tmpWGrad_);
biases_->getWGrad()->add(*tmpBiasGrad_);
}
}
{ {
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
biases_->getParameterPtr()->incUpdate(callback); biases_->getParameterPtr()->incUpdate(callback);
......
...@@ -14,9 +14,44 @@ limitations under the License. */ ...@@ -14,9 +14,44 @@ limitations under the License. */
#include "CustomStackTrace.h" #include "CustomStackTrace.h"
#include "CommandLineParser.h"
#include <iostream>
P_DEFINE_bool(layer_stack_error_only_current_thread,
true,
"Dump current thread or whole process layer stack when signal error "
"occurred. true means only dump current thread layer stack");
namespace paddle { namespace paddle {
CustomStackTrace<std::string> gLayerStackTrace; CustomStackTrace<std::string> gLayerStackTrace;
static std::mutex gLayerStackTraceMtx;
void installLayerStackTracer() {
logging::installFailureWriter([](const char* data, int sz) {
std::lock_guard<std::mutex> guard(gLayerStackTraceMtx);
if (!gLayerStackTrace.empty()) {
size_t curTid = -1UL;
std::hash<std::thread::id> hasher;
gLayerStackTrace.dump([&curTid, &hasher](std::thread::id tid,
bool* isForwarding,
const std::string& layerName) {
if (curTid != hasher(tid)) {
if (curTid != -1UL) {
std::cerr << std::endl;
}
curTid = hasher(tid);
std::cerr << "Thread [" << tid << "] ";
if (isForwarding) {
std::cerr << (*isForwarding ? "Forwarding ": "Backwarding ");
}
}
std::cerr << layerName << ", ";
}, FLAGS_layer_stack_error_only_current_thread);
std::cerr << std::endl;
}
std::cerr.write(data, sz);
});
}
} // namespace paddle } // namespace paddle
...@@ -15,6 +15,9 @@ limitations under the License. */ ...@@ -15,6 +15,9 @@ limitations under the License. */
#pragma once #pragma once
#include <stack> #include <stack>
#include <thread>
#include <unordered_map>
#include <functional>
#include "ThreadLocal.h" #include "ThreadLocal.h"
...@@ -29,71 +32,160 @@ namespace paddle { ...@@ -29,71 +32,160 @@ namespace paddle {
* @code{.cpp} * @code{.cpp}
* *
* paddle::CustomStackTrace<std::string> stack; * paddle::CustomStackTrace<std::string> stack;
* PASS_TEST=0;
* for (auto& layer : layers){ * for (auto& layer : layers){
* stack.push(layer->getName()); * stack.push(layer->getName());
* layer->forward(passType); * layer->forward();
* } * }
* for (auto& layer : layers){ *
* stack.pop(""); // mark under pop stage.
*
* for (auto it = layers.rbegin(); it != layers.rend(); ++it){
* auto& layer = *it;
* layer->backward(passType); * layer->backward(passType);
* stack.pop(layer->getName()); * stack.pop(layer->getName());
* } * }
* *
* if(passType == PASS_TEST) {
* stack.clear();
* }
* else {
* stack.dump([](const std::string& layername){
* LOG(INFO) << "LayerName: " << layername;
* })
* }
*
*
* @endcode * @endcode
*/ */
template <typename T> template <typename T>
class CustomStackTrace{ class CustomStackTrace{
public: public:
/** /**
* @brief Pop out an item from the top of the stack. For safety the item * @brief Pop out an item from the top of the stack if item == top.
* will be poped should equal to ip. * Else, just set status to popping.
*/ */
void pop(const T& ip) { void pop(const T& item) {
auto& p = *logstack_; pushing() = false;
CHECK_EQ(ip, p.top()); auto& s = this->stack();
p.pop(); if (item == s.top()) {
s.pop();
}
} }
/** /**
* @brief Empty the stack by sequence from top to button. * @brief clear current thread stack.
* @param[in] callback A function deal with each item while dumping.
* It must have and only have a in parameter which is the stack item.
*/ */
template <typename Callback> void clear() {
void dump(Callback callback) { auto& s = stack();
auto& p = *logstack_; while (!s.empty()) {
while (!p.empty()) { s.pop();
callback(p.top());
p.pop();
} }
} }
/** /**
* @brief Only empty the stack. * @brief return true if all thread's stack is empty.
* @return true if empty
*/ */
void clear() { bool empty() const {
dump([](const T& ip){}); std::lock_guard<std::mutex> g(this->mtx_);
for (auto p : this->stackBuffers_) {
std::stack<T>& s = *p.second;
if (!s.empty()) {
return false;
}
}
return true;
}
/**
* @brief DumpCallback Type. It will be invoked many times by dump method.
*
* The first parameter is stack thread id.
* The second parameter is the last action of stack is push or not.
* The third parameter is the item in stack.
*/
typedef std::function<void(const std::thread::id& /*threadId*/,
bool* /*isPushing*/,
const T& /*item*/)> DumpCallback;
/**
* Dump all thread stack, and all stack will be cleared.
*/
void dump(const DumpCallback& callback, bool onlyCurrentThread = false) {
std::lock_guard<std::mutex> g(this->mtx_);
for (auto p : this->stackBuffers_) {
std::thread::id tid = p.first;
if (onlyCurrentThread && tid != std::this_thread::get_id()) {
continue;
}
std::stack<T>& s = *p.second;
bool* isPush = nullptr;
auto it = this->pushingBuffers_.find(tid);
if (it != this->pushingBuffers_.end()) {
isPush = it->second;
} }
while (!s.empty()) {
callback(tid, isPush, s.top());
s.pop();
}
}
}
/**
* @brief Push item to current thread stack.
*/
void push(const T& item) {
pushing() = true;
auto& p = this->stack();
p.push(item);
}
private:
/**
* Get thread local attribute, and save them into a map (threadId => TYPE*)
*
* @tparam TYPE thread local attribute type.
* @param threadLocal Thread Local object.
* @param buffers a map from threadId to TYPE*
*/
template <typename TYPE>
inline TYPE& getThreadLocal(
ThreadLocal<TYPE>& threadLocal,
std::unordered_map<std::thread::id, TYPE*>& buffers) {
TYPE* retv = threadLocal.get(false);
if (retv) {
return *retv;
} else {
std::lock_guard<std::mutex> guard(this->mtx_);
retv = threadLocal.get();
auto id = std::this_thread::get_id();
buffers.insert({id, retv});
return *retv;
}
}
/**
* @brief Get thread local stack reference.
*/
std::stack<T>& stack() {
return this->getThreadLocal(this->logStack_,
this->stackBuffers_);
}
/** /**
* @brief Push item ip to the top of the stack. * @brief Get thread local pushing flag.
*/ */
void push(const T& ip) { bool& pushing() {
auto& p = *logstack_; return this->getThreadLocal(this->isPushing_,
p.push(ip); this->pushingBuffers_);
} }
private: private:
ThreadLocalD<std::stack<T> > logstack_; mutable std::mutex mtx_;
std::unordered_map<std::thread::id, std::stack<T>* > stackBuffers_;
std::unordered_map<std::thread::id, bool* > pushingBuffers_;
ThreadLocal<bool> isPushing_;
ThreadLocal<std::stack<T> > logStack_;
}; };
extern CustomStackTrace<std::string> gLayerStackTrace; extern CustomStackTrace<std::string> gLayerStackTrace;
/**
* @brief Install a failure handler to print layer stack when error.
*/
extern void installLayerStackTracer();
} // namespace paddle } // namespace paddle
...@@ -129,13 +129,7 @@ void runInitFunctions() { ...@@ -129,13 +129,7 @@ void runInitFunctions() {
void initMain(int argc, char** argv) { void initMain(int argc, char** argv) {
initializeLogging(argc, argv); initializeLogging(argc, argv);
logging::installFailureWriter([](const char* data, int sz) { installLayerStackTracer();
std::cerr << "Current Layer forward/backward stack is " << std::endl;
gLayerStackTrace.dump([](const std::string& layername){
std::cerr << "LayerName: " << layername << std::endl;
});
std::cerr.write(data, sz);
});
std::string line; std::string line;
for (int i = 0; i < argc; ++i) { for (int i = 0; i < argc; ++i) {
line += argv[i]; line += argv[i];
......
...@@ -2,3 +2,13 @@ add_simple_unittest(test_CommandLineParser) ...@@ -2,3 +2,13 @@ add_simple_unittest(test_CommandLineParser)
add_simple_unittest(test_Logging) add_simple_unittest(test_Logging)
add_simple_unittest(test_Thread) add_simple_unittest(test_Thread)
add_simple_unittest(test_StringUtils) add_simple_unittest(test_StringUtils)
add_simple_unittest(test_CustomStackTrace)
add_executable(
test_CustomStackTracePrint
test_CustomStackTracePrint.cpp
)
link_paddle_exe(test_CustomStackTracePrint)
add_test(NAME test_CustomStackTracePrint
COMMAND ${PROJ_ROOT}/paddle/utils/tests/test_CustomStackTracePrint.sh
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <chrono>
#include "paddle/utils/CustomStackTrace.h"
#include "paddle/utils/CommandLineParser.h"
#include "paddle/utils/Util.h"
#include "paddle/utils/Locks.h"
P_DEFINE_int32(test_thread_num, 10, "testing thread number");
void testNormalImpl(const std::function<void(
paddle::CustomStackTrace<std::string>&,
size_t, size_t,
paddle::ThreadBarrier&,
paddle::ThreadBarrier&)>& callback) {
paddle::CustomStackTrace<std::string> tracer;
paddle::ThreadBarrier doneBarrier(FLAGS_test_thread_num + 1);
paddle::ThreadBarrier startBarrier(FLAGS_test_thread_num + 1);
constexpr size_t countDown = 10;
constexpr size_t layerSize = 1000;
std::vector<std::unique_ptr<std::thread>> threads;
threads.reserve(FLAGS_test_thread_num);
for (int32_t i=0; i < FLAGS_test_thread_num; ++i) {
threads.emplace_back(new std::thread([&tracer, &countDown, &layerSize,
&startBarrier, &doneBarrier,
&callback]{
callback(tracer, countDown, layerSize, startBarrier, doneBarrier);
}));
}
size_t cntDown = countDown;
while (cntDown-- > 0) {
startBarrier.wait();
doneBarrier.wait();
ASSERT_TRUE(tracer.empty());
}
for (auto& thread : threads) {
thread->join();
}
}
TEST(CustomStackTrace, normalTrain) {
testNormalImpl([](paddle::CustomStackTrace<std::string>& tracer,
size_t countDown, size_t layerSize,
paddle::ThreadBarrier& start, paddle::ThreadBarrier& finish){
while (countDown-- > 0) {
start.wait();
for (size_t i=0; i < layerSize; ++i) {
tracer.push("layer_" + std::to_string(i));
}
tracer.pop("");
for (size_t i=0; i < layerSize; ++i) {
tracer.pop("layer_" + std::to_string(layerSize - 1 - i));
}
finish.wait();
}
});
}
TEST(CustomStackTrace, normalTest) {
testNormalImpl([] (paddle::CustomStackTrace<std::string>& tracer,
size_t countDown, size_t layerSize,
paddle::ThreadBarrier& start, paddle::ThreadBarrier& finish){
while (countDown-- > 0) {
start.wait();
for (size_t i=0; i < layerSize; ++i) {
tracer.push("layer_" + std::to_string(i));
}
tracer.clear(); // in forward test, tracer will clear after forward.
finish.wait();
}
});
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
paddle::initMain(argc, argv);
return RUN_ALL_TESTS();
}
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Util.h"
#include "paddle/utils/CustomStackTrace.h"
int main(int argc, char** argv) {
paddle::initMain(argc, argv);
for (size_t i=0; i < 1000; ++i) {
paddle::gLayerStackTrace.push("layer_" + std::to_string(i));
if (i == 998) {
throw "Unhandle exception";
}
}
return 0;
}
#!/bin/bash
echo "Test Custom Stack Trace print correct result when fail"
./test_CustomStackTracePrint >customStackTraceLog 2>&1
if [ $? -eq 0 ]; then
exit 1
else
set -e
TEXT=""
for ((i=0; i<=998; i++))
do
TEXT="layer_$i, "$TEXT
done
TEXT="Forwarding "$TEXT
grep -q "$TEXT" customStackTraceLog
fi
...@@ -22,6 +22,8 @@ find_python_module(pip REQUIRED) ...@@ -22,6 +22,8 @@ find_python_module(pip REQUIRED)
find_python_module(wheel REQUIRED) find_python_module(wheel REQUIRED)
find_python_module(google.protobuf REQUIRED) find_python_module(google.protobuf REQUIRED)
add_subdirectory(paddle/trainer_config_helpers/tests)
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/ install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/
DESTINATION opt/paddle/share/wheels DESTINATION opt/paddle/share/wheels
) )
...@@ -1623,7 +1623,7 @@ class BatchNormLayer(LayerBase): ...@@ -1623,7 +1623,7 @@ class BatchNormLayer(LayerBase):
# Also based on cudnn version. # Also based on cudnn version.
use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \ use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
((not parallel_nn) or self.config.device > -1) and \ ((not parallel_nn) or self.config.device > -1) and \
cudnn_version >= 4000 cudnn_version >= 4007
self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm" self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
super(BatchNormLayer, self).__init__(name, self.layer_type, 0, super(BatchNormLayer, self).__init__(name, self.layer_type, 0,
active_type=active_type, active_type=active_type,
...@@ -2273,6 +2273,9 @@ class ConvexCombinationLayer(LayerBase): ...@@ -2273,6 +2273,9 @@ class ConvexCombinationLayer(LayerBase):
name, 'convex_comb', size, inputs=inputs, device=device) name, 'convex_comb', size, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2, config_assert(len(self.inputs) == 2,
'ConvexCombinationLayer must have 2 inputs') 'ConvexCombinationLayer must have 2 inputs')
config_assert(
size * self.get_input_layer(0).size == self.get_input_layer(1).size,
'Wrong input size for ConvexCombinationLayer')
self.set_layer_size(size) self.set_layer_size(size)
@config_layer('interpolation') @config_layer('interpolation')
...@@ -2322,6 +2325,9 @@ class CosSimVecMatLayer(LayerBase): ...@@ -2322,6 +2325,9 @@ class CosSimVecMatLayer(LayerBase):
self.config.cos_scale = cos_scale self.config.cos_scale = cos_scale
config_assert(len(self.inputs) == 2, config_assert(len(self.inputs) == 2,
'CosSimVecMatLayer must have 2 inputs') 'CosSimVecMatLayer must have 2 inputs')
config_assert(
size * self.get_input_layer(0).size == self.get_input_layer(1).size,
'Wrong input size for CosSimVecMatLayer')
@config_layer('sampling_id') @config_layer('sampling_id')
class SamplingIdLayer(LayerBase): class SamplingIdLayer(LayerBase):
...@@ -2370,6 +2376,7 @@ class CosSimLayer(LayerBase): ...@@ -2370,6 +2376,7 @@ class CosSimLayer(LayerBase):
self, self,
name, name,
inputs, inputs,
cos_scale=5,
device=None): device=None):
super(CosSimLayer, self).__init__( super(CosSimLayer, self).__init__(
name, 'cos', 1, inputs=inputs, device=device) name, 'cos', 1, inputs=inputs, device=device)
...@@ -2377,6 +2384,7 @@ class CosSimLayer(LayerBase): ...@@ -2377,6 +2384,7 @@ class CosSimLayer(LayerBase):
config_assert( config_assert(
self.get_input_layer(0).size == self.get_input_layer(1).size, self.get_input_layer(0).size == self.get_input_layer(1).size,
'inputs of CosSimLayer must have same dim') 'inputs of CosSimLayer must have same dim')
self.config.cos_scale = cos_scale
@config_layer('tensor') @config_layer('tensor')
......
...@@ -47,6 +47,7 @@ __all__ = ["full_matrix_projection", "AggregateLevel", "ExpandLevel", ...@@ -47,6 +47,7 @@ __all__ = ["full_matrix_projection", "AggregateLevel", "ExpandLevel",
'BaseGeneratedInput', 'conv_operator', 'conv_shift_layer', 'BaseGeneratedInput', 'conv_operator', 'conv_shift_layer',
'tensor_layer', 'selective_fc_layer', 'sampling_id_layer', 'tensor_layer', 'selective_fc_layer', 'sampling_id_layer',
'slope_intercept_layer', 'trans_full_matrix_projection', 'slope_intercept_layer', 'trans_full_matrix_projection',
'linear_comb_layer',
'convex_comb_layer', 'ctc_layer', 'crf_layer', 'crf_decoding_layer', 'convex_comb_layer', 'ctc_layer', 'crf_layer', 'crf_decoding_layer',
'cross_entropy_with_selfnorm', 'cross_entropy', 'cross_entropy_with_selfnorm', 'cross_entropy',
'multi_binary_label_cross_entropy', 'multi_binary_label_cross_entropy',
...@@ -70,7 +71,8 @@ class LayerType(object): ...@@ -70,7 +71,8 @@ class LayerType(object):
POOLING_AVG = 'average' POOLING_AVG = 'average'
FC_LAYER = "fc" FC_LAYER = "fc"
COST = 'cost' COST = 'cost'
COSINE_SIM = 'cos_vm' COSINE_SIM_VEC = 'cos_vm'
COSINE_SIM = 'cos'
HSIGMOID = 'hsigmoid' HSIGMOID = 'hsigmoid'
CONV_LAYER = "conv" CONV_LAYER = "conv"
POOL_LAYER = "pool" POOL_LAYER = "pool"
...@@ -102,7 +104,7 @@ class LayerType(object): ...@@ -102,7 +104,7 @@ class LayerType(object):
SEL_FC_LAYER = "selective_fc" SEL_FC_LAYER = "selective_fc"
SAMPLING_ID_LAYER = "sampling_id" SAMPLING_ID_LAYER = "sampling_id"
SLOPE_INTERCEPT_LAYER = "slope_intercept" SLOPE_INTERCEPT_LAYER = "slope_intercept"
CONVEX_COMBINATION_LAYER = "convex_comb" LINEAR_COMBINATION_LAYER = "convex_comb"
BLOCK_EXPAND = "blockexpand" BLOCK_EXPAND = "blockexpand"
CTC_LAYER = "ctc" CTC_LAYER = "ctc"
...@@ -171,6 +173,8 @@ class LayerOutput(object): ...@@ -171,6 +173,8 @@ class LayerOutput(object):
assert LayerType.is_layer_type(layer_type) assert LayerType.is_layer_type(layer_type)
self.name = name self.name = name
self.layer_type = layer_type self.layer_type = layer_type
if parents is not None and type(parents) != list:
parents = [parents]
self.parents = [] if parents is None else parents self.parents = [] if parents is None else parents
self.activation = activation self.activation = activation
self.num_filters = num_filters self.num_filters = num_filters
...@@ -512,7 +516,7 @@ class MixedLayerType(LayerOutput): ...@@ -512,7 +516,7 @@ class MixedLayerType(LayerOutput):
:rtype: MixedLayerType :rtype: MixedLayerType
""" """
if not self.finalized: if not self.finalized:
assert isinstance(other, Projection) assert isinstance(other, Projection) or isinstance(other, Operator)
self.inputs.append(other) self.inputs.append(other)
self.parents.append(other.origin) self.parents.append(other.origin)
return self return self
...@@ -1169,13 +1173,16 @@ def power_layer(input, weight, name=None, layer_attr=None): ...@@ -1169,13 +1173,16 @@ def power_layer(input, weight, name=None, layer_attr=None):
@layer_support() @layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None): def scaling_layer(input, weight, name=None, layer_attr=None):
""" """
A layer for each row of a matrix, multiplying with a element of a vector. A layer for multiplying input vector by weight scalar.
.. math:: .. math::
y.row[i] = w[i] * x.row[i] y = w x
where :math:`x` is (batchSize x dataDim) input, :math:`w` is where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
(batchSize x 1) weight vector, and :math:`y` is (batchSize x dataDim) output. and :math:`y` is size=dataDim output.
Note that the above computation is for one sample. Multiple samples are
processed in one batch.
The example usage is: The example usage is:
...@@ -1249,11 +1256,14 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None): ...@@ -1249,11 +1256,14 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
.. math:: .. math::
similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b} similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
\\over \\|\\mathbf{b}\\| \\|\\mathbf{b}\\|} \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}
The size of a is M, size of b is M*N,
Similarity will be calculated N times by step M. The output size is
N. The scale will be multiplied to similarity.
And the input dimension is :math:`a \in R^M`, :math:`b \in R^{MN}`. The Note that the above computation is for one sample. Multiple samples are
similarity will be calculated N times by step M. The output dimension is processed in one batch.
:math:`R^N`. The scale will be multiplied to similarity.
:param name: layer name :param name: layer name
:type name: basestring :type name: basestring
...@@ -1270,9 +1280,18 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None): ...@@ -1270,9 +1280,18 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
""" """
if size == 1:
Layer( Layer(
name=name, name=name,
type=LayerType.COSINE_SIM, type=LayerType.COSINE_SIM,
cos_scale=scale,
inputs=[a.name, b.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
else:
Layer(
name=name,
type=LayerType.COSINE_SIM_VEC,
size=size, size=size,
cos_scale=scale, cos_scale=scale,
inputs=[a.name, b.name], inputs=[a.name, b.name],
...@@ -2909,29 +2928,37 @@ def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0): ...@@ -2909,29 +2928,37 @@ def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0):
@wrap_name_default() @wrap_name_default()
def convex_comb_layer(input, size, name=None): def linear_comb_layer(weights, vectors, size, name=None):
""" """
A layer for convex weighted average of vectors takes two inputs. A layer for weighted sum of vectors takes two inputs.
- Input: a vector containing the convex weights (batchSize x weightdim), - Input: size of weights is M
and a matrix in a vector form (batchSize x (weightdim * datadim)). size of vectors is M*N
- Output: a vector (batchSize * datadim). - Output: a vector of size=N
.. math:: .. math::
y[i][j] = \sum_{j}(x_{1}(i, j) * x_{2}(i,j + i * dataDim)), z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
where :math:`0 \le i \le N-1`
Or in the matrix notation:
.. math::
i = 0,1,...,(batchSize-1); j = 0, 1,...,(dataDim-1) z = x^T Y
In this formular: In this formular:
- :math:`x_{1}`: the first input. - :math:`x`: weights
- :math:`x_{2}`: the second input. - :math:`y`: vectors.
- :math:`y`: the output. - :math:`z`: the output.
Note that the above computation is for one sample. Multiple samples are
processed in one batch.
The simple usage is: The simple usage is:
.. code-block:: python .. code-block:: python
convex_comb = convex_comb_layer(input=inputs, linear_comb = linear_comb_layer(weighs=weight, vectors=vectors,
size=elem_dim) size=elem_dim)
:param input: The input layers. :param input: The input layers.
...@@ -2944,15 +2971,16 @@ def convex_comb_layer(input, size, name=None): ...@@ -2944,15 +2971,16 @@ def convex_comb_layer(input, size, name=None):
:rtype: LayerOutput :rtype: LayerOutput
""" """
assert isinstance(input, list) or isinstance(input, tuple)
assert len(input) == 2
Layer( Layer(
name=name, name=name,
type=LayerType.CONVEX_COMBINATION_LAYER, type=LayerType.LINEAR_COMBINATION_LAYER,
size=size, size=size,
inputs=[Input(input[0].name), Input(input[1].name)], inputs=[Input(weights.name), Input(vectors.name)],
) )
return LayerOutput(name, LayerType.CONVEX_COMBINATION_LAYER, input, size=size) return LayerOutput(name, LayerType.LINEAR_COMBINATION_LAYER,
[weights, vectors], size=size)
convex_comb_layer = linear_comb_layer
@wrap_name_default() @wrap_name_default()
def block_expand_layer(input, def block_expand_layer(input,
......
#################### test_config_parser #########################
add_test(NAME layers_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
python ${PROJ_ROOT}/python/paddle/trainer_config_helpers/tests/layers_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer.config_parser import parse_config_and_serialize
if __name__ == '__main__':
parse_config_and_serialize(
'trainer_config_helpers/tests/layers_test_config.py', '')
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
num_classes = 5
x = data_layer(name="input1", size=3)
y = data_layer(name="input2", size=5)
x1 = fc_layer(input=x, size=5)
y1 = fc_layer(input=y, size=5)
y2 = fc_layer(input=y, size=15)
cos1 = cos_sim(a=x1, b=y1)
cos3 = cos_sim(a=x1, b=y2, size=3)
linear_comb = linear_comb_layer(weights=x1, vectors=y2, size=3)
out = fc_layer(input=[cos1, cos3, linear_comb],
size=num_classes,
act=SoftmaxActivation())
outputs(classification_cost(out, data_layer(name="label", size=num_classes)))
settings(
batch_size=10,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25
)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册