Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c6c9c186
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c6c9c186
编写于
9月 20, 2022
作者:
N
Nyakku Shigure
提交者:
GitHub
9月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CodeStyle] remove crlf for python files (#46155)
上级
9941ec12
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
1497 addition
and
1497 deletion
+1497
-1497
python/paddle/fluid/tests/unittests/asp/test_asp_utils.py
python/paddle/fluid/tests/unittests/asp/test_asp_utils.py
+224
-224
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_sub_mkldnn_op.py
.../tests/unittests/mkldnn/test_elementwise_sub_mkldnn_op.py
+242
-242
python/paddle/fluid/tests/unittests/mkldnn/test_fill_constant_mkldnn_op.py
...id/tests/unittests/mkldnn/test_fill_constant_mkldnn_op.py
+126
-126
python/paddle/fluid/tests/unittests/sequence/test_sequence_first_step.py
...luid/tests/unittests/sequence/test_sequence_first_step.py
+51
-51
python/paddle/fluid/tests/unittests/sequence/test_sequence_last_step.py
...fluid/tests/unittests/sequence/test_sequence_last_step.py
+51
-51
python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py
python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py
+589
-589
python/paddle/fluid/tests/unittests/test_rnn_op.py
python/paddle/fluid/tests/unittests/test_rnn_op.py
+212
-212
python/paddle/fluid/transpiler/memory_optimization_transpiler.py
...paddle/fluid/transpiler/memory_optimization_transpiler.py
+2
-2
未找到文件。
python/paddle/fluid/tests/unittests/asp/test_asp_utils.py
浏览文件 @
c6c9c186
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
threading
,
time
import
threading
,
time
import
paddle
import
paddle
import
numpy
as
np
import
numpy
as
np
class
TestASPUtils
(
unittest
.
TestCase
):
class
TestASPUtils
(
unittest
.
TestCase
):
def
test_get_check_method
(
self
):
def
test_get_check_method
(
self
):
self
.
assertEqual
(
self
.
assertEqual
(
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
get_checking_method
(
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
get_checking_method
(
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_1D
),
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_1D
),
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_1D
)
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_1D
)
self
.
assertEqual
(
self
.
assertEqual
(
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
get_checking_method
(
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
get_checking_method
(
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_2D_GREEDY
),
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_2D_GREEDY
),
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
)
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
)
self
.
assertEqual
(
self
.
assertEqual
(
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
get_checking_method
(
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
get_checking_method
(
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_2D_BEST
),
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_2D_BEST
),
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
)
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
)
def
test_density
(
self
):
def
test_density
(
self
):
x
=
np
.
array
([[
1.0
,
1.0
,
1.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
x
=
np
.
array
([[
1.0
,
1.0
,
1.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
0.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
0.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
0.0
,
1.0
,
0.0
,
0.0
,
1.0
]])
[
0.0
,
1.0
,
0.0
,
0.0
,
1.0
]])
self
.
assertEqual
(
paddle
.
incubate
.
asp
.
calculate_density
(
x
),
0.56
)
self
.
assertEqual
(
paddle
.
incubate
.
asp
.
calculate_density
(
x
),
0.56
)
x
[:,
0
]
=
0.0
x
[:,
0
]
=
0.0
self
.
assertEqual
(
paddle
.
incubate
.
asp
.
calculate_density
(
x
),
0.4
)
self
.
assertEqual
(
paddle
.
incubate
.
asp
.
calculate_density
(
x
),
0.4
)
def
test_check_mask_1d
(
self
):
def
test_check_mask_1d
(
self
):
x
=
np
.
array
([[
1.0
,
0.0
,
0.0
,
1.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
x
=
np
.
array
([[
1.0
,
0.0
,
0.0
,
1.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
0.0
,
1.0
,
0.0
,
0.0
,
1.0
]])
[
0.0
,
1.0
,
0.0
,
0.0
,
1.0
]])
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
2
,
4
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
2
,
4
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
3
,
4
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
3
,
4
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
2
,
5
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
2
,
5
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
3
,
5
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
3
,
5
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
3
,
6
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
3
,
6
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
4
,
6
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
4
,
6
))
def
test_get_mask_1d
(
self
):
def
test_get_mask_1d
(
self
):
for
_
in
range
(
10
):
for
_
in
range
(
10
):
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_1d
(
x
,
2
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_1d
(
x
,
2
,
4
)
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
2
,
4
))
x
,
2
,
4
))
x
=
np
.
random
.
randn
(
5
,
4
)
x
=
np
.
random
.
randn
(
5
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_1d
(
x
,
2
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_1d
(
x
,
2
,
4
)
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
x
,
2
,
4
))
x
,
2
,
4
))
def
test_check_mask_2d
(
self
):
def
test_check_mask_2d
(
self
):
x
=
np
.
array
([[
1.0
,
0.0
,
0.0
,
1.0
,
1.0
],
[
0.0
,
1.0
,
0.0
,
0.0
,
0.0
],
x
=
np
.
array
([[
1.0
,
0.0
,
0.0
,
1.0
,
1.0
],
[
0.0
,
1.0
,
0.0
,
0.0
,
0.0
],
[
0.0
,
0.0
,
1.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
0.0
],
[
0.0
,
0.0
,
1.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
0.0
],
[
0.0
,
1.0
,
0.0
,
0.0
,
1.0
]])
[
0.0
,
1.0
,
0.0
,
0.0
,
1.0
]])
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
2
,
4
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
2
,
4
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
3
,
4
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
3
,
4
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
2
,
5
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
2
,
5
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
3
,
5
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
3
,
5
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
3
,
6
))
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
3
,
6
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
4
,
6
))
self
.
assertFalse
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
4
,
6
))
def
test_get_mask_2d_greedy
(
self
):
def
test_get_mask_2d_greedy
(
self
):
for
_
in
range
(
10
):
for
_
in
range
(
10
):
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_greedy
(
x
,
2
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_greedy
(
x
,
2
,
4
)
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
2
,
4
))
x
,
2
,
4
))
x
=
np
.
random
.
randn
(
5
,
4
)
x
=
np
.
random
.
randn
(
5
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_greedy
(
x
,
2
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_greedy
(
x
,
2
,
4
)
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
2
,
4
))
x
,
2
,
4
))
def
test_get_mask_2d_best
(
self
):
def
test_get_mask_2d_best
(
self
):
for
_
in
range
(
10
):
for
_
in
range
(
10
):
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_best
(
x
,
2
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_best
(
x
,
2
,
4
)
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
2
,
4
))
x
,
2
,
4
))
x
=
np
.
random
.
randn
(
5
,
4
)
x
=
np
.
random
.
randn
(
5
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_best
(
x
,
2
,
4
)
x
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_best
(
x
,
2
,
4
)
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
x
,
2
,
4
))
x
,
2
,
4
))
def
test_threadsafe_valid_2d_patterns
(
self
):
def
test_threadsafe_valid_2d_patterns
(
self
):
def
get_reference
(
m
=
4
,
n
=
2
):
def
get_reference
(
m
=
4
,
n
=
2
):
from
itertools
import
permutations
from
itertools
import
permutations
patterns
=
np
.
zeros
(
m
)
patterns
=
np
.
zeros
(
m
)
patterns
[:
n
]
=
1
patterns
[:
n
]
=
1
patterns
=
list
(
set
(
permutations
(
patterns
.
tolist
())))
patterns
=
list
(
set
(
permutations
(
patterns
.
tolist
())))
patterns
=
patterns
+
patterns
patterns
=
patterns
+
patterns
patterns
=
np
.
asarray
(
list
(
set
(
permutations
(
patterns
,
m
))))
patterns
=
np
.
asarray
(
list
(
set
(
permutations
(
patterns
,
m
))))
valid
=
((
patterns
.
sum
(
axis
=
1
)
<=
n
).
sum
(
valid
=
((
patterns
.
sum
(
axis
=
1
)
<=
n
).
sum
(
axis
=
1
)
==
m
).
nonzero
()[
0
].
reshape
(
-
1
)
axis
=
1
)
==
m
).
nonzero
()[
0
].
reshape
(
-
1
)
valid_patterns
=
np
.
empty
((
valid
.
shape
[
0
],
m
,
m
))
valid_patterns
=
np
.
empty
((
valid
.
shape
[
0
],
m
,
m
))
valid_patterns
[:]
=
patterns
[
valid
[:]]
valid_patterns
[:]
=
patterns
[
valid
[:]]
return
valid_patterns
return
valid_patterns
for
_
in
range
(
4
):
for
_
in
range
(
4
):
computing_thread
=
threading
.
Thread
(
computing_thread
=
threading
.
Thread
(
target
=
paddle
.
fluid
.
contrib
.
sparsity
.
utils
.
target
=
paddle
.
fluid
.
contrib
.
sparsity
.
utils
.
_compute_valid_2d_patterns
,
_compute_valid_2d_patterns
,
args
=
(
2
,
4
))
args
=
(
2
,
4
))
computing_thread
.
start
()
computing_thread
.
start
()
time
.
sleep
(
3
)
time
.
sleep
(
3
)
patterns_map
=
paddle
.
fluid
.
contrib
.
sparsity
.
utils
.
_valid_2d_patterns
patterns_map
=
paddle
.
fluid
.
contrib
.
sparsity
.
utils
.
_valid_2d_patterns
reference_patterns
=
get_reference
()
reference_patterns
=
get_reference
()
reference_key
=
'4_2'
reference_key
=
'4_2'
self
.
assertTrue
(
reference_key
in
patterns_map
)
self
.
assertTrue
(
reference_key
in
patterns_map
)
self
.
assertTrue
(
len
(
patterns_map
)
==
1
)
self
.
assertTrue
(
len
(
patterns_map
)
==
1
)
self
.
assertTrue
(
self
.
assertTrue
(
(
reference_patterns
==
patterns_map
[
reference_key
]).
all
())
(
reference_patterns
==
patterns_map
[
reference_key
]).
all
())
def
test_check_sparsity
(
self
):
def
test_check_sparsity
(
self
):
for
_
in
range
(
10
):
for
_
in
range
(
10
):
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
))
x_2d
=
x
.
reshape
(
1
,
x
.
shape
[
0
])
x_2d
=
x
.
reshape
(
1
,
x
.
shape
[
0
])
self
.
__test_1D_2D_sparsity_checking_methods
(
x_2d
)
self
.
__test_1D_2D_sparsity_checking_methods
(
x_2d
)
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x_2d
=
x
x_2d
=
x
self
.
__test_1D_2D_sparsity_checking_methods
(
x_2d
)
self
.
__test_1D_2D_sparsity_checking_methods
(
x_2d
)
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
,
5
))
x_2d
=
x
.
reshape
(
x
.
shape
[
0
]
*
x
.
shape
[
1
],
x
.
shape
[
2
])
x_2d
=
x
.
reshape
(
x
.
shape
[
0
]
*
x
.
shape
[
1
],
x
.
shape
[
2
])
self
.
__test_1D_2D_sparsity_checking_methods
(
x_2d
)
self
.
__test_1D_2D_sparsity_checking_methods
(
x_2d
)
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
,
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
,
5
,
5
))
x_2d
=
x
.
reshape
(
x
.
shape
[
0
],
x
.
shape
[
1
]
*
x
.
shape
[
2
]
*
x
.
shape
[
3
])
x_2d
=
x
.
reshape
(
x
.
shape
[
0
],
x
.
shape
[
1
]
*
x
.
shape
[
2
]
*
x
.
shape
[
3
])
self
.
__test_1D_2D_sparsity_checking_methods
(
x_2d
)
self
.
__test_1D_2D_sparsity_checking_methods
(
x_2d
)
def
test_create_mask
(
self
):
def
test_create_mask
(
self
):
for
_
in
range
(
10
):
for
_
in
range
(
10
):
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
))
self
.
__test_1D_2D_sparse_mask_generation_methods
(
x
)
self
.
__test_1D_2D_sparse_mask_generation_methods
(
x
)
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
))
self
.
__test_1D_2D_sparse_mask_generation_methods
(
x
)
self
.
__test_1D_2D_sparse_mask_generation_methods
(
x
)
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
,
5
))
self
.
__test_1D_2D_sparse_mask_generation_methods
(
x
)
self
.
__test_1D_2D_sparse_mask_generation_methods
(
x
)
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
,
5
,
5
))
x
=
np
.
random
.
randint
(
10
,
size
=
(
5
,
5
,
5
,
5
))
self
.
__test_1D_2D_sparse_mask_generation_methods
(
x
)
self
.
__test_1D_2D_sparse_mask_generation_methods
(
x
)
def
__test_1D_2D_sparsity_checking_methods
(
self
,
x_2d
):
def
__test_1D_2D_sparsity_checking_methods
(
self
,
x_2d
):
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_1d
(
x_2d
,
2
,
4
)
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_1d
(
x_2d
,
2
,
4
)
self
.
assertEqual
(
self
.
assertEqual
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
mask
,
mask
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_1D
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_1D
,
n
=
2
,
n
=
2
,
m
=
4
),
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
mask
,
2
,
4
))
m
=
4
),
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_1d
(
mask
,
2
,
4
))
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_best
(
x_2d
,
2
,
4
)
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
get_mask_2d_best
(
x_2d
,
2
,
4
)
self
.
assertEqual
(
self
.
assertEqual
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
mask
,
mask
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
,
n
=
2
,
n
=
2
,
m
=
4
),
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
mask
,
2
,
4
))
m
=
4
),
paddle
.
fluid
.
contrib
.
sparsity
.
check_mask_2d
(
mask
,
2
,
4
))
def
__test_1D_2D_sparse_mask_generation_methods
(
self
,
x
):
def
__test_1D_2D_sparse_mask_generation_methods
(
self
,
x
):
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
create_mask
(
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
create_mask
(
x
,
x
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_1D
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_1D
,
n
=
2
,
n
=
2
,
m
=
4
)
m
=
4
)
self
.
assertTrue
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
mask
,
mask
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_1D
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_1D
,
n
=
2
,
n
=
2
,
m
=
4
))
m
=
4
))
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
create_mask
(
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
create_mask
(
x
,
x
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_2D_GREEDY
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_2D_GREEDY
,
n
=
2
,
n
=
2
,
m
=
4
)
m
=
4
)
self
.
assertTrue
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
mask
,
mask
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
,
n
=
2
,
n
=
2
,
m
=
4
))
m
=
4
))
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
create_mask
(
mask
=
paddle
.
fluid
.
contrib
.
sparsity
.
create_mask
(
x
,
x
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_2D_BEST
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
MaskAlgo
.
MASK_2D_BEST
,
n
=
2
,
n
=
2
,
m
=
4
)
m
=
4
)
self
.
assertTrue
(
self
.
assertTrue
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
paddle
.
fluid
.
contrib
.
sparsity
.
check_sparsity
(
mask
,
mask
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
,
func_name
=
paddle
.
fluid
.
contrib
.
sparsity
.
CheckMethod
.
CHECK_2D
,
n
=
2
,
n
=
2
,
m
=
4
))
m
=
4
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_elementwise_sub_mkldnn_op.py
浏览文件 @
c6c9c186
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
from
paddle
import
enable_static
from
paddle
import
enable_static
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
OpTestTool
,
convert_float_to_uint16
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
OpTestTool
,
convert_float_to_uint16
from
paddle.fluid.framework
import
_current_expected_place
from
paddle.fluid.framework
import
_current_expected_place
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
@
OpTestTool
.
skip_if
(
not
(
isinstance
(
_current_expected_place
(),
core
.
CPUPlace
)),
@
OpTestTool
.
skip_if
(
not
(
isinstance
(
_current_expected_place
(),
core
.
CPUPlace
)),
"GPU is not supported"
)
"GPU is not supported"
)
class
TestMKLDNNElementwiseSubOp
(
OpTest
):
class
TestMKLDNNElementwiseSubOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
op_type
=
"elementwise_sub"
self
.
init_dtype
()
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_kernel_type
()
self
.
init_axis
()
self
.
init_axis
()
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ignore_x
(
self
):
def
test_check_grad_ignore_x
(
self
):
self
.
check_grad
([
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
))
self
.
check_grad
([
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ignore_y
(
self
):
def
test_check_grad_ignore_y
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
))
self
.
check_grad
([
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
))
def
init_axis
(
self
):
def
init_axis
(
self
):
self
.
axis
=
-
1
self
.
axis
=
-
1
def
init_kernel_type
(
self
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
use_mkldnn
=
True
def
init_dtype
(
self
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
class
TestMKLDNNElementwiseSubOp2
(
TestMKLDNNElementwiseSubOp
):
class
TestMKLDNNElementwiseSubOp2
(
TestMKLDNNElementwiseSubOp
):
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
class
TestMKLDNNElementwiseSubOp3
(
TestMKLDNNElementwiseSubOp
):
class
TestMKLDNNElementwiseSubOp3
(
TestMKLDNNElementwiseSubOp
):
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
class
TestMKLDNNElementwiseSubOp4
(
TestMKLDNNElementwiseSubOp
):
class
TestMKLDNNElementwiseSubOp4
(
TestMKLDNNElementwiseSubOp
):
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
3
,
4
,
32
]).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
3
,
4
,
32
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
4
,
32
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
4
,
32
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
class
TestMKLDNNElementwiseSubOp5
(
TestMKLDNNElementwiseSubOp
):
class
TestMKLDNNElementwiseSubOp5
(
TestMKLDNNElementwiseSubOp
):
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
3
,
4
,
100
]).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
3
,
4
,
100
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
class
TestMKLDNNElementwiseSubOp_broadcast
(
TestMKLDNNElementwiseSubOp
):
class
TestMKLDNNElementwiseSubOp_broadcast
(
TestMKLDNNElementwiseSubOp
):
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
-
self
.
y
.
reshape
(
1
,
10
,
12
,
1
)
self
.
out
=
self
.
x
-
self
.
y
.
reshape
(
1
,
10
,
12
,
1
)
def
init_axis
(
self
):
def
init_axis
(
self
):
self
.
axis
=
1
self
.
axis
=
1
class
TestElementwiseSubOp_xsize_lessthan_ysize_sub
(
TestMKLDNNElementwiseSubOp
):
class
TestElementwiseSubOp_xsize_lessthan_ysize_sub
(
TestMKLDNNElementwiseSubOp
):
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
2
,
10
,
12
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
2
,
10
,
12
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
-
self
.
y
self
.
out
=
self
.
x
-
self
.
y
def
init_axis
(
self
):
def
init_axis
(
self
):
self
.
axis
=
2
self
.
axis
=
2
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
pass
pass
def
test_check_grad_ignore_y
(
self
):
def
test_check_grad_ignore_y
(
self
):
pass
pass
def
test_check_grad_ignore_x
(
self
):
def
test_check_grad_ignore_x
(
self
):
pass
pass
@
OpTestTool
.
skip_if_not_cpu_bf16
()
@
OpTestTool
.
skip_if_not_cpu_bf16
()
class
TestBf16
(
TestMKLDNNElementwiseSubOp
):
class
TestBf16
(
TestMKLDNNElementwiseSubOp
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
op_type
=
"elementwise_sub"
self
.
init_dtype
()
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_kernel_type
()
self
.
init_axis
()
self
.
init_axis
()
self
.
x_bf16
=
convert_float_to_uint16
(
self
.
x
)
self
.
x_bf16
=
convert_float_to_uint16
(
self
.
x
)
self
.
y_bf16
=
convert_float_to_uint16
(
self
.
y
)
self
.
y_bf16
=
convert_float_to_uint16
(
self
.
y
)
self
.
inputs
=
{
'X'
:
self
.
x_bf16
,
'Y'
:
self
.
y_bf16
}
self
.
inputs
=
{
'X'
:
self
.
x_bf16
,
'Y'
:
self
.
y_bf16
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
convert_float_to_uint16
(
self
.
out
)}
self
.
outputs
=
{
'Out'
:
convert_float_to_uint16
(
self
.
out
)}
def
init_dtype
(
self
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
self
.
dtype
=
np
.
float32
self
.
mkldnn_data_type
=
"bfloat16"
self
.
mkldnn_data_type
=
"bfloat16"
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
(
100
,
).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
random
(
100
,
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
(
100
,
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
(
100
,
).
astype
(
self
.
dtype
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output_with_place
(
core
.
CPUPlace
())
self
.
check_output_with_place
(
core
.
CPUPlace
())
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"X"
,
"Y"
],
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"X"
,
"Y"
],
"Out"
,
"Out"
,
user_defined_grads
=
[
self
.
x
,
-
self
.
x
],
user_defined_grads
=
[
self
.
x
,
-
self
.
x
],
user_defined_grad_outputs
=
[
self
.
x_bf16
])
user_defined_grad_outputs
=
[
self
.
x_bf16
])
def
test_check_grad_ignore_x
(
self
):
def
test_check_grad_ignore_x
(
self
):
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"Y"
],
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"Y"
],
"Out"
,
"Out"
,
user_defined_grads
=
[
-
self
.
y
],
user_defined_grads
=
[
-
self
.
y
],
user_defined_grad_outputs
=
[
self
.
y_bf16
])
user_defined_grad_outputs
=
[
self
.
y_bf16
])
def
test_check_grad_ignore_y
(
self
):
def
test_check_grad_ignore_y
(
self
):
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"X"
],
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"X"
],
"Out"
,
"Out"
,
user_defined_grads
=
[
self
.
x
],
user_defined_grads
=
[
self
.
x
],
user_defined_grad_outputs
=
[
self
.
x_bf16
])
user_defined_grad_outputs
=
[
self
.
x_bf16
])
class
TestBf16Broadcasting
(
TestBf16
):
class
TestBf16Broadcasting
(
TestBf16
):
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
3
,
4
,
100
]).
astype
(
self
.
dtype
)
self
.
x
=
np
.
random
.
uniform
(
1
,
2
,
[
2
,
3
,
4
,
100
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
2
,
[
100
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
def
compute_reduced_gradients
(
self
,
out_grads
):
def
compute_reduced_gradients
(
self
,
out_grads
):
part_sum
=
np
.
add
.
reduceat
(
out_grads
,
[
0
],
axis
=
0
)
part_sum
=
np
.
add
.
reduceat
(
out_grads
,
[
0
],
axis
=
0
)
part_sum
=
np
.
add
.
reduceat
(
part_sum
,
[
0
],
axis
=
1
)
part_sum
=
np
.
add
.
reduceat
(
part_sum
,
[
0
],
axis
=
1
)
part_sum
=
np
.
add
.
reduceat
(
part_sum
,
[
0
],
axis
=
2
)
part_sum
=
np
.
add
.
reduceat
(
part_sum
,
[
0
],
axis
=
2
)
return
-
part_sum
.
flatten
()
return
-
part_sum
.
flatten
()
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"X"
,
"Y"
],
core
.
CPUPlace
(),
[
"X"
,
"Y"
],
"Out"
,
"Out"
,
user_defined_grads
=
[
self
.
x
,
user_defined_grads
=
[
self
.
x
,
self
.
compute_reduced_gradients
(
self
.
x
)],
self
.
compute_reduced_gradients
(
self
.
x
)],
user_defined_grad_outputs
=
[
self
.
x_bf16
])
user_defined_grad_outputs
=
[
self
.
x_bf16
])
def
test_check_grad_ignore_x
(
self
):
def
test_check_grad_ignore_x
(
self
):
self
.
check_grad_with_place
(
self
.
check_grad_with_place
(
core
.
CPUPlace
(),
[
"Y"
],
core
.
CPUPlace
(),
[
"Y"
],
"Out"
,
"Out"
,
user_defined_grads
=
[
self
.
compute_reduced_gradients
(
self
.
x
)],
user_defined_grads
=
[
self
.
compute_reduced_gradients
(
self
.
x
)],
user_defined_grad_outputs
=
[
self
.
x_bf16
])
user_defined_grad_outputs
=
[
self
.
x_bf16
])
class
TestInt8
(
TestMKLDNNElementwiseSubOp
):
class
TestInt8
(
TestMKLDNNElementwiseSubOp
):
def
init_kernel_type
(
self
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
use_mkldnn
=
True
self
.
_cpu_only
=
True
self
.
_cpu_only
=
True
def
init_dtype
(
self
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int8
self
.
dtype
=
np
.
int8
def
init_input_output
(
self
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
randint
(
0
,
3
,
(
12
,
9
)).
astype
(
"int8"
)
self
.
x
=
np
.
random
.
randint
(
0
,
3
,
(
12
,
9
)).
astype
(
"int8"
)
self
.
y
=
np
.
random
.
randint
(
0
,
3
,
(
12
,
9
)).
astype
(
"int8"
)
self
.
y
=
np
.
random
.
randint
(
0
,
3
,
(
12
,
9
)).
astype
(
"int8"
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
self
.
out
=
np
.
subtract
(
self
.
x
,
self
.
y
)
def
init_scales
(
self
):
def
init_scales
(
self
):
self
.
attrs
[
'Scale_x'
]
=
1.0
self
.
attrs
[
'Scale_x'
]
=
1.0
self
.
attrs
[
'Scale_y'
]
=
1.0
self
.
attrs
[
'Scale_y'
]
=
1.0
self
.
attrs
[
'Scale_out'
]
=
1.0
self
.
attrs
[
'Scale_out'
]
=
1.0
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
init_scales
()
self
.
init_scales
()
self
.
check_output
()
self
.
check_output
()
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
pass
pass
def
test_check_grad_ignore_x
(
self
):
def
test_check_grad_ignore_x
(
self
):
pass
pass
def
test_check_grad_ignore_y
(
self
):
def
test_check_grad_ignore_y
(
self
):
pass
pass
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
enable_static
()
enable_static
()
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_fill_constant_mkldnn_op.py
浏览文件 @
c6c9c186
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
OpTestTool
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
OpTestTool
import
paddle
import
paddle
@
OpTestTool
.
skip_if_not_cpu_bf16
()
@
OpTestTool
.
skip_if_not_cpu_bf16
()
class
TestFillConstant2DOneDNNOp
(
OpTest
):
class
TestFillConstant2DOneDNNOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"fill_constant"
self
.
op_type
=
"fill_constant"
self
.
dtype
=
np
.
float32
self
.
dtype
=
np
.
float32
self
.
shape_tensor_list
=
None
self
.
shape_tensor_list
=
None
self
.
shape_tensor
=
None
self
.
shape_tensor
=
None
self
.
str_value
=
""
self
.
str_value
=
""
real_shape
=
[]
real_shape
=
[]
self
.
value
=
0.1
self
.
value
=
0.1
self
.
set_inputs
()
self
.
set_inputs
()
self
.
set_attrs
()
self
.
set_attrs
()
if
'value'
in
self
.
attrs
:
if
'value'
in
self
.
attrs
:
self
.
value
=
self
.
attrs
[
'value'
]
self
.
value
=
self
.
attrs
[
'value'
]
if
self
.
str_value
!=
""
:
if
self
.
str_value
!=
""
:
self
.
value
=
float
(
self
.
str_value
)
self
.
value
=
float
(
self
.
str_value
)
if
'ValueTensor'
in
self
.
inputs
:
if
'ValueTensor'
in
self
.
inputs
:
self
.
value
=
self
.
inputs
[
'ValueTensor'
]
self
.
value
=
self
.
inputs
[
'ValueTensor'
]
if
'shape'
in
self
.
attrs
:
if
'shape'
in
self
.
attrs
:
real_shape
=
self
.
attrs
[
'shape'
]
real_shape
=
self
.
attrs
[
'shape'
]
if
'ShapeTensor'
in
self
.
inputs
:
if
'ShapeTensor'
in
self
.
inputs
:
real_shape
=
list
(
self
.
inputs
[
'ShapeTensor'
])
real_shape
=
list
(
self
.
inputs
[
'ShapeTensor'
])
if
'ShapeTensorList'
in
self
.
inputs
:
if
'ShapeTensorList'
in
self
.
inputs
:
real_shape
=
[]
real_shape
=
[]
for
shape_tensor
in
self
.
inputs
[
'ShapeTensorList'
]:
for
shape_tensor
in
self
.
inputs
[
'ShapeTensorList'
]:
real_shape
.
append
(
shape_tensor
[
1
].
item
())
real_shape
.
append
(
shape_tensor
[
1
].
item
())
self
.
outputs
=
{
'Out'
:
np
.
full
(
real_shape
,
self
.
value
)}
self
.
outputs
=
{
'Out'
:
np
.
full
(
real_shape
,
self
.
value
)}
def
set_inputs
(
self
):
def
set_inputs
(
self
):
self
.
inputs
=
{}
self
.
inputs
=
{}
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
attrs
=
{
'shape'
:
(
3
,
5
),
'use_mkldnn'
:
True
,
'value'
:
self
.
value
}
self
.
attrs
=
{
'shape'
:
(
3
,
5
),
'use_mkldnn'
:
True
,
'value'
:
self
.
value
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
class
TestFillZerosLike4DShapeTensorPriorityOneDNNOp
(
TestFillConstant2DOneDNNOp
class
TestFillZerosLike4DShapeTensorPriorityOneDNNOp
(
TestFillConstant2DOneDNNOp
):
):
def
set_inputs
(
self
):
def
set_inputs
(
self
):
self
.
inputs
=
{
'ShapeTensor'
:
np
.
array
([
5
,
6
,
7
,
8
]).
astype
(
"int32"
)}
self
.
inputs
=
{
'ShapeTensor'
:
np
.
array
([
5
,
6
,
7
,
8
]).
astype
(
"int32"
)}
class
TestFillZerosLike4DShapeTensorListPriorityOneDNNOp
(
class
TestFillZerosLike4DShapeTensorListPriorityOneDNNOp
(
TestFillConstant2DOneDNNOp
):
TestFillConstant2DOneDNNOp
):
def
set_inputs
(
self
):
def
set_inputs
(
self
):
shape
=
(
4
,
5
,
6
,
7
)
shape
=
(
4
,
5
,
6
,
7
)
self
.
shape_tensor_list
=
[]
self
.
shape_tensor_list
=
[]
for
index
,
elem
in
enumerate
(
shape
):
for
index
,
elem
in
enumerate
(
shape
):
self
.
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
self
.
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
elem
))
(
1
)).
astype
(
'int32'
)
*
elem
))
self
.
inputs
=
{
'ShapeTensorList'
:
self
.
shape_tensor_list
}
self
.
inputs
=
{
'ShapeTensorList'
:
self
.
shape_tensor_list
}
class
TestFillZerosLike2DStringValueInfOneDNNOp
(
TestFillConstant2DOneDNNOp
):
class
TestFillZerosLike2DStringValueInfOneDNNOp
(
TestFillConstant2DOneDNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
str_value
=
"inf"
self
.
str_value
=
"inf"
self
.
attrs
=
{
'shape'
:
(
10
,
13
),
'use_mkldnn'
:
True
,
'str_value'
:
"inf"
}
self
.
attrs
=
{
'shape'
:
(
10
,
13
),
'use_mkldnn'
:
True
,
'str_value'
:
"inf"
}
class
TestFillZerosLike2DStringValueMinusInfOneDNNOp
(
TestFillConstant2DOneDNNOp
class
TestFillZerosLike2DStringValueMinusInfOneDNNOp
(
TestFillConstant2DOneDNNOp
):
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
str_value
=
"-inf"
self
.
str_value
=
"-inf"
self
.
attrs
=
{
self
.
attrs
=
{
'shape'
:
(
10
,
13
),
'shape'
:
(
10
,
13
),
'use_mkldnn'
:
True
,
'use_mkldnn'
:
True
,
'str_value'
:
"-inf"
'str_value'
:
"-inf"
}
}
class
TestFillZerosLike2DStringValueFloatOneDNNOp
(
TestFillConstant2DOneDNNOp
):
class
TestFillZerosLike2DStringValueFloatOneDNNOp
(
TestFillConstant2DOneDNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
str_value
=
"0.123"
self
.
str_value
=
"0.123"
self
.
attrs
=
{
self
.
attrs
=
{
'shape'
:
(
10
,
13
),
'shape'
:
(
10
,
13
),
'use_mkldnn'
:
True
,
'use_mkldnn'
:
True
,
'str_value'
:
"0.123"
'str_value'
:
"0.123"
}
}
class
TestFillZerosLike2DValueTensorPriorityOneDNNOp
(
class
TestFillZerosLike2DValueTensorPriorityOneDNNOp
(
TestFillZerosLike2DStringValueFloatOneDNNOp
):
TestFillZerosLike2DStringValueFloatOneDNNOp
):
def
set_inputs
(
self
):
def
set_inputs
(
self
):
self
.
inputs
=
{
'ValueTensor'
:
np
.
atleast_1d
(
2.25
).
astype
(
"float32"
)}
self
.
inputs
=
{
'ValueTensor'
:
np
.
atleast_1d
(
2.25
).
astype
(
"float32"
)}
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
paddle
.
enable_static
()
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/sequence/test_sequence_first_step.py
浏览文件 @
c6c9c186
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
,
Program
,
program_guard
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
,
Program
,
program_guard
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
numpy
as
np
import
numpy
as
np
import
copy
import
copy
import
unittest
import
unittest
import
sys
import
sys
sys
.
path
.
append
(
"../"
)
sys
.
path
.
append
(
"../"
)
from
op_test
import
OpTest
from
op_test
import
OpTest
class
TestSequenceFirstStepOpError
(
unittest
.
TestCase
):
class
TestSequenceFirstStepOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
with
program_guard
(
Program
(),
Program
()):
def
test_Variable
():
def
test_Variable
():
# the input must be Variable
# the input must be Variable
input_data
=
np
.
random
.
randint
(
1
,
5
,
[
4
]).
astype
(
"int64"
)
input_data
=
np
.
random
.
randint
(
1
,
5
,
[
4
]).
astype
(
"int64"
)
fluid
.
layers
.
sequence_last_step
(
input_data
)
fluid
.
layers
.
sequence_last_step
(
input_data
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
def
test_input_dtype
():
def
test_input_dtype
():
# the dtype of input must be int64
# the dtype of input must be int64
type_data
=
fluid
.
layers
.
data
(
name
=
'type_data'
,
type_data
=
fluid
.
layers
.
data
(
name
=
'type_data'
,
shape
=
[
7
,
1
],
shape
=
[
7
,
1
],
append_batch_size
=
False
,
append_batch_size
=
False
,
dtype
=
'int64'
,
dtype
=
'int64'
,
lod_level
=
1
)
lod_level
=
1
)
fluid
.
layers
.
sequence_last_step
(
type_data
)
fluid
.
layers
.
sequence_last_step
(
type_data
)
self
.
assertRaises
(
TypeError
,
test_input_dtype
)
self
.
assertRaises
(
TypeError
,
test_input_dtype
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/sequence/test_sequence_last_step.py
浏览文件 @
c6c9c186
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
,
Program
,
program_guard
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
,
Program
,
program_guard
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
numpy
as
np
import
numpy
as
np
import
copy
import
copy
import
unittest
import
unittest
import
sys
import
sys
sys
.
path
.
append
(
"../"
)
sys
.
path
.
append
(
"../"
)
from
op_test
import
OpTest
from
op_test
import
OpTest
class
TestSequenceLastStepOpError
(
unittest
.
TestCase
):
class
TestSequenceLastStepOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
with
program_guard
(
Program
(),
Program
()):
def
test_Variable
():
def
test_Variable
():
# the input must be Variable
# the input must be Variable
input_data
=
np
.
random
.
randint
(
1
,
5
,
[
4
]).
astype
(
"int64"
)
input_data
=
np
.
random
.
randint
(
1
,
5
,
[
4
]).
astype
(
"int64"
)
fluid
.
layers
.
sequence_last_step
(
input_data
)
fluid
.
layers
.
sequence_last_step
(
input_data
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
def
test_input_dtype
():
def
test_input_dtype
():
# the dtype of input must be int64
# the dtype of input must be int64
type_data
=
fluid
.
layers
.
data
(
name
=
'type_data'
,
type_data
=
fluid
.
layers
.
data
(
name
=
'type_data'
,
shape
=
[
7
,
1
],
shape
=
[
7
,
1
],
append_batch_size
=
False
,
append_batch_size
=
False
,
dtype
=
'int64'
,
dtype
=
'int64'
,
lod_level
=
1
)
lod_level
=
1
)
fluid
.
layers
.
sequence_last_step
(
type_data
)
fluid
.
layers
.
sequence_last_step
(
type_data
)
self
.
assertRaises
(
TypeError
,
test_input_dtype
)
self
.
assertRaises
(
TypeError
,
test_input_dtype
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_lstm_cudnn_op.py
浏览文件 @
c6c9c186
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
op_test
import
OpTest
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.layers
as
layers
import
random
import
random
random
.
seed
(
2
)
random
.
seed
(
2
)
np
.
set_printoptions
(
threshold
=
np
.
inf
)
np
.
set_printoptions
(
threshold
=
np
.
inf
)
paddle
.
enable_static
()
paddle
.
enable_static
()
SIGMOID_THRESHOLD_MIN
=
-
40.0
SIGMOID_THRESHOLD_MIN
=
-
40.0
SIGMOID_THRESHOLD_MAX
=
13.0
SIGMOID_THRESHOLD_MAX
=
13.0
EXP_MAX_INPUT
=
40.0
EXP_MAX_INPUT
=
40.0
class
RandomWeight
:
class
RandomWeight
:
def
__init__
(
self
):
def
__init__
(
self
):
pass
pass
def
updata_weight
(
self
,
hidden_size
,
input_size
,
dtype
):
def
updata_weight
(
self
,
hidden_size
,
input_size
,
dtype
):
std
=
1.0
/
math
.
sqrt
(
hidden_size
)
std
=
1.0
/
math
.
sqrt
(
hidden_size
)
self
.
hidden_size
=
hidden_size
self
.
hidden_size
=
hidden_size
self
.
input_size
=
input_size
self
.
input_size
=
input_size
self
.
dtype
=
dtype
self
.
dtype
=
dtype
self
.
weight_ih
=
np
.
random
.
uniform
(
low
=-
std
,
self
.
weight_ih
=
np
.
random
.
uniform
(
low
=-
std
,
high
=
std
,
high
=
std
,
size
=
(
4
*
self
.
hidden_size
,
size
=
(
4
*
self
.
hidden_size
,
self
.
input_size
)).
astype
(
dtype
)
self
.
input_size
)).
astype
(
dtype
)
self
.
weight_hh
=
np
.
random
.
uniform
(
self
.
weight_hh
=
np
.
random
.
uniform
(
low
=-
std
,
high
=
std
,
low
=-
std
,
high
=
std
,
size
=
(
4
*
self
.
hidden_size
,
self
.
hidden_size
)).
astype
(
dtype
)
size
=
(
4
*
self
.
hidden_size
,
self
.
hidden_size
)).
astype
(
dtype
)
self
.
bias_ih
=
np
.
random
.
uniform
(
low
=-
std
,
self
.
bias_ih
=
np
.
random
.
uniform
(
low
=-
std
,
high
=
std
,
high
=
std
,
size
=
(
4
*
size
=
(
4
*
self
.
hidden_size
)).
astype
(
dtype
)
self
.
hidden_size
)).
astype
(
dtype
)
self
.
bias_hh
=
np
.
random
.
uniform
(
low
=-
std
,
self
.
bias_hh
=
np
.
random
.
uniform
(
low
=-
std
,
high
=
std
,
high
=
std
,
size
=
(
4
*
size
=
(
4
*
self
.
hidden_size
)).
astype
(
dtype
)
self
.
hidden_size
)).
astype
(
dtype
)
weight
=
RandomWeight
()
weight
=
RandomWeight
()
class
LayerMixin
(
object
):
class
LayerMixin
(
object
):
def
__call__
(
self
,
*
args
,
**
kwargs
):
def
__call__
(
self
,
*
args
,
**
kwargs
):
return
self
.
forward
(
*
args
,
**
kwargs
)
return
self
.
forward
(
*
args
,
**
kwargs
)
class
LayerListMixin
(
LayerMixin
):
class
LayerListMixin
(
LayerMixin
):
def
__init__
(
self
,
layers
=
None
):
def
__init__
(
self
,
layers
=
None
):
self
.
_layers
=
list
(
layers
)
if
layers
else
[]
self
.
_layers
=
list
(
layers
)
if
layers
else
[]
def
append
(
self
,
layer
):
def
append
(
self
,
layer
):
self
.
_layers
.
append
(
layer
)
self
.
_layers
.
append
(
layer
)
def
__iter__
(
self
):
def
__iter__
(
self
):
return
iter
(
self
.
_layers
)
return
iter
(
self
.
_layers
)
class
LSTMCell
(
LayerMixin
):
class
LSTMCell
(
LayerMixin
):
def
__init__
(
self
,
input_size
,
hidden_size
,
bias
=
True
):
def
__init__
(
self
,
input_size
,
hidden_size
,
bias
=
True
):
self
.
input_size
=
input_size
self
.
input_size
=
input_size
self
.
hidden_size
=
hidden_size
self
.
hidden_size
=
hidden_size
self
.
bias
=
bias
self
.
bias
=
bias
self
.
dtype
=
np
.
float64
self
.
dtype
=
np
.
float64
self
.
parameters
=
dict
()
self
.
parameters
=
dict
()
self
.
weight_ih
=
weight
.
weight_ih
self
.
weight_ih
=
weight
.
weight_ih
self
.
weight_hh
=
weight
.
weight_hh
self
.
weight_hh
=
weight
.
weight_hh
self
.
parameters
[
'weight_ih'
]
=
self
.
weight_ih
self
.
parameters
[
'weight_ih'
]
=
self
.
weight_ih
self
.
parameters
[
'weight_hh'
]
=
self
.
weight_hh
self
.
parameters
[
'weight_hh'
]
=
self
.
weight_hh
if
bias
:
if
bias
:
self
.
bias_ih
=
weight
.
bias_ih
self
.
bias_ih
=
weight
.
bias_ih
self
.
bias_hh
=
weight
.
bias_hh
self
.
bias_hh
=
weight
.
bias_hh
self
.
parameters
[
'bias_ih'
]
=
self
.
bias_ih
self
.
parameters
[
'bias_ih'
]
=
self
.
bias_ih
self
.
parameters
[
'bias_hh'
]
=
self
.
bias_hh
self
.
parameters
[
'bias_hh'
]
=
self
.
bias_hh
else
:
else
:
self
.
bias_ih
=
None
self
.
bias_ih
=
None
self
.
bias_hh
=
None
self
.
bias_hh
=
None
def
init_state
(
self
,
inputs
):
def
init_state
(
self
,
inputs
):
batch_size
=
inputs
.
shape
[
0
]
batch_size
=
inputs
.
shape
[
0
]
init_h
=
np
.
zeros
((
batch_size
,
self
.
hidden_size
),
dtype
=
inputs
.
dtype
)
init_h
=
np
.
zeros
((
batch_size
,
self
.
hidden_size
),
dtype
=
inputs
.
dtype
)
init_c
=
np
.
zeros
((
batch_size
,
self
.
hidden_size
),
dtype
=
inputs
.
dtype
)
init_c
=
np
.
zeros
((
batch_size
,
self
.
hidden_size
),
dtype
=
inputs
.
dtype
)
return
init_h
,
init_c
return
init_h
,
init_c
def
forward
(
self
,
inputs
,
hx
=
None
):
def
forward
(
self
,
inputs
,
hx
=
None
):
if
hx
is
None
:
if
hx
is
None
:
hx
=
self
.
init_state
(
inputs
)
hx
=
self
.
init_state
(
inputs
)
pre_hidden
,
pre_cell
=
hx
pre_hidden
,
pre_cell
=
hx
gates
=
np
.
matmul
(
inputs
,
self
.
weight_ih
.
T
)
gates
=
np
.
matmul
(
inputs
,
self
.
weight_ih
.
T
)
if
self
.
bias_ih
is
not
None
:
if
self
.
bias_ih
is
not
None
:
gates
=
gates
+
self
.
bias_ih
gates
=
gates
+
self
.
bias_ih
gates
+=
np
.
matmul
(
pre_hidden
,
self
.
weight_hh
.
T
)
gates
+=
np
.
matmul
(
pre_hidden
,
self
.
weight_hh
.
T
)
if
self
.
bias_hh
is
not
None
:
if
self
.
bias_hh
is
not
None
:
gates
=
gates
+
self
.
bias_hh
gates
=
gates
+
self
.
bias_hh
chunked_gates
=
np
.
split
(
gates
,
4
,
-
1
)
chunked_gates
=
np
.
split
(
gates
,
4
,
-
1
)
i
=
1.0
/
(
1.0
+
np
.
exp
(
-
chunked_gates
[
0
]))
i
=
1.0
/
(
1.0
+
np
.
exp
(
-
chunked_gates
[
0
]))
f
=
1.0
/
(
1.0
+
np
.
exp
(
-
chunked_gates
[
1
]))
f
=
1.0
/
(
1.0
+
np
.
exp
(
-
chunked_gates
[
1
]))
o
=
1.0
/
(
1.0
+
np
.
exp
(
-
chunked_gates
[
3
]))
o
=
1.0
/
(
1.0
+
np
.
exp
(
-
chunked_gates
[
3
]))
c
=
f
*
pre_cell
+
i
*
np
.
tanh
(
chunked_gates
[
2
])
c
=
f
*
pre_cell
+
i
*
np
.
tanh
(
chunked_gates
[
2
])
h
=
o
*
np
.
tanh
(
c
)
h
=
o
*
np
.
tanh
(
c
)
return
h
,
(
h
,
c
)
return
h
,
(
h
,
c
)
def
sequence_mask
(
lengths
,
max_len
=
None
):
def
sequence_mask
(
lengths
,
max_len
=
None
):
if
max_len
is
None
:
if
max_len
is
None
:
max_len
=
np
.
max
(
lengths
)
max_len
=
np
.
max
(
lengths
)
else
:
else
:
assert
max_len
>=
np
.
max
(
lengths
)
assert
max_len
>=
np
.
max
(
lengths
)
return
np
.
arange
(
max_len
)
<
np
.
expand_dims
(
lengths
,
-
1
)
return
np
.
arange
(
max_len
)
<
np
.
expand_dims
(
lengths
,
-
1
)
def
update_state
(
mask
,
new
,
old
):
def
update_state
(
mask
,
new
,
old
):
if
not
isinstance
(
old
,
(
tuple
,
list
)):
if
not
isinstance
(
old
,
(
tuple
,
list
)):
return
np
.
where
(
mask
,
new
,
old
)
return
np
.
where
(
mask
,
new
,
old
)
else
:
else
:
return
tuple
(
map
(
lambda
x
,
y
:
np
.
where
(
mask
,
x
,
y
),
new
,
old
))
return
tuple
(
map
(
lambda
x
,
y
:
np
.
where
(
mask
,
x
,
y
),
new
,
old
))
def
rnn
(
cell
,
def
rnn
(
cell
,
inputs
,
inputs
,
initial_states
,
initial_states
,
sequence_length
=
None
,
sequence_length
=
None
,
time_major
=
False
,
time_major
=
False
,
is_reverse
=
False
):
is_reverse
=
False
):
if
not
time_major
:
if
not
time_major
:
inputs
=
np
.
transpose
(
inputs
,
[
1
,
0
,
2
])
inputs
=
np
.
transpose
(
inputs
,
[
1
,
0
,
2
])
if
is_reverse
:
if
is_reverse
:
inputs
=
np
.
flip
(
inputs
,
0
)
inputs
=
np
.
flip
(
inputs
,
0
)
if
sequence_length
is
None
:
if
sequence_length
is
None
:
mask
=
None
mask
=
None
else
:
else
:
mask
=
np
.
transpose
(
sequence_mask
(
sequence_length
),
[
1
,
0
])
mask
=
np
.
transpose
(
sequence_mask
(
sequence_length
),
[
1
,
0
])
mask
=
np
.
expand_dims
(
mask
,
-
1
)
mask
=
np
.
expand_dims
(
mask
,
-
1
)
if
is_reverse
:
if
is_reverse
:
mask
=
np
.
flip
(
mask
,
0
)
mask
=
np
.
flip
(
mask
,
0
)
time_steps
=
inputs
.
shape
[
0
]
time_steps
=
inputs
.
shape
[
0
]
state
=
initial_states
state
=
initial_states
outputs
=
[]
outputs
=
[]
for
t
in
range
(
time_steps
):
for
t
in
range
(
time_steps
):
x_t
=
inputs
[
t
]
x_t
=
inputs
[
t
]
if
mask
is
not
None
:
if
mask
is
not
None
:
m_t
=
mask
[
t
]
m_t
=
mask
[
t
]
y
,
new_state
=
cell
(
x_t
,
state
)
y
,
new_state
=
cell
(
x_t
,
state
)
y
=
np
.
where
(
m_t
,
y
,
0.
)
y
=
np
.
where
(
m_t
,
y
,
0.
)
outputs
.
append
(
y
)
outputs
.
append
(
y
)
state
=
update_state
(
m_t
,
new_state
,
state
)
state
=
update_state
(
m_t
,
new_state
,
state
)
else
:
else
:
y
,
new_state
=
cell
(
x_t
,
state
)
y
,
new_state
=
cell
(
x_t
,
state
)
outputs
.
append
(
y
)
outputs
.
append
(
y
)
state
=
new_state
state
=
new_state
outputs
=
np
.
stack
(
outputs
)
outputs
=
np
.
stack
(
outputs
)
final_state
=
state
final_state
=
state
if
is_reverse
:
if
is_reverse
:
outputs
=
np
.
flip
(
outputs
,
0
)
outputs
=
np
.
flip
(
outputs
,
0
)
if
not
time_major
:
if
not
time_major
:
outputs
=
np
.
transpose
(
outputs
,
[
1
,
0
,
2
])
outputs
=
np
.
transpose
(
outputs
,
[
1
,
0
,
2
])
return
outputs
,
final_state
return
outputs
,
final_state
def
birnn
(
cell_fw
,
def
birnn
(
cell_fw
,
cell_bw
,
cell_bw
,
inputs
,
inputs
,
initial_states
,
initial_states
,
sequence_length
=
None
,
sequence_length
=
None
,
time_major
=
False
):
time_major
=
False
):
states_fw
,
states_bw
=
initial_states
states_fw
,
states_bw
=
initial_states
outputs_fw
,
states_fw
=
rnn
(
cell_fw
,
outputs_fw
,
states_fw
=
rnn
(
cell_fw
,
inputs
,
inputs
,
states_fw
,
states_fw
,
sequence_length
,
sequence_length
,
time_major
=
time_major
)
time_major
=
time_major
)
outputs_bw
,
states_bw
=
rnn
(
cell_bw
,
outputs_bw
,
states_bw
=
rnn
(
cell_bw
,
inputs
,
inputs
,
states_bw
,
states_bw
,
sequence_length
,
sequence_length
,
time_major
=
time_major
,
time_major
=
time_major
,
is_reverse
=
True
)
is_reverse
=
True
)
outputs
=
np
.
concatenate
((
outputs_fw
,
outputs_bw
),
-
1
)
outputs
=
np
.
concatenate
((
outputs_fw
,
outputs_bw
),
-
1
)
final_states
=
(
states_fw
,
states_bw
)
final_states
=
(
states_fw
,
states_bw
)
return
outputs
,
final_states
return
outputs
,
final_states
def
flatten
(
nested
):
def
flatten
(
nested
):
return
list
(
_flatten
(
nested
))
return
list
(
_flatten
(
nested
))
def
_flatten
(
nested
):
def
_flatten
(
nested
):
for
item
in
nested
:
for
item
in
nested
:
if
isinstance
(
item
,
(
list
,
tuple
)):
if
isinstance
(
item
,
(
list
,
tuple
)):
for
subitem
in
_flatten
(
item
):
for
subitem
in
_flatten
(
item
):
yield
subitem
yield
subitem
else
:
else
:
yield
item
yield
item
def
unstack
(
array
,
axis
=
0
):
def
unstack
(
array
,
axis
=
0
):
num
=
array
.
shape
[
axis
]
num
=
array
.
shape
[
axis
]
sub_arrays
=
np
.
split
(
array
,
num
,
axis
)
sub_arrays
=
np
.
split
(
array
,
num
,
axis
)
return
[
np
.
squeeze
(
sub_array
,
axis
)
for
sub_array
in
sub_arrays
]
return
[
np
.
squeeze
(
sub_array
,
axis
)
for
sub_array
in
sub_arrays
]
def
dropout
(
array
,
p
=
0.0
):
def
dropout
(
array
,
p
=
0.0
):
if
p
==
0.0
:
if
p
==
0.0
:
return
array
return
array
mask
=
(
np
.
random
.
uniform
(
size
=
array
.
shape
)
<
(
1
-
p
)).
astype
(
array
.
dtype
)
mask
=
(
np
.
random
.
uniform
(
size
=
array
.
shape
)
<
(
1
-
p
)).
astype
(
array
.
dtype
)
return
array
*
(
mask
/
(
1
-
p
))
return
array
*
(
mask
/
(
1
-
p
))
def
split_states
(
states
,
bidirectional
=
False
,
state_components
=
1
):
def
split_states
(
states
,
bidirectional
=
False
,
state_components
=
1
):
if
state_components
==
1
:
if
state_components
==
1
:
states
=
unstack
(
states
)
states
=
unstack
(
states
)
if
not
bidirectional
:
if
not
bidirectional
:
return
states
return
states
else
:
else
:
return
list
(
zip
(
states
[::
2
],
states
[
1
::
2
]))
return
list
(
zip
(
states
[::
2
],
states
[
1
::
2
]))
else
:
else
:
assert
len
(
states
)
==
state_components
assert
len
(
states
)
==
state_components
states
=
tuple
([
unstack
(
item
)
for
item
in
states
])
states
=
tuple
([
unstack
(
item
)
for
item
in
states
])
if
not
bidirectional
:
if
not
bidirectional
:
return
list
(
zip
(
*
states
))
return
list
(
zip
(
*
states
))
else
:
else
:
states
=
list
(
zip
(
*
states
))
states
=
list
(
zip
(
*
states
))
return
list
(
zip
(
states
[::
2
],
states
[
1
::
2
]))
return
list
(
zip
(
states
[::
2
],
states
[
1
::
2
]))
def
concat_states
(
states
,
bidirectional
=
False
,
state_components
=
1
):
def
concat_states
(
states
,
bidirectional
=
False
,
state_components
=
1
):
if
state_components
==
1
:
if
state_components
==
1
:
return
np
.
stack
(
flatten
(
states
))
return
np
.
stack
(
flatten
(
states
))
else
:
else
:
states
=
flatten
(
states
)
states
=
flatten
(
states
)
componnets
=
[]
componnets
=
[]
for
i
in
range
(
state_components
):
for
i
in
range
(
state_components
):
componnets
.
append
(
states
[
i
::
state_components
])
componnets
.
append
(
states
[
i
::
state_components
])
return
[
np
.
stack
(
item
)
for
item
in
componnets
]
return
[
np
.
stack
(
item
)
for
item
in
componnets
]
class
RNN
(
LayerMixin
):
class
RNN
(
LayerMixin
):
def
__init__
(
self
,
cell
,
is_reverse
=
False
,
time_major
=
False
):
def
__init__
(
self
,
cell
,
is_reverse
=
False
,
time_major
=
False
):
super
(
RNN
,
self
).
__init__
()
super
(
RNN
,
self
).
__init__
()
self
.
cell
=
cell
self
.
cell
=
cell
if
not
hasattr
(
self
.
cell
,
"call"
):
if
not
hasattr
(
self
.
cell
,
"call"
):
# for non-dygraph mode, `rnn` api uses cell.call
# for non-dygraph mode, `rnn` api uses cell.call
self
.
cell
.
call
=
self
.
cell
.
forward
self
.
cell
.
call
=
self
.
cell
.
forward
self
.
is_reverse
=
is_reverse
self
.
is_reverse
=
is_reverse
self
.
time_major
=
time_major
self
.
time_major
=
time_major
def
forward
(
self
,
inputs
,
initial_states
=
None
,
sequence_length
=
None
):
def
forward
(
self
,
inputs
,
initial_states
=
None
,
sequence_length
=
None
):
final_outputs
,
final_states
=
rnn
(
self
.
cell
,
final_outputs
,
final_states
=
rnn
(
self
.
cell
,
inputs
,
inputs
,
initial_states
=
initial_states
,
initial_states
=
initial_states
,
sequence_length
=
sequence_length
,
sequence_length
=
sequence_length
,
time_major
=
self
.
time_major
,
time_major
=
self
.
time_major
,
is_reverse
=
self
.
is_reverse
)
is_reverse
=
self
.
is_reverse
)
return
final_outputs
,
final_states
return
final_outputs
,
final_states
class
BiRNN
(
LayerMixin
):
class
BiRNN
(
LayerMixin
):
def
__init__
(
self
,
cell_fw
,
cell_bw
,
time_major
=
False
):
def
__init__
(
self
,
cell_fw
,
cell_bw
,
time_major
=
False
):
super
(
BiRNN
,
self
).
__init__
()
super
(
BiRNN
,
self
).
__init__
()
self
.
cell_fw
=
cell_fw
self
.
cell_fw
=
cell_fw
self
.
cell_bw
=
cell_bw
self
.
cell_bw
=
cell_bw
self
.
time_major
=
time_major
self
.
time_major
=
time_major
def
forward
(
self
,
def
forward
(
self
,
inputs
,
inputs
,
initial_states
=
None
,
initial_states
=
None
,
sequence_length
=
None
,
sequence_length
=
None
,
**
kwargs
):
**
kwargs
):
if
isinstance
(
initial_states
,
(
list
,
tuple
)):
if
isinstance
(
initial_states
,
(
list
,
tuple
)):
assert
len
(
initial_states
)
==
2
,
\
assert
len
(
initial_states
)
==
2
,
\
"length of initial_states should be 2 when it is a list/tuple"
"length of initial_states should be 2 when it is a list/tuple"
else
:
else
:
initial_states
=
[
initial_states
,
initial_states
]
initial_states
=
[
initial_states
,
initial_states
]
outputs
,
final_states
=
birnn
(
self
.
cell_fw
,
self
.
cell_bw
,
inputs
,
outputs
,
final_states
=
birnn
(
self
.
cell_fw
,
self
.
cell_bw
,
inputs
,
initial_states
,
sequence_length
,
initial_states
,
sequence_length
,
self
.
time_major
)
self
.
time_major
)
return
outputs
,
final_states
return
outputs
,
final_states
class
RNNMixin
(
LayerListMixin
):
class
RNNMixin
(
LayerListMixin
):
def
forward
(
self
,
inputs
,
initial_states
=
None
,
sequence_length
=
None
):
def
forward
(
self
,
inputs
,
initial_states
=
None
,
sequence_length
=
None
):
batch_index
=
1
if
self
.
time_major
else
0
batch_index
=
1
if
self
.
time_major
else
0
batch_size
=
inputs
.
shape
[
batch_index
]
batch_size
=
inputs
.
shape
[
batch_index
]
dtype
=
inputs
.
dtype
dtype
=
inputs
.
dtype
if
initial_states
is
None
:
if
initial_states
is
None
:
state_shape
=
(
self
.
num_layers
*
self
.
num_directions
,
batch_size
,
state_shape
=
(
self
.
num_layers
*
self
.
num_directions
,
batch_size
,
self
.
hidden_size
)
self
.
hidden_size
)
if
self
.
state_components
==
1
:
if
self
.
state_components
==
1
:
initial_states
=
np
.
zeros
(
state_shape
,
dtype
)
initial_states
=
np
.
zeros
(
state_shape
,
dtype
)
else
:
else
:
initial_states
=
tuple
([
initial_states
=
tuple
([
np
.
zeros
(
state_shape
,
dtype
)
np
.
zeros
(
state_shape
,
dtype
)
for
_
in
range
(
self
.
state_components
)
for
_
in
range
(
self
.
state_components
)
])
])
states
=
split_states
(
initial_states
,
self
.
num_directions
==
2
,
states
=
split_states
(
initial_states
,
self
.
num_directions
==
2
,
self
.
state_components
)
self
.
state_components
)
final_states
=
[]
final_states
=
[]
for
i
,
rnn_layer
in
enumerate
(
self
):
for
i
,
rnn_layer
in
enumerate
(
self
):
if
i
>
0
:
if
i
>
0
:
inputs
=
dropout
(
inputs
,
self
.
dropout
)
inputs
=
dropout
(
inputs
,
self
.
dropout
)
outputs
,
final_state
=
rnn_layer
(
inputs
,
states
[
i
],
sequence_length
)
outputs
,
final_state
=
rnn_layer
(
inputs
,
states
[
i
],
sequence_length
)
final_states
.
append
(
final_state
)
final_states
.
append
(
final_state
)
inputs
=
outputs
inputs
=
outputs
final_states
=
concat_states
(
final_states
,
self
.
num_directions
==
2
,
final_states
=
concat_states
(
final_states
,
self
.
num_directions
==
2
,
self
.
state_components
)
self
.
state_components
)
return
outputs
,
final_states
return
outputs
,
final_states
class
LSTM
(
RNNMixin
):
class
LSTM
(
RNNMixin
):
def
__init__
(
self
,
def
__init__
(
self
,
input_size
,
input_size
,
hidden_size
,
hidden_size
,
num_layers
=
1
,
num_layers
=
1
,
direction
=
"forward"
,
direction
=
"forward"
,
dropout
=
0.
,
dropout
=
0.
,
time_major
=
False
):
time_major
=
False
):
super
(
LSTM
,
self
).
__init__
()
super
(
LSTM
,
self
).
__init__
()
if
direction
in
[
"forward"
,
"backward"
]:
if
direction
in
[
"forward"
,
"backward"
]:
is_reverse
=
direction
==
"backward"
is_reverse
=
direction
==
"backward"
cell
=
LSTMCell
(
input_size
,
hidden_size
)
cell
=
LSTMCell
(
input_size
,
hidden_size
)
self
.
append
(
RNN
(
cell
,
is_reverse
,
time_major
))
self
.
append
(
RNN
(
cell
,
is_reverse
,
time_major
))
for
i
in
range
(
1
,
num_layers
):
for
i
in
range
(
1
,
num_layers
):
cell
=
LSTMCell
(
hidden_size
,
hidden_size
)
cell
=
LSTMCell
(
hidden_size
,
hidden_size
)
self
.
append
(
RNN
(
cell
,
is_reverse
,
time_major
))
self
.
append
(
RNN
(
cell
,
is_reverse
,
time_major
))
elif
direction
==
"bidirectional"
:
elif
direction
==
"bidirectional"
:
cell_fw
=
LSTMCell
(
input_size
,
hidden_size
)
cell_fw
=
LSTMCell
(
input_size
,
hidden_size
)
cell_bw
=
LSTMCell
(
input_size
,
hidden_size
)
cell_bw
=
LSTMCell
(
input_size
,
hidden_size
)
self
.
append
(
BiRNN
(
cell_fw
,
cell_bw
,
time_major
))
self
.
append
(
BiRNN
(
cell_fw
,
cell_bw
,
time_major
))
for
i
in
range
(
1
,
num_layers
):
for
i
in
range
(
1
,
num_layers
):
cell_fw
=
LSTMCell
(
2
*
hidden_size
,
hidden_size
)
cell_fw
=
LSTMCell
(
2
*
hidden_size
,
hidden_size
)
cell_bw
=
LSTMCell
(
2
*
hidden_size
,
hidden_size
)
cell_bw
=
LSTMCell
(
2
*
hidden_size
,
hidden_size
)
self
.
append
(
BiRNN
(
cell_fw
,
cell_bw
,
time_major
))
self
.
append
(
BiRNN
(
cell_fw
,
cell_bw
,
time_major
))
else
:
else
:
raise
ValueError
(
raise
ValueError
(
"direction should be forward, backward or bidirectional, "
"direction should be forward, backward or bidirectional, "
"received direction = {}"
.
format
(
direction
))
"received direction = {}"
.
format
(
direction
))
self
.
input_size
=
input_size
self
.
input_size
=
input_size
self
.
hidden_size
=
hidden_size
self
.
hidden_size
=
hidden_size
self
.
dropout
=
dropout
self
.
dropout
=
dropout
self
.
num_directions
=
2
if
direction
==
"bidirectional"
else
1
self
.
num_directions
=
2
if
direction
==
"bidirectional"
else
1
self
.
time_major
=
time_major
self
.
time_major
=
time_major
self
.
num_layers
=
num_layers
self
.
num_layers
=
num_layers
self
.
state_components
=
2
self
.
state_components
=
2
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
"core is not compiled with CUDA"
)
class
TestCUDNNLstmOp
(
OpTest
):
class
TestCUDNNLstmOp
(
OpTest
):
def
get_weight_names
(
self
):
def
get_weight_names
(
self
):
weight_names
=
[]
weight_names
=
[]
for
i
in
range
(
2
*
self
.
num_layers
):
for
i
in
range
(
2
*
self
.
num_layers
):
weight_names
.
append
(
'weight{}'
.
format
(
i
))
weight_names
.
append
(
'weight{}'
.
format
(
i
))
for
i
in
range
(
2
*
self
.
num_layers
):
for
i
in
range
(
2
*
self
.
num_layers
):
weight_names
.
append
(
'bias{}'
.
format
(
i
))
weight_names
.
append
(
'bias{}'
.
format
(
i
))
return
weight_names
return
weight_names
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"cudnn_lstm"
self
.
op_type
=
"cudnn_lstm"
self
.
dtype
=
np
.
float32
if
core
.
is_compiled_with_rocm
()
else
np
.
float64
self
.
dtype
=
np
.
float32
if
core
.
is_compiled_with_rocm
()
else
np
.
float64
self
.
sequence_length
=
None
if
core
.
is_compiled_with_rocm
(
self
.
sequence_length
=
None
if
core
.
is_compiled_with_rocm
(
)
else
np
.
array
([
12
,
11
,
10
,
9
,
8
],
dtype
=
np
.
int32
)
)
else
np
.
array
([
12
,
11
,
10
,
9
,
8
],
dtype
=
np
.
int32
)
self
.
num_layers
=
1
self
.
num_layers
=
1
self
.
set_attrs
()
self
.
set_attrs
()
seq_length
=
12
seq_length
=
12
batch_size
=
5
batch_size
=
5
input_size
=
21
input_size
=
21
hidden_size
=
21
hidden_size
=
21
input
=
np
.
random
.
uniform
(
low
=-
0.1
,
input
=
np
.
random
.
uniform
(
low
=-
0.1
,
high
=
0.1
,
high
=
0.1
,
size
=
(
seq_length
,
batch_size
,
size
=
(
seq_length
,
batch_size
,
input_size
)).
astype
(
self
.
dtype
)
input_size
)).
astype
(
self
.
dtype
)
input
[
11
][
1
:][:]
=
0
input
[
11
][
1
:][:]
=
0
input
[
10
][
2
:][:]
=
0
input
[
10
][
2
:][:]
=
0
input
[
9
][
3
:][:]
=
0
input
[
9
][
3
:][:]
=
0
input
[
8
][
4
:][:]
=
0
input
[
8
][
4
:][:]
=
0
weight
.
updata_weight
(
hidden_size
,
input_size
,
self
.
dtype
)
weight
.
updata_weight
(
hidden_size
,
input_size
,
self
.
dtype
)
rnn1
=
LSTM
(
input_size
,
rnn1
=
LSTM
(
input_size
,
hidden_size
,
hidden_size
,
num_layers
=
self
.
num_layers
,
num_layers
=
self
.
num_layers
,
time_major
=
True
,
time_major
=
True
,
direction
=
"forward"
)
direction
=
"forward"
)
output
,
(
last_hidden
,
output
,
(
last_hidden
,
last_cell
)
=
rnn1
(
input
,
sequence_length
=
self
.
sequence_length
)
last_cell
)
=
rnn1
(
input
,
sequence_length
=
self
.
sequence_length
)
flat_w
=
[]
flat_w
=
[]
num
=
0
num
=
0
for
i
in
range
(
self
.
num_layers
):
for
i
in
range
(
self
.
num_layers
):
if
i
==
0
:
if
i
==
0
:
weight_ih
=
weight
.
weight_ih
weight_ih
=
weight
.
weight_ih
else
:
else
:
weight_ih
=
weight
.
weight_hh
weight_ih
=
weight
.
weight_hh
flat_w
.
append
((
"weight"
+
str
(
num
),
weight_ih
))
flat_w
.
append
((
"weight"
+
str
(
num
),
weight_ih
))
num
+=
1
num
+=
1
for
i
in
range
(
self
.
num_layers
):
for
i
in
range
(
self
.
num_layers
):
weight_hh
=
weight
.
weight_hh
weight_hh
=
weight
.
weight_hh
flat_w
.
append
((
"weight"
+
str
(
num
),
weight_hh
))
flat_w
.
append
((
"weight"
+
str
(
num
),
weight_hh
))
num
+=
1
num
+=
1
num
=
0
num
=
0
for
i
in
range
(
self
.
num_layers
):
for
i
in
range
(
self
.
num_layers
):
bias_ih
=
weight
.
bias_ih
bias_ih
=
weight
.
bias_ih
flat_w
.
append
((
"bias"
+
str
(
num
),
bias_ih
))
flat_w
.
append
((
"bias"
+
str
(
num
),
bias_ih
))
num
+=
1
num
+=
1
for
i
in
range
(
self
.
num_layers
):
for
i
in
range
(
self
.
num_layers
):
bias_hh
=
weight
.
bias_hh
bias_hh
=
weight
.
bias_hh
flat_w
.
append
((
"bias"
+
str
(
num
),
bias_hh
))
flat_w
.
append
((
"bias"
+
str
(
num
),
bias_hh
))
num
+=
1
num
+=
1
init_h
=
np
.
zeros
(
init_h
=
np
.
zeros
(
(
self
.
num_layers
,
batch_size
,
hidden_size
)).
astype
(
self
.
dtype
)
(
self
.
num_layers
,
batch_size
,
hidden_size
)).
astype
(
self
.
dtype
)
init_c
=
np
.
zeros
(
init_c
=
np
.
zeros
(
(
self
.
num_layers
,
batch_size
,
hidden_size
)).
astype
(
self
.
dtype
)
(
self
.
num_layers
,
batch_size
,
hidden_size
)).
astype
(
self
.
dtype
)
state_out
=
np
.
ndarray
((
300
)).
astype
(
"uint8"
)
state_out
=
np
.
ndarray
((
300
)).
astype
(
"uint8"
)
if
core
.
is_compiled_with_rocm
():
if
core
.
is_compiled_with_rocm
():
for
i
in
range
(
len
(
flat_w
)):
for
i
in
range
(
len
(
flat_w
)):
w
=
np
.
split
(
flat_w
[
i
][
1
],
4
,
0
)
w
=
np
.
split
(
flat_w
[
i
][
1
],
4
,
0
)
w
=
[
w
[
0
],
w
[
1
],
w
[
3
],
w
[
2
]]
w
=
[
w
[
0
],
w
[
1
],
w
[
3
],
w
[
2
]]
w
=
np
.
concatenate
(
w
)
w
=
np
.
concatenate
(
w
)
flat_w
[
i
]
=
(
flat_w
[
i
][
0
],
w
)
flat_w
[
i
]
=
(
flat_w
[
i
][
0
],
w
)
self
.
inputs
=
{
self
.
inputs
=
{
'Input'
:
input
,
'Input'
:
input
,
'WeightList'
:
flat_w
,
'WeightList'
:
flat_w
,
'InitH'
:
init_h
,
'InitH'
:
init_h
,
'InitC'
:
init_c
,
'InitC'
:
init_c
,
'SequenceLength'
:
self
.
sequence_length
'SequenceLength'
:
self
.
sequence_length
}
}
if
self
.
sequence_length
is
None
:
if
self
.
sequence_length
is
None
:
self
.
inputs
=
{
self
.
inputs
=
{
'Input'
:
input
,
'Input'
:
input
,
'WeightList'
:
flat_w
,
'WeightList'
:
flat_w
,
'InitH'
:
init_h
,
'InitH'
:
init_h
,
'InitC'
:
init_c
,
'InitC'
:
init_c
,
}
}
self
.
attrs
=
{
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'dropout_prob'
:
0.0
,
'is_bidirec'
:
False
,
'is_bidirec'
:
False
,
'input_size'
:
input_size
,
'input_size'
:
input_size
,
'hidden_size'
:
hidden_size
,
'hidden_size'
:
hidden_size
,
'num_layers'
:
self
.
num_layers
,
'num_layers'
:
self
.
num_layers
,
}
}
self
.
outputs
=
{
self
.
outputs
=
{
'Out'
:
output
,
'Out'
:
output
,
"LastH"
:
last_hidden
,
"LastH"
:
last_hidden
,
'LastC'
:
last_cell
,
'LastC'
:
last_cell
,
'Reserve'
:
np
.
ndarray
((
400
)).
astype
(
"uint8"
),
'Reserve'
:
np
.
ndarray
((
400
)).
astype
(
"uint8"
),
'StateOut'
:
state_out
'StateOut'
:
state_out
}
}
def
set_attrs
(
self
):
def
set_attrs
(
self
):
pass
pass
def
test_output_with_place
(
self
):
def
test_output_with_place
(
self
):
place
=
core
.
CUDAPlace
(
0
)
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_rocm
():
if
core
.
is_compiled_with_rocm
():
self
.
check_output_with_place
(
place
,
self
.
check_output_with_place
(
place
,
atol
=
1e-5
,
atol
=
1e-5
,
no_check_set
=
[
'Reserve'
,
'StateOut'
])
no_check_set
=
[
'Reserve'
,
'StateOut'
])
else
:
else
:
self
.
check_output_with_place
(
place
,
self
.
check_output_with_place
(
place
,
no_check_set
=
[
'Reserve'
,
'StateOut'
])
no_check_set
=
[
'Reserve'
,
'StateOut'
])
def
test_grad_with_place
(
self
):
def
test_grad_with_place
(
self
):
place
=
core
.
CUDAPlace
(
0
)
place
=
core
.
CUDAPlace
(
0
)
var_name_list
=
self
.
get_weight_names
()
var_name_list
=
self
.
get_weight_names
()
for
var_name
in
var_name_list
:
for
var_name
in
var_name_list
:
self
.
check_grad_with_place
(
self
.
check_grad_with_place
(
place
,
set
([
'Input'
,
var_name
,
'InitH'
,
'InitC'
]),
place
,
set
([
'Input'
,
var_name
,
'InitH'
,
'InitC'
]),
[
'Out'
,
'LastH'
,
'LastC'
])
[
'Out'
,
'LastH'
,
'LastC'
])
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
"core is not compiled with CUDA"
)
class
TestCUDNNlstmAPI
(
unittest
.
TestCase
):
class
TestCUDNNlstmAPI
(
unittest
.
TestCase
):
def
test_lstm
(
self
):
def
test_lstm
(
self
):
seq_len
=
20
seq_len
=
20
batch_size
=
5
batch_size
=
5
hidden_size
=
20
hidden_size
=
20
dropout_prob
=
0.0
dropout_prob
=
0.0
num_layers
=
1
num_layers
=
1
dtype
=
'float32'
if
core
.
is_compiled_with_rocm
()
else
'float64'
dtype
=
'float32'
if
core
.
is_compiled_with_rocm
()
else
'float64'
input
=
fluid
.
data
(
name
=
'input'
,
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
seq_len
,
batch_size
,
hidden_size
],
shape
=
[
seq_len
,
batch_size
,
hidden_size
],
dtype
=
dtype
)
dtype
=
dtype
)
init_h
=
layers
.
fill_constant
([
num_layers
,
batch_size
,
hidden_size
],
init_h
=
layers
.
fill_constant
([
num_layers
,
batch_size
,
hidden_size
],
dtype
,
0.0
)
dtype
,
0.0
)
init_c
=
layers
.
fill_constant
([
num_layers
,
batch_size
,
hidden_size
],
init_c
=
layers
.
fill_constant
([
num_layers
,
batch_size
,
hidden_size
],
dtype
,
0.0
)
dtype
,
0.0
)
rnn_out
,
last_h
,
last_c
=
layers
.
lstm
(
input
,
init_h
,
init_c
,
seq_len
,
rnn_out
,
last_h
,
last_c
=
layers
.
lstm
(
input
,
init_h
,
init_c
,
seq_len
,
hidden_size
,
num_layers
,
hidden_size
,
num_layers
,
dropout_prob
,
False
)
dropout_prob
,
False
)
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
input_i
=
np
.
random
.
uniform
(
low
=-
0.1
,
input_i
=
np
.
random
.
uniform
(
low
=-
0.1
,
high
=
0.1
,
high
=
0.1
,
size
=
(
seq_len
,
batch_size
,
size
=
(
seq_len
,
batch_size
,
hidden_size
)).
astype
(
"float64"
)
hidden_size
)).
astype
(
"float64"
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'input'
:
input_i
},
feed
=
{
'input'
:
input_i
},
fetch_list
=
[
rnn_out
,
last_h
,
last_c
,
'cudnn_lstm_0.w_0'
])
fetch_list
=
[
rnn_out
,
last_h
,
last_c
,
'cudnn_lstm_0.w_0'
])
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
"core is not compiled with CUDA"
)
class
TestCUDNNlstmAPI
(
unittest
.
TestCase
):
class
TestCUDNNlstmAPI
(
unittest
.
TestCase
):
def
test_lstm
(
self
):
def
test_lstm
(
self
):
seq_len
=
20
seq_len
=
20
batch_size
=
5
batch_size
=
5
hidden_size
=
20
hidden_size
=
20
dropout_prob
=
0.0
dropout_prob
=
0.0
num_layers
=
2
num_layers
=
2
dtype
=
'float32'
if
core
.
is_compiled_with_rocm
()
else
'float64'
dtype
=
'float32'
if
core
.
is_compiled_with_rocm
()
else
'float64'
input
=
fluid
.
data
(
name
=
'input'
,
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
seq_len
,
batch_size
,
hidden_size
],
shape
=
[
seq_len
,
batch_size
,
hidden_size
],
dtype
=
dtype
)
dtype
=
dtype
)
init_h
=
layers
.
fill_constant
([
num_layers
,
batch_size
,
hidden_size
],
init_h
=
layers
.
fill_constant
([
num_layers
,
batch_size
,
hidden_size
],
dtype
,
0.0
)
dtype
,
0.0
)
init_c
=
layers
.
fill_constant
([
num_layers
,
batch_size
,
hidden_size
],
init_c
=
layers
.
fill_constant
([
num_layers
,
batch_size
,
hidden_size
],
dtype
,
0.0
)
dtype
,
0.0
)
rnn_out
,
last_h
,
last_c
=
layers
.
lstm
(
input
,
init_h
,
init_c
,
seq_len
,
rnn_out
,
last_h
,
last_c
=
layers
.
lstm
(
input
,
init_h
,
init_c
,
seq_len
,
hidden_size
,
num_layers
,
hidden_size
,
num_layers
,
dropout_prob
,
False
,
True
)
dropout_prob
,
False
,
True
)
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
exe
=
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
input_i
=
np
.
random
.
uniform
(
low
=-
0.1
,
input_i
=
np
.
random
.
uniform
(
low
=-
0.1
,
high
=
0.1
,
high
=
0.1
,
size
=
(
seq_len
,
batch_size
,
size
=
(
seq_len
,
batch_size
,
hidden_size
)).
astype
(
dtype
)
hidden_size
)).
astype
(
dtype
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'input'
:
input_i
},
feed
=
{
'input'
:
input_i
},
fetch_list
=
[
rnn_out
,
last_h
,
last_c
,
'cudnn_lstm_0.w_0'
])
fetch_list
=
[
rnn_out
,
last_h
,
last_c
,
'cudnn_lstm_0.w_0'
])
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_rnn_op.py
浏览文件 @
c6c9c186
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.layers
as
layers
import
random
import
random
import
sys
import
sys
from
op_test
import
OpTest
from
op_test
import
OpTest
sys
.
path
.
append
(
"./rnn"
)
sys
.
path
.
append
(
"./rnn"
)
from
rnn_numpy
import
SimpleRNN
,
LSTM
,
GRU
from
rnn_numpy
import
SimpleRNN
,
LSTM
,
GRU
from
convert
import
get_params_for_net
from
convert
import
get_params_for_net
random
.
seed
(
2
)
random
.
seed
(
2
)
np
.
set_printoptions
(
threshold
=
np
.
inf
)
np
.
set_printoptions
(
threshold
=
np
.
inf
)
paddle
.
enable_static
()
paddle
.
enable_static
()
class
TestRNNOp
(
OpTest
):
class
TestRNNOp
(
OpTest
):
def
get_weight_names
(
self
):
def
get_weight_names
(
self
):
weight_names
=
[]
weight_names
=
[]
for
i
in
range
(
self
.
num_layers
):
for
i
in
range
(
self
.
num_layers
):
for
j
in
range
(
0
,
2
*
self
.
direction_num
):
for
j
in
range
(
0
,
2
*
self
.
direction_num
):
weight_names
.
append
(
"{}.weight_{}"
.
format
(
i
,
j
))
weight_names
.
append
(
"{}.weight_{}"
.
format
(
i
,
j
))
for
i
in
range
(
self
.
num_layers
):
for
i
in
range
(
self
.
num_layers
):
for
j
in
range
(
0
,
2
*
self
.
direction_num
):
for
j
in
range
(
0
,
2
*
self
.
direction_num
):
weight_names
.
append
(
"{}.bias_{}"
.
format
(
i
,
j
))
weight_names
.
append
(
"{}.bias_{}"
.
format
(
i
,
j
))
return
weight_names
return
weight_names
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"rnn"
self
.
op_type
=
"rnn"
self
.
dtype
=
np
.
float32
if
core
.
is_compiled_with_rocm
()
else
np
.
float64
self
.
dtype
=
np
.
float32
if
core
.
is_compiled_with_rocm
()
else
np
.
float64
self
.
sequence_length
=
None
if
core
.
is_compiled_with_rocm
(
self
.
sequence_length
=
None
if
core
.
is_compiled_with_rocm
(
)
else
np
.
array
([
12
,
11
,
10
,
9
,
8
],
dtype
=
np
.
int32
)
)
else
np
.
array
([
12
,
11
,
10
,
9
,
8
],
dtype
=
np
.
int32
)
self
.
num_layers
=
1
self
.
num_layers
=
1
self
.
is_bidirec
=
False
self
.
is_bidirec
=
False
self
.
mode
=
"LSTM"
self
.
mode
=
"LSTM"
self
.
is_test
=
False
self
.
is_test
=
False
self
.
dropout
=
0.0
self
.
dropout
=
0.0
self
.
set_attrs
()
self
.
set_attrs
()
self
.
direction_num
=
2
if
self
.
is_bidirec
else
1
self
.
direction_num
=
2
if
self
.
is_bidirec
else
1
direction
=
"bidirectional"
if
self
.
is_bidirec
else
"forward"
direction
=
"bidirectional"
if
self
.
is_bidirec
else
"forward"
seq_length
=
12
seq_length
=
12
batch_size
=
5
batch_size
=
5
input_size
=
3
input_size
=
3
hidden_size
=
2
hidden_size
=
2
input
=
np
.
random
.
uniform
(
low
=-
0.1
,
input
=
np
.
random
.
uniform
(
low
=-
0.1
,
high
=
0.1
,
high
=
0.1
,
size
=
(
seq_length
,
batch_size
,
size
=
(
seq_length
,
batch_size
,
input_size
)).
astype
(
self
.
dtype
)
input_size
)).
astype
(
self
.
dtype
)
if
self
.
sequence_length
is
not
None
:
if
self
.
sequence_length
is
not
None
:
input
[
11
][
1
:][:]
=
0
input
[
11
][
1
:][:]
=
0
input
[
10
][
2
:][:]
=
0
input
[
10
][
2
:][:]
=
0
input
[
9
][
3
:][:]
=
0
input
[
9
][
3
:][:]
=
0
input
[
8
][
4
:][:]
=
0
input
[
8
][
4
:][:]
=
0
rnn1
=
LSTM
(
input_size
,
rnn1
=
LSTM
(
input_size
,
hidden_size
,
hidden_size
,
num_layers
=
self
.
num_layers
,
num_layers
=
self
.
num_layers
,
time_major
=
True
,
time_major
=
True
,
direction
=
direction
,
direction
=
direction
,
dropout
=
self
.
dropout
,
dropout
=
self
.
dropout
,
dtype
=
self
.
dtype
)
dtype
=
self
.
dtype
)
flat_w
=
get_params_for_net
(
rnn1
)
flat_w
=
get_params_for_net
(
rnn1
)
output
,
(
last_hidden
,
output
,
(
last_hidden
,
last_cell
)
=
rnn1
(
input
,
sequence_length
=
self
.
sequence_length
)
last_cell
)
=
rnn1
(
input
,
sequence_length
=
self
.
sequence_length
)
if
core
.
is_compiled_with_rocm
():
if
core
.
is_compiled_with_rocm
():
def
rocm_rnn_get_place
():
def
rocm_rnn_get_place
():
places
=
[
core
.
CUDAPlace
(
0
)]
places
=
[
core
.
CUDAPlace
(
0
)]
return
places
return
places
self
.
_get_places
=
rocm_rnn_get_place
self
.
_get_places
=
rocm_rnn_get_place
init_h
=
np
.
zeros
((
self
.
num_layers
*
self
.
direction_num
,
batch_size
,
init_h
=
np
.
zeros
((
self
.
num_layers
*
self
.
direction_num
,
batch_size
,
hidden_size
)).
astype
(
self
.
dtype
)
hidden_size
)).
astype
(
self
.
dtype
)
init_c
=
np
.
zeros
((
self
.
num_layers
*
self
.
direction_num
,
batch_size
,
init_c
=
np
.
zeros
((
self
.
num_layers
*
self
.
direction_num
,
batch_size
,
hidden_size
)).
astype
(
self
.
dtype
)
hidden_size
)).
astype
(
self
.
dtype
)
state_out
=
np
.
ndarray
((
300
)).
astype
(
"uint8"
)
state_out
=
np
.
ndarray
((
300
)).
astype
(
"uint8"
)
self
.
inputs
=
{
self
.
inputs
=
{
'Input'
:
input
,
'Input'
:
input
,
'WeightList'
:
flat_w
,
'WeightList'
:
flat_w
,
'PreState'
:
[(
'init_h'
,
init_h
),
(
'init_c'
,
init_c
)],
'PreState'
:
[(
'init_h'
,
init_h
),
(
'init_c'
,
init_c
)],
'SequenceLength'
:
self
.
sequence_length
'SequenceLength'
:
self
.
sequence_length
}
}
if
self
.
sequence_length
is
None
:
if
self
.
sequence_length
is
None
:
self
.
inputs
=
{
self
.
inputs
=
{
'Input'
:
input
,
'Input'
:
input
,
'WeightList'
:
flat_w
,
'WeightList'
:
flat_w
,
'PreState'
:
[(
'init_h'
,
init_h
),
(
'init_c'
,
init_c
)],
'PreState'
:
[(
'init_h'
,
init_h
),
(
'init_c'
,
init_c
)],
}
}
self
.
attrs
=
{
self
.
attrs
=
{
'dropout_prob'
:
self
.
dropout
,
'dropout_prob'
:
self
.
dropout
,
'is_bidirec'
:
self
.
is_bidirec
,
'is_bidirec'
:
self
.
is_bidirec
,
'input_size'
:
input_size
,
'input_size'
:
input_size
,
'hidden_size'
:
hidden_size
,
'hidden_size'
:
hidden_size
,
'num_layers'
:
self
.
num_layers
,
'num_layers'
:
self
.
num_layers
,
'mode'
:
self
.
mode
,
'mode'
:
self
.
mode
,
'is_test'
:
self
.
is_test
'is_test'
:
self
.
is_test
}
}
self
.
outputs
=
{
self
.
outputs
=
{
'Out'
:
output
,
'Out'
:
output
,
"State"
:
[(
'last_hidden'
,
last_hidden
),
(
'last_cell'
,
last_cell
)],
"State"
:
[(
'last_hidden'
,
last_hidden
),
(
'last_cell'
,
last_cell
)],
'Reserve'
:
np
.
ndarray
((
400
)).
astype
(
"uint8"
),
'Reserve'
:
np
.
ndarray
((
400
)).
astype
(
"uint8"
),
'DropoutState'
:
state_out
'DropoutState'
:
state_out
}
}
def
test_output
(
self
):
def
test_output
(
self
):
self
.
check_output
(
no_check_set
=
[
'Reserve'
,
'DropoutState'
])
self
.
check_output
(
no_check_set
=
[
'Reserve'
,
'DropoutState'
])
def
set_attrs
(
self
):
def
set_attrs
(
self
):
pass
pass
def
test_grad
(
self
):
def
test_grad
(
self
):
if
not
self
.
is_test
:
if
not
self
.
is_test
:
var_name_list
=
self
.
get_weight_names
()
var_name_list
=
self
.
get_weight_names
()
grad_check_list
=
[
'Input'
,
'init_h'
,
'init_c'
]
grad_check_list
=
[
'Input'
,
'init_h'
,
'init_c'
]
grad_check_list
.
extend
(
var_name_list
)
grad_check_list
.
extend
(
var_name_list
)
self
.
check_grad
(
set
(
grad_check_list
),
self
.
check_grad
(
set
(
grad_check_list
),
[
'Out'
,
'last_hidden'
,
'last_cell'
])
[
'Out'
,
'last_hidden'
,
'last_cell'
])
class
TestRNNOp1
(
TestRNNOp
):
class
TestRNNOp1
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
sequence_length
=
None
self
.
sequence_length
=
None
class
TestRNNOp2
(
TestRNNOp
):
class
TestRNNOp2
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
sequence_length
=
None
self
.
sequence_length
=
None
self
.
is_bidirec
=
True
self
.
is_bidirec
=
True
class
TestRNNOp3
(
TestRNNOp
):
class
TestRNNOp3
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
is_test
=
True
self
.
is_test
=
True
self
.
sequence_length
=
None
self
.
sequence_length
=
None
class
TestRNNOp4
(
TestRNNOp
):
class
TestRNNOp4
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
is_test
=
True
self
.
is_test
=
True
self
.
sequence_length
=
None
self
.
sequence_length
=
None
self
.
is_bidirec
=
True
self
.
is_bidirec
=
True
class
TestRNNOp5
(
TestRNNOp
):
class
TestRNNOp5
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
num_layers
=
2
self
.
num_layers
=
2
class
TestRNNOp6
(
TestRNNOp
):
class
TestRNNOp6
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
num_layers
=
2
self
.
num_layers
=
2
self
.
is_bidirec
=
True
self
.
is_bidirec
=
True
class
TestRNNOp7
(
TestRNNOp
):
class
TestRNNOp7
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
num_layers
=
2
self
.
num_layers
=
2
self
.
is_bidirec
=
True
self
.
is_bidirec
=
True
self
.
is_test
=
True
self
.
is_test
=
True
class
TestRNNOp8
(
TestRNNOp
):
class
TestRNNOp8
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
num_layers
=
2
self
.
num_layers
=
2
self
.
is_bidirec
=
True
self
.
is_bidirec
=
True
self
.
sequence_length
=
None
self
.
sequence_length
=
None
class
TestRNNOp9
(
TestRNNOp
):
class
TestRNNOp9
(
TestRNNOp
):
def
set_attrs
(
self
):
def
set_attrs
(
self
):
self
.
num_layers
=
3
self
.
num_layers
=
3
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/transpiler/memory_optimization_transpiler.py
浏览文件 @
c6c9c186
...
@@ -21,7 +21,7 @@ def memory_optimize(input_program,
...
@@ -21,7 +21,7 @@ def memory_optimize(input_program,
level
=
0
,
level
=
0
,
skip_grads
=
True
):
skip_grads
=
True
):
"""
"""
:api_attr: Static Graph
:api_attr: Static Graph
This API is deprecated since 1.6. Please do not use it. The better
This API is deprecated since 1.6. Please do not use it. The better
memory optimization strategies are enabled by default.
memory optimization strategies are enabled by default.
...
@@ -43,7 +43,7 @@ def memory_optimize(input_program,
...
@@ -43,7 +43,7 @@ def memory_optimize(input_program,
def
release_memory
(
input_program
,
skip_opt_set
=
None
):
def
release_memory
(
input_program
,
skip_opt_set
=
None
):
"""
"""
:api_attr: Static Graph
:api_attr: Static Graph
This API is deprecated since 1.6. Please do not use it. The better
This API is deprecated since 1.6. Please do not use it. The better
memory optimization strategies are enabled by default.
memory optimization strategies are enabled by default.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录