Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c6f49f0b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
c6f49f0b
编写于
5月 10, 2022
作者:
Z
zhaoyingli
提交者:
GitHub
5月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix adamw unittest (#42593)
* fix adamw unittest * tiny fix * fix param name
上级
30234dd7
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
185 addition
and
36 deletion
+185
-36
python/paddle/fluid/tests/unittests/test_adamw_op.py
python/paddle/fluid/tests/unittests/test_adamw_op.py
+185
-36
未找到文件。
python/paddle/fluid/tests/unittests/test_adamw_op.py
浏览文件 @
c6f49f0b
...
...
@@ -54,8 +54,8 @@ def adamw_step(inputs, attributes):
moment1_out
=
beta1
*
moment1
+
(
1
-
beta1
)
*
grad
moment2_out
=
beta2
*
moment2
+
(
1
-
beta2
)
*
np
.
square
(
grad
)
lr_t
=
lr
*
np
.
sqrt
(
1
-
beta2_pow
)
/
(
1
-
beta1_pow
)
param_out
=
param
-
lr_t
*
(
moment1_out
/
(
np
.
sqrt
(
moment2_out
)
+
epsilon
))
denom
=
(
np
.
sqrt
(
moment2_out
)
/
np
.
sqrt
(
1.0
-
beta2_pow
))
+
epsilon
param_out
=
param
+
((
moment1_out
/
denom
)
*
(
-
(
lr
/
(
1.0
-
beta1_pow
))
))
return
param_out
,
moment1_out
,
moment2_out
...
...
@@ -314,16 +314,16 @@ def simple_lr_setting(param, decay_rate, n_layers):
"core is not compiled with CUDA"
)
class
TestAdamWOpLayerwiseLR
(
TestAdamWOp
):
def
setUp
(
self
):
random
.
seed
(
202
1
)
np
.
random
.
seed
(
202
1
)
paddle
.
seed
(
202
1
)
random
.
seed
(
202
2
)
np
.
random
.
seed
(
202
2
)
paddle
.
seed
(
202
2
)
def
test_adamw_op_dygraph
(
self
):
paddle
.
disable_static
()
value
=
np
.
arange
(
26
).
reshape
(
2
,
13
).
astype
(
"float32"
)
a
=
paddle
.
to_tensor
(
value
)
linear
1
=
paddle
.
nn
.
Linear
(
13
,
8
)
linear2
=
paddle
.
nn
.
Linear
(
8
,
5
)
linear1
=
paddle
.
nn
.
Linear
(
13
,
8
,
bias_attr
=
paddle
.
nn
.
initializer
.
Constant
(
value
=
1.0
)
)
linear
2
=
paddle
.
nn
.
Linear
(
8
,
5
,
bias_attr
=
paddle
.
nn
.
initializer
.
Constant
(
value
=
1.0
)
)
# fix the linear name, simple_lr_setting function will use the name
linear1
.
weight
.
name
=
"linear_1.w_0"
...
...
@@ -331,33 +331,103 @@ class TestAdamWOpLayerwiseLR(TestAdamWOp):
linear2
.
weight
.
name
=
"linear_2.w_0"
linear2
.
bias
.
name
=
"linear_2.b_0"
fc1_w
=
np
.
array
(
linear1
.
weight
)
fc1_w_mon1
=
np
.
zeros_like
(
fc1_w
)
fc1_w_mon2
=
np
.
zeros_like
(
fc1_w
)
fc1_b
=
np
.
array
(
linear1
.
bias
)
fc1_b_mon1
=
np
.
zeros_like
(
fc1_b
)
fc1_b_mon2
=
np
.
zeros_like
(
fc1_b
)
fc2_w
=
np
.
array
(
linear2
.
weight
)
fc2_w_mon1
=
np
.
zeros_like
(
fc2_w
)
fc2_w_mon2
=
np
.
zeros_like
(
fc2_w
)
fc2_b
=
np
.
array
(
linear2
.
bias
)
fc2_b_mon1
=
np
.
zeros_like
(
fc2_b
)
fc2_b_mon2
=
np
.
zeros_like
(
fc2_b
)
simple_lr_fun
=
partial
(
simple_lr_setting
,
decay_rate
=
0.8
,
n_layers
=
2
)
learning_rate
=
0.001
weight_decay
=
0.01
beta1
=
0.9
beta2
=
0.999
adam
=
paddle
.
optimizer
.
AdamW
(
learning_rate
=
0.01
,
opt
=
paddle
.
optimizer
.
AdamW
(
learning_rate
=
learning_rate
,
parameters
=
[{
'params'
:
linear1
.
parameters
()
},
{
'params'
:
linear2
.
parameters
(),
}],
apply_decay_param_fun
=
lambda
name
:
True
,
weight_decay
=
0.01
,
weight_decay
=
weight_decay
,
lr_ratio
=
simple_lr_fun
)
loss_ref
=
np
.
array
(
[
-
1.7267396
,
-
2.81524
,
-
3.9250019
,
-
5.05954
,
-
6.2272625
])
def
get_numpy_output
(
param
,
grad
,
moment1
,
moment2
,
lr_ratio
,
t
):
np_inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1
**
t
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2
**
t
]).
astype
(
"float32"
)
}
np_attrs
=
{
'epsilon'
:
1e-8
,
'beta1'
:
beta1
,
'beta2'
:
beta2
,
"lr_ratio"
:
lr_ratio
,
"coeff"
:
weight_decay
,
"with_decay"
:
True
}
param_out
,
moment1_out
,
moment2_out
=
adamw_step
(
np_inputs
,
np_attrs
)
return
param_out
,
moment1_out
,
moment2_out
for
i
in
range
(
5
):
a
=
paddle
.
to_tensor
(
np
.
random
.
uniform
(
-
1
,
1
,
(
2
,
13
)).
astype
(
"float32"
))
a1
=
linear1
(
a
)
out
=
linear2
(
a1
)
out
=
paddle
.
mean
(
out
)
out
.
backward
()
adam
.
step
()
adam
.
clear_gradients
()
np
.
testing
.
assert_allclose
(
out
[
0
].
numpy
(),
loss_ref
[
i
],
rtol
=
1e-6
)
fc1_w
,
fc1_w_mon1
,
fc1_w_mon2
=
get_numpy_output
(
fc1_w
,
np
.
array
(
linear1
.
weight
.
grad
),
fc1_w_mon1
,
fc1_w_mon2
,
simple_lr_fun
(
linear1
.
weight
),
i
+
1
)
fc1_b
,
fc1_b_mon1
,
fc1_b_mon2
=
get_numpy_output
(
fc1_b
,
np
.
array
(
linear1
.
bias
.
grad
),
fc1_b_mon1
,
fc1_b_mon2
,
simple_lr_fun
(
linear1
.
bias
),
i
+
1
)
fc2_w
,
fc2_w_mon1
,
fc2_w_mon2
=
get_numpy_output
(
fc2_w
,
np
.
array
(
linear2
.
weight
.
grad
),
fc2_w_mon1
,
fc2_w_mon2
,
simple_lr_fun
(
linear2
.
weight
),
i
+
1
)
fc2_b
,
fc2_b_mon1
,
fc2_b_mon2
=
get_numpy_output
(
fc2_b
,
np
.
array
(
linear2
.
bias
.
grad
),
fc2_b_mon1
,
fc2_b_mon2
,
simple_lr_fun
(
linear2
.
bias
),
i
+
1
)
opt
.
step
()
opt
.
clear_gradients
()
np
.
testing
.
assert_allclose
(
linear1
.
weight
.
numpy
(),
fc1_w
,
rtol
=
1e-6
)
np
.
testing
.
assert_allclose
(
linear1
.
bias
.
numpy
(),
fc1_b
,
rtol
=
1e-6
)
np
.
testing
.
assert_allclose
(
linear2
.
weight
.
numpy
(),
fc2_w
,
rtol
=
1e-6
)
np
.
testing
.
assert_allclose
(
linear2
.
bias
.
numpy
(),
fc2_b
,
rtol
=
1e-6
)
def
test_adamw_op
(
self
):
paddle
.
enable_static
()
place
=
fluid
.
CUDAPlace
(
0
)
learning_rate
=
0.0001
beta1
=
0.85
beta2
=
0.95
weight_decay
=
0.01
epsilon
=
1e-8
train_prog
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup
):
...
...
@@ -365,42 +435,121 @@ class TestAdamWOpLayerwiseLR(TestAdamWOp):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
None
,
10
],
dtype
=
'float32'
)
y
=
fluid
.
data
(
name
=
'y'
,
shape
=
[
None
,
1
],
dtype
=
'float32'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
32
,
act
=
None
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
1
,
act
=
None
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
prediction
,
label
=
y
)
weight_attr1
=
paddle
.
framework
.
ParamAttr
(
name
=
"linear_0.w_0"
)
bias_attr1
=
paddle
.
framework
.
ParamAttr
(
name
=
"linear_0.b_0"
,
initializer
=
paddle
.
nn
.
initializer
.
Constant
(
value
=
1.0
))
weight_attr2
=
paddle
.
framework
.
ParamAttr
(
name
=
"linear_1.w_0"
)
bias_attr2
=
paddle
.
framework
.
ParamAttr
(
name
=
"linear_1.b_0"
,
initializer
=
paddle
.
nn
.
initializer
.
Constant
(
value
=
1.0
))
linear1
=
paddle
.
nn
.
Linear
(
10
,
32
,
weight_attr
=
weight_attr1
,
bias_attr
=
bias_attr1
)
linear2
=
paddle
.
nn
.
Linear
(
32
,
1
,
weight_attr
=
weight_attr2
,
bias_attr
=
bias_attr2
)
out
=
linear1
(
x
)
out
=
linear2
(
out
)
fc1_w_mon1
=
np
.
zeros
((
linear1
.
weight
.
shape
)).
astype
(
"float32"
)
fc1_w_mon2
=
np
.
zeros
((
linear1
.
weight
.
shape
)).
astype
(
"float32"
)
fc1_b_mon1
=
np
.
zeros
((
linear1
.
bias
.
shape
)).
astype
(
"float32"
)
fc1_b_mon2
=
np
.
zeros
((
linear1
.
bias
.
shape
)).
astype
(
"float32"
)
fc2_w_mon1
=
np
.
zeros
((
linear2
.
weight
.
shape
)).
astype
(
"float32"
)
fc2_w_mon2
=
np
.
zeros
((
linear2
.
weight
.
shape
)).
astype
(
"float32"
)
fc2_b_mon1
=
np
.
zeros
((
linear2
.
bias
.
shape
)).
astype
(
"float32"
)
fc2_b_mon2
=
np
.
zeros
((
linear2
.
bias
.
shape
)).
astype
(
"float32"
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
out
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
simple_lr_fun
=
partial
(
simple_lr_setting
,
decay_rate
=
0.8
,
n_layers
=
2
)
beta1
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
],
value
=
0.85
,
dtype
=
'float32'
,
persistable
=
True
)
beta2
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
],
value
=
0.95
,
dtype
=
'float32'
,
persistable
=
True
)
betas
=
[
beta1
,
beta2
]
opt
=
paddle
.
optimizer
.
AdamW
(
learning_rate
=
1e-5
,
learning_rate
=
learning_rate
,
beta1
=
beta1
,
beta2
=
beta2
,
weight_decay
=
0.01
,
epsilon
=
1e-8
,
weight_decay
=
weight_decay
,
epsilon
=
epsilon
,
lr_ratio
=
simple_lr_fun
)
opt
.
minimize
(
avg_cost
)
def
get_numpy_output
(
param
,
grad
,
moment1
,
moment2
,
lr_ratio
,
t
):
np_inputs
=
{
'Param'
:
param
,
'Grad'
:
grad
,
'Moment1'
:
moment1
,
'Moment2'
:
moment2
,
'LearningRate'
:
np
.
array
([
learning_rate
]).
astype
(
"float32"
),
'Beta1Pow'
:
np
.
array
([
beta1
**
t
]).
astype
(
"float32"
),
'Beta2Pow'
:
np
.
array
([
beta2
**
t
]).
astype
(
"float32"
)
}
np_attrs
=
{
'epsilon'
:
epsilon
,
'beta1'
:
beta1
,
'beta2'
:
beta2
,
"lr_ratio"
:
lr_ratio
,
"coeff"
:
weight_decay
,
"with_decay"
:
True
}
param_out
,
moment1_out
,
moment2_out
=
adamw_step
(
np_inputs
,
np_attrs
)
return
param_out
,
moment1_out
,
moment2_out
fetch_list1
=
[
"linear_0.w_0"
,
"linear_0.b_0"
,
"linear_1.w_0"
,
"linear_1.b_0"
]
fetch_list2
=
[
"linear_0.w_0"
,
"linear_0.w_0@GRAD"
,
"linear_0.b_0"
,
"linear_0.b_0@GRAD"
,
"linear_1.w_0"
,
"linear_1.w_0@GRAD"
,
"linear_1.b_0"
,
"linear_1.b_0@GRAD"
]
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
test_prog
=
train_prog
.
clone
(
for_test
=
True
)
loss_ref
=
np
.
array
(
[
0.33895183
,
0.3159437
,
0.19472016
,
0.17764759
,
0.1520702
])
for
i
in
range
(
5
):
inputs
=
np
.
random
.
random
(
size
=
[
8
,
10
]).
astype
(
'float32'
)
outputs
=
np
.
random
.
random
(
size
=
[
8
,
1
]).
astype
(
'float32'
)
rets
=
exe
.
run
(
train_prog
,
param
=
exe
.
run
(
test_prog
,
feed
=
{
"x"
:
inputs
,
"y"
:
outputs
},
fetch_list
=
[
avg_cost
])
assert
rets
[
0
]
is
not
None
np
.
testing
.
assert_allclose
(
rets
[
0
],
loss_ref
[
i
],
rtol
=
1e-6
)
fetch_list
=
fetch_list1
)
params_and_gras
=
exe
.
run
(
train_prog
,
feed
=
{
"x"
:
inputs
,
"y"
:
outputs
},
fetch_list
=
fetch_list2
)
fc1_w
=
param
[
0
]
fc1_w_grad
=
params_and_gras
[
1
]
fc1_b
=
param
[
1
]
fc1_b_grad
=
params_and_gras
[
3
]
fc2_w
=
param
[
2
]
fc2_w_grad
=
params_and_gras
[
5
]
fc2_b
=
param
[
3
]
fc2_b_grad
=
params_and_gras
[
7
]
fc1_w
,
fc1_w_mon1
,
fc1_w_mon2
=
get_numpy_output
(
fc1_w
,
fc1_w_grad
,
fc1_w_mon1
,
fc1_w_mon2
,
simple_lr_fun
(
linear1
.
weight
),
i
+
1
)
fc1_b
,
fc1_b_mon1
,
fc1_b_mon2
=
get_numpy_output
(
fc1_b
,
fc1_b_grad
,
fc1_b_mon1
,
fc1_b_mon2
,
simple_lr_fun
(
linear1
.
bias
),
i
+
1
)
fc2_w
,
fc2_w_mon1
,
fc2_w_mon2
=
get_numpy_output
(
fc2_w
,
fc2_w_grad
,
fc2_w_mon1
,
fc2_w_mon2
,
simple_lr_fun
(
linear2
.
weight
),
i
+
1
)
fc2_b
,
fc2_b_mon1
,
fc2_b_mon2
=
get_numpy_output
(
fc2_b
,
fc2_b_grad
,
fc2_b_mon1
,
fc2_b_mon2
,
simple_lr_fun
(
linear2
.
bias
),
i
+
1
)
np
.
testing
.
assert_allclose
(
params_and_gras
[
0
],
fc1_w
,
rtol
=
1e-6
)
np
.
testing
.
assert_allclose
(
params_and_gras
[
2
],
fc1_b
,
rtol
=
1e-6
)
np
.
testing
.
assert_allclose
(
params_and_gras
[
4
],
fc2_w
,
rtol
=
1e-6
)
np
.
testing
.
assert_allclose
(
params_and_gras
[
6
],
fc2_b
,
rtol
=
1e-6
)
paddle
.
disable_static
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录