Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c74107bf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c74107bf
编写于
10月 24, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix backward computation.
上级
6a630f27
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
54 addition
and
44 deletion
+54
-44
paddle/gserver/layers/CRFLayer.cpp
paddle/gserver/layers/CRFLayer.cpp
+4
-2
paddle/gserver/layers/LinearChainCRF.cpp
paddle/gserver/layers/LinearChainCRF.cpp
+0
-1
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+41
-36
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
+9
-5
未找到文件。
paddle/gserver/layers/CRFLayer.cpp
浏览文件 @
c74107bf
...
...
@@ -101,8 +101,10 @@ void CRFLayer::backward(const UpdateCallback& callback) {
:
real
(
1.0
f
);
instanceWeight
*=
coeff_
;
if
(
output
.
grad
)
{
MatrixPtr
grad
=
output
.
grad
->
subRowMatrix
(
starts
[
i
],
starts
[
i
+
1
]);
grad
->
add
(
*
crfs_
[
i
].
getXGrad
(),
real
(
1.0
f
),
instanceWeight
);
}
if
(
needWGrad
)
{
weight_
->
getWGrad
()
->
add
(
*
crfs_
[
i
].
getWGrad
(),
real
(
1.0
f
),
instanceWeight
);
...
...
paddle/gserver/layers/LinearChainCRF.cpp
浏览文件 @
c74107bf
...
...
@@ -102,7 +102,6 @@ real LinearChainCRF::forward(real* x, int* s, int length) {
}
void
LinearChainCRF
::
backward
(
real
*
x
,
int
*
s
,
int
length
,
bool
needWGrad
)
{
MatrixPtr
matX
=
Matrix
::
create
(
x
,
length
,
numClasses_
);
Matrix
::
resizeOrCreate
(
matGrad_
,
length
,
numClasses_
);
Matrix
::
resizeOrCreate
(
beta_
,
length
,
numClasses_
);
real
*
b
=
b_
->
getData
();
...
...
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
c74107bf
...
...
@@ -272,7 +272,7 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
{
// If an empty input sequence is given, pad 0 for its cost.
log_likelihood
[
i
]
=
static_cast
<
T
>
(
0.
)
;
log_likelihood
[
i
]
=
0.
;
continue
;
}
...
...
@@ -305,7 +305,7 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
const
size_t
tag_num
=
x_dims
[
1
];
// The 1st row of w are transition weights for start mask.
// The 2nd row of w are transition weights for end mask.
// Transition weights among other tags begin
s
from the 3rd row of w.
// Transition weights among other tags begin from the 3rd row of w.
const
size_t
state_trans_base_idx
=
2
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
...
...
@@ -315,7 +315,7 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
static_cast
<
T
>
(
0.
)
;
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
w_exps
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
...
...
@@ -476,17 +476,17 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
const
size_t
tag_num
=
x_dims
[
1
];
const
size_t
state_trans_base_idx
=
2
;
// Calculate the backwar
k vectors
beta.
// Calculate the backwar
d vectors:
beta.
// First, calculate the initialition state.
for
(
in
t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_
t
i
=
0
;
i
<
tag_num
;
++
i
)
{
beta_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
=
w_exps
[
tag_num
+
i
];
}
NormalizeL1
<
T
>
(
beta_value
+
(
seq_length
-
1
)
*
tag_num
,
tag_num
);
for
(
int
k
=
s
eq_length
-
2
;
k
>=
0
;
--
k
)
{
for
(
in
t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
static_cast
<
T
>
(
0.
)
;
for
(
in
t
j
=
0
;
j
<
tag_num
;
++
j
)
{
for
(
int
k
=
s
tatic_cast
<
int
>
(
seq_length
)
-
2
;
k
>=
0
;
--
k
)
{
for
(
size_
t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_
t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
x_exps
[(
k
+
1
)
*
tag_num
+
j
]
*
beta_value
[(
k
+
1
)
*
tag_num
+
j
];
...
...
@@ -500,13 +500,14 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
auto
beta_mat
=
EigenMatrix
<
T
>::
From
(
*
beta
);
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
*
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
x_grad_mat
.
device
(
*
place
)
=
alpha_mat
*
beta_mat
;
x_grad_mat
/=
x_grad_mat
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
auto
prob
=
alpha_mat
*
beta_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
x_grad_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
in
t
k
=
0
;
k
<
seq_length
;
++
k
)
{
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1
);
for
(
size_
t
k
=
0
;
k
<
seq_length
;
++
k
)
{
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1
.
);
}
if
(
transition_grad
)
{
...
...
@@ -518,29 +519,35 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
}
auto
x_exps_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
beta_mat
=
beta_mat
*
x_exps_mat
;
beta_mat
/=
beta_mat
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
// TODO(caoying): Fix this to avoid using this local variable.
Tensor
tmp
;
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
platform
::
CPUPlace
());
auto
tmp_mat
=
EigenMatrix
<
T
>::
From
(
tmp
);
auto
prob
=
beta_mat
*
x_exps_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
tmp_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
in
t
k
=
1
;
k
<
seq_length
;
++
k
)
{
T
sum
=
static_cast
<
T
>
(
0.
)
;
for
(
in
t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
in
t
j
=
0
;
j
<
tag_num
;
++
j
)
{
for
(
size_
t
k
=
1
;
k
<
seq_length
;
++
k
)
{
T
sum
=
0.
;
for
(
size_
t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_
t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
beta
_mat
(
k
,
j
);
alpha_mat
(
k
-
1
,
i
)
*
tmp
_mat
(
k
,
j
);
}
}
sum
=
static_cast
<
T
>
(
1.
)
/
sum
;
for
(
in
t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
in
t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
=
1.
/
sum
;
for
(
size_
t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_
t
j
=
0
;
j
<
tag_num
;
++
j
)
{
trans_grad
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
+=
sum
*
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
beta
_mat
(
k
,
j
);
alpha_mat
(
k
-
1
,
i
)
*
tmp
_mat
(
k
,
j
);
}
}
trans_grad
[
label_value
[
k
-
1
]
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1.
);
trans_grad
[
(
label_value
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1.
);
}
}
}
...
...
@@ -554,9 +561,7 @@ REGISTER_OP(linear_chain_crf, ops::LinearChainCrfOp, ops::LinearChainCrfOpMaker,
linear_chain_crf_grad
,
ops
::
LinearChainCrfGradOp
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf
,
ops
::
LinearChainCrfOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LinearChainCrfOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
ops
::
LinearChainCrfOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf_grad
,
ops
::
LinearChainCrfGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LinearChainCrfGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
ops
::
LinearChainCrfGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
浏览文件 @
c74107bf
...
...
@@ -83,11 +83,10 @@ class LinearChainCrfForward(object):
class
TestLinearChainCrfOp
(
OpTest
):
def
set_test_data
(
self
):
SEQ_NUM
=
2
SEQ_NUM
=
3
TAG_NUM
=
17
MAX_SEQ_LEN
=
5
random
.
seed
(
1
)
# the linear_chain_crf operator only supports sequence (LoD level = 1)
lod
=
[[
0
]]
for
i
in
range
(
SEQ_NUM
):
...
...
@@ -109,7 +108,6 @@ class TestLinearChainCrfOp(OpTest):
"Transition"
:
transition
,
"Label"
:
(
labels
,
lod
)
}
crf
=
LinearChainCrfForward
(
lod
[
0
],
emission
,
emission_row_max
,
emission_exps
,
transition
,
transition_exps
,
labels
)
...
...
@@ -130,11 +128,17 @@ class TestLinearChainCrfOp(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"Emission"
,
"Transition"
],
"LogLikelihood"
)
self
.
check_grad
(
[
"Emission"
,
"Transition"
],
"LogLikelihood"
,
max_relative_error
=
0.05
)
def
test_check_grad_ignore_transition
(
self
):
self
.
check_grad
(
[
"Emission"
],
"LogLikelihood"
,
no_grad_set
=
set
(
"Transition"
))
[
"Emission"
],
"LogLikelihood"
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
"Transition"
))
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录