diff --git a/paddle/fluid/operators/activation_op.cc b/paddle/fluid/operators/activation_op.cc index a444812ed99f8d3dc741e1fc6f8ffc6b3153c188..6a239da553a58f2c4b7369671551e5464ad2d46f 100644 --- a/paddle/fluid/operators/activation_op.cc +++ b/paddle/fluid/operators/activation_op.cc @@ -146,26 +146,6 @@ $$out = \frac{1}{1 + e^{-x}}$$ )DOC"; -UNUSED constexpr char SiluDoc[] = R"DOC( -Silu Activation Operator - -$$out = x * \\frac{1}{1 + e^{-x}}$$ -)DOC"; - -UNUSED constexpr char LogSigmoidDoc[] = R"DOC( -Logsigmoid Activation Operator - -$$out = \\log \\frac{1}{1 + e^{-x}}$$ - -)DOC"; - -UNUSED constexpr char Expm1Doc[] = R"DOC( -Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base. - -$$out = e^x - 1$$ - -)DOC"; - UNUSED constexpr char ReluDoc[] = R"DOC( Relu Activation Operator. @@ -206,43 +186,6 @@ $$out = \\frac{1}{\\sqrt{x}}$$ )DOC"; -UNUSED constexpr char CeilDoc[] = R"DOC( -Ceil Operator. Computes ceil of x element-wise. - -.. math:: - out = \left \lceil x \right \rceil - -)DOC"; - -UNUSED constexpr char FloorDoc[] = R"DOC( -Floor Activation Operator. Computes floor of x element-wise. - -$$out = \\lfloor x \\rfloor$$ - -)DOC"; - -UNUSED constexpr char RoundDoc[] = R"DOC( -The OP rounds the values in the input to the nearest integer value. - -.. code-block:: text - - input: - x.shape = [4] - x.data = [1.2, -0.9, 3.4, 0.9] - - output: - out.shape = [4] - out.data = [1., -1., 3., 1.] - -)DOC"; - -UNUSED constexpr char ReciprocalDoc[] = R"DOC( -Reciprocal Activation Operator. - -$$out = \\frac{1}{x}$$ - -)DOC"; - UNUSED constexpr char LogDoc[] = R"DOC( Log Activation Operator. @@ -252,33 +195,6 @@ Natural logarithm of x. )DOC"; -UNUSED constexpr char Log2Doc[] = R"DOC( -Log2 Activation Operator. - -$$out = \log_2x$$ - -logarithm of x base to 2. - -)DOC"; - -UNUSED constexpr char Log10Doc[] = R"DOC( -Log10 Activation Operator. - -$$out = \log_10_x$$ - -logarithm of x base to 10. - -)DOC"; - -UNUSED constexpr char Log1pDoc[] = R"DOC( -Log Activation Operator. - -$out = \ln(x+1)$ - -Natural logarithm of x. - -)DOC"; - UNUSED constexpr char SquareDoc[] = R"DOC( The OP square each elements of the inputs. @@ -356,28 +272,6 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker { } }; -class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddInput("X", "Input of HardShrink operator"); - AddOutput("Out", "Output of HardShrink operator"); - AddAttr("threshold", - "The value of threshold for HardShrink. [default: 0.5]") - .SetDefault(0.5f); - AddComment(R"DOC( -:strong:`HardShrink activation operator` - -.. math:: - out = \begin{cases} - x, \text{if } x > \lambda \\ - x, \text{if } x < -\lambda \\ - 0, \text{otherwise} - \end{cases} - -)DOC"); - } -}; - class BReluOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { @@ -454,39 +348,6 @@ class ELUGradOpMaker : public framework::SingleGradOpMaker { } }; -class LogitOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddInput("X", "Input of Logit operator"); - AddOutput("Out", "Output of Logit operator"); - AddAttr("eps", - "(float, default 1e-6f) the epsilon for input clamp bound") - .SetDefault(1e-6f); - AddComment(R"DOC( -Logit Operator. - -this function is defined as follow: -$ logit=ln\left ( {\frac {x} {1-x}} \right ) $ - -)DOC"); - } -}; - -template -class LogitGradOpMaker : public framework::SingleGradOpMaker { - public: - using framework::SingleGradOpMaker::SingleGradOpMaker; - - protected: - void Apply(GradOpPtr grad_op) const override { - grad_op->SetType("logit_grad"); - grad_op->SetInput("X", this->Input("X")); - grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); - grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); - grad_op->SetAttrMap(this->Attrs()); - } -}; - class CELUOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { @@ -591,31 +452,6 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker { } }; -class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { - public: - void Make() override { - AddInput("X", "An N-D Tensor with data type float32, float64. "); - AddOutput("Out", "A Tensor with the same shape as input. "); - AddAttr("slope", - "The slope of the linear approximation of sigmoid. Its " - "value MUST BE positive. Default is 0.2. ") - .SetDefault(0.2f); - AddAttr( - "offset", - "The offset of the linear approximation of sigmoid. Default is 0.5. ") - .SetDefault(0.5f); - AddComment(R"DOC( -HardSigmoid Activation Operator. - -A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391), -which is much faster than sigmoid. - -$$out = \max(0, \min(1, slope * x + offset))$$ - -)DOC"); - } -}; - class SwishOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { @@ -684,22 +520,12 @@ It is recommended to use the defaults for this activation. }; REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc); -REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc); -REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc); -REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc); REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc); REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc); REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc); REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc); REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc); -REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc); -REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc); -REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc); -REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc); REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc); -REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc); -REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc); -REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc); REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc); REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc); @@ -1093,73 +919,6 @@ DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer, DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer, {"DDX", "D_DOut"}); -class LogitOp : public framework::OperatorWithKernel { - public: - LogitOp(const std::string& type, - const framework::VariableNameMap& inputs, - const framework::VariableNameMap& outputs, - const framework::AttributeMap& attrs) - : OperatorWithKernel(type, inputs, outputs, attrs) {} - - void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE_EQ(ctx->HasInput("X"), - true, - platform::errors::InvalidArgument( - "Input(%s) of LogitOp should not be null.", "X")); - PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), - true, - platform::errors::InvalidArgument( - "Output(%s) of LogitOp should not be null.", "Out")); - - ctx->ShareDim("X", /*->*/ "Out"); - ctx->ShareLoD("X", /*->*/ "Out"); - } - - protected: - framework::OpKernelType GetExpectedKernelType( - const framework::ExecutionContext& ctx) const override { - framework::LibraryType library{framework::LibraryType::kPlain}; - phi::DataLayout layout = phi::DataLayout::kAnyLayout; - auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); - - return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library); - } -}; - -class LogitGradOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE_EQ( - ctx->HasInput(framework::GradVarName("Out")), - true, - platform::errors::InvalidArgument( - "Input(%s) of LogitGradOp should not be null.", "DOut")); - PADDLE_ENFORCE_EQ(ctx->HasInput("X"), - true, - platform::errors::InvalidArgument( - "Input(%s) of LogitGradOp should not be null.", "X")); - PADDLE_ENFORCE_EQ( - ctx->HasOutput(framework::GradVarName("X")), - true, - platform::errors::InvalidArgument( - "Output(%s) of LogitGradOp should not be null.", "DX")); - auto x_grad_name = framework::GradVarName("X"); - ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X")); - ctx->ShareLoD("X", /*->*/ x_grad_name); - } - - protected: - framework::OpKernelType GetExpectedKernelType( - const framework::ExecutionContext& ctx) const override { - framework::LibraryType library{framework::LibraryType::kPlain}; - phi::DataLayout layout = phi::DataLayout::kAnyLayout; - auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); - return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library); - } -}; - template class PowGradOpMaker : public framework::SingleGradOpMaker { public: @@ -1273,10 +1032,6 @@ REGISTER_ACTIVATION_OP(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor); REGISTER_ACTIVATION_OP(relu6, Relu6, Relu6Functor, Relu6GradFunctor); -REGISTER_ACTIVATION_OP(hard_shrink, - HardShrink, - HardShrinkFunctor, - HardShrinkGradFunctor); REGISTER_ACTIVATION_OP(softshrink, SoftShrink, SoftShrinkFunctor, @@ -1285,42 +1040,21 @@ REGISTER_ACTIVATION_OP(tanh_shrink, TanhShrink, TanhShrinkFunctor, TanhShrinkGradFunctor); -REGISTER_ACTIVATION_OP(silu, Silu, SiluFunctor, SiluGradFunctor); REGISTER_ACTIVATION_OP(softsign, Softsign, SoftsignFunctor, SoftsignGradFunctor); -REGISTER_ACTIVATION_OP(hard_sigmoid, - HardSigmoid, - HardSigmoidFunctor, - HardSigmoidGradFunctor); -REGISTER_ACTIVATION_OP(logsigmoid, - LogSigmoid, - LogSigmoidFunctor, - LogSigmoidGradFunctor); -REGISTER_ACTIVATION_OP(expm1, Expm1, Expm1Functor, Expm1GradFunctor); REGISTER_ACTIVATION_OP(softplus, Softplus, SoftplusFunctor, SoftplusGradFunctor); REGISTER_ACTIVATION_OP(mish, Mish, MishFunctor, MishGradFunctor); REGISTER_ACTIVATION_OP(stanh, STanh, STanhFunctor, STanhGradFunctor); -REGISTER_ACTIVATION_OP(reciprocal, - Reciprocal, - ReciprocalFunctor, - ReciprocalGradFunctor); - -REGISTER_ACTIVATION_OP(log2, Log2, Log2Functor, Log2GradFunctor); -REGISTER_ACTIVATION_OP(log10, Log10, Log10Functor, Log10GradFunctor); -REGISTER_ACTIVATION_OP(log1p, Log1p, Log1pFunctor, Log1pGradFunctor); REGISTER_ACTIVATION_OP(hard_swish, HardSwish, HardSwishFunctor, HardSwishGradFunctor); REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor); -REGISTER_ACTIVATION_OP(round, Round, RoundFunctor, ZeroGradFunctor); -REGISTER_ACTIVATION_OP(floor, Floor, FloorFunctor, ZeroGradFunctor); -REGISTER_ACTIVATION_OP(ceil, Ceil, CeilFunctor, ZeroGradFunctor); /* ========================== sigmoid register ============================= */ @@ -1459,17 +1193,6 @@ REGISTER_OPERATOR( /* ========================================================================== */ -/* ======================== logit register ============================ - */ -REGISTER_OPERATOR(logit, - ops::LogitOp, - ops::LogitOpMaker, - ops::LogitGradOpMaker, - ops::LogitGradOpMaker); -REGISTER_OPERATOR(logit_grad, ops::LogitGradOp); - -/* ========================================================================== */ - /* ======================== celu register ============================ */ REGISTER_OPERATOR( diff --git a/paddle/phi/api/yaml/backward.yaml b/paddle/phi/api/yaml/backward.yaml index b13bd97a5a6a596a320713b50ea1daa11a9f0220..a3611bcca3477314067523ca4584a73b436dbc19 100644 --- a/paddle/phi/api/yaml/backward.yaml +++ b/paddle/phi/api/yaml/backward.yaml @@ -106,6 +106,17 @@ func : bmm_grad data_type : out_grad +- backward_op : ceil_grad + forward : ceil(Tensor x) -> Tensor(out) + args : (Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param: [out_grad] + kernel : + func : ceil_grad + inplace : (out_grad -> x_grad) + - backward_op : cholesky_grad forward : cholesky (Tensor x, bool upper) -> Tensor(out) args : (Tensor out, Tensor out_grad, bool upper) @@ -257,6 +268,17 @@ func : exp_grad inplace : (out_grad -> x_grad) +- backward_op : expm1_grad + forward : expm1 (Tensor x) -> Tensor(out) + args : (Tensor out, Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [out] + kernel : + func : expm1_grad + inplace : (out_grad -> x_grad) + - backward_op : fft_c2c_grad forward: fft_c2c(Tensor x, int64_t[] axes, str normalization, bool forward) -> Tensor(out) args : (Tensor out_grad, int64_t[] axes, str normalization, bool forward) @@ -295,6 +317,39 @@ output : Tensor(x_grad) invoke : flip(out_grad, axis) +- backward_op : floor_grad + forward : floor(Tensor x) -> Tensor(out) + args : (Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param: [out_grad] + kernel : + func : floor_grad + inplace : (out_grad -> x_grad) + +- backward_op : hardshrink_grad + forward : hardshrink (Tensor x, float threshold) -> Tensor(out) + args : (Tensor x, Tensor out_grad, float threshold) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : hard_shrink_grad + inplace : (out_grad -> x_grad) + +- backward_op : hardsigmoid_grad + forward : hardsigmoid (Tensor x, float slope, float offset) -> Tensor(out) + args : (Tensor out, Tensor out_grad, float slope, float offset) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [out] + kernel : + func : hard_sigmoid_grad + inplace : (out_grad -> x_grad) + - backward_op : lgamma_grad forward : lgamma(Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) @@ -305,6 +360,60 @@ kernel : func : lgamma_grad +- backward_op : log10_grad + forward : log10 (Tensor x) -> Tensor(out) + args : (Tensor x, Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : log10_grad + inplace : (out_grad -> x_grad) + +- backward_op : log1p_grad + forward : log1p (Tensor x) -> Tensor(out) + args : (Tensor x, Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : log1p_grad + inplace : (out_grad -> x_grad) + +- backward_op : log2_grad + forward : log2 (Tensor x) -> Tensor(out) + args : (Tensor x, Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : log2_grad + inplace : (out_grad -> x_grad) + +- backward_op : logit_grad + forward : logit (Tensor x, float eps = 1e-6f) -> Tensor(out) + args : (Tensor x, Tensor out_grad, float eps) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : logit_grad + +- backward_op : logsigmoid_grad + forward : logsigmoid (Tensor x) -> Tensor(out) + args : (Tensor x, Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : logsigmoid_grad + inplace : (out_grad -> x_grad) + - backward_op : mv_grad forward : mv (Tensor x, Tensor vec) -> Tensor(out) args : (Tensor x, Tensor vec, Tensor out_grad) @@ -325,6 +434,28 @@ kernel : func : poisson_grad +- backward_op : reciprocal_grad + forward : reciprocal (Tensor x) -> Tensor(out) + args : (Tensor out, Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [out] + kernel : + func : reciprocal_grad + inplace : (out_grad -> x_grad) + +- backward_op : round_grad + forward : round(Tensor x) -> Tensor(out) + args : (Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param: [out_grad] + kernel : + func : round_grad + inplace : (out_grad -> x_grad) + - backward_op : send_uv_grad forward : send_uv (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, str message_op = "ADD") -> Tensor(out) args: (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, Tensor out_grad, str message_op = "ADD") @@ -336,6 +467,17 @@ func : send_uv_grad data_type : x +- backward_op : silu_grad + forward : silu (Tensor x) -> Tensor(out) + args : (Tensor x, Tensor out_grad) + output : Tensor(x_grad) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : silu_grad + inplace : (out_grad -> x_grad) + - backward_op : sin_grad forward : sin (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) diff --git a/paddle/phi/api/yaml/legacy_backward.yaml b/paddle/phi/api/yaml/legacy_backward.yaml index 7d9da75c2320973fad30d130730714b03b3b16db..922cb70d6e7e156c734bd189cd023877cd3b0f10 100755 --- a/paddle/phi/api/yaml/legacy_backward.yaml +++ b/paddle/phi/api/yaml/legacy_backward.yaml @@ -217,17 +217,6 @@ invoke : cast (out_grad, x.dtype()) no_need_buffer : x -- backward_op : ceil_grad - forward : ceil(Tensor x) -> Tensor(out) - args : (Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param: [out_grad] - kernel : - func : ceil_grad - inplace : (out_grad -> x_grad) - - backward_op : celu_double_grad forward : celu_grad(Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x) args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha) @@ -621,17 +610,6 @@ no_need_buffer : x backward : expand_double_grad -- backward_op : expm1_grad - forward : expm1 (Tensor x) -> Tensor(out) - args : (Tensor out, Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [out] - kernel : - func : expm1_grad - inplace : (out_grad -> x_grad) - - backward_op : exponential__grad forward : exponential_ (Tensor x, float lam) -> Tensor(out) args : (Tensor out_grad) @@ -684,17 +662,6 @@ layout: out_grad inplace : (out_grad -> x_grad) -- backward_op : floor_grad - forward : floor(Tensor x) -> Tensor(out) - args : (Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param: [out_grad] - kernel : - func : floor_grad - inplace : (out_grad -> x_grad) - - backward_op : fmax_grad forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis) @@ -802,28 +769,6 @@ kernel : func : gumbel_softmax_grad -- backward_op : hardshrink_grad - forward : hardshrink (Tensor x, float threshold) -> Tensor(out) - args : (Tensor x, Tensor out_grad, float threshold) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : hard_shrink_grad - inplace : (out_grad -> x_grad) - -- backward_op : hardsigmoid_grad - forward : hardsigmoid (Tensor x, float slope, float offset) -> Tensor(out) - args : (Tensor out, Tensor out_grad, float slope, float offset) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [out] - kernel : - func : hard_sigmoid_grad - inplace : (out_grad -> x_grad) - - backward_op : hardswish_grad forward : hardswish (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold, float scale, float offset) @@ -1040,39 +985,6 @@ func : linear_interp_grad data_type : output_grad -- backward_op : log10_grad - forward : log10 (Tensor x) -> Tensor(out) - args : (Tensor x, Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : log10_grad - inplace : (out_grad -> x_grad) - -- backward_op : log1p_grad - forward : log1p (Tensor x) -> Tensor(out) - args : (Tensor x, Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : log1p_grad - inplace : (out_grad -> x_grad) - -- backward_op : log2_grad - forward : log2 (Tensor x) -> Tensor(out) - args : (Tensor x, Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : log2_grad - inplace : (out_grad -> x_grad) - - backward_op : log_double_grad forward : log_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x) args : (Tensor x, Tensor grad_out, Tensor grad_x_grad) @@ -1126,27 +1038,6 @@ kernel : func : logcumsumexp_grad -- backward_op : logit_grad - forward : logit (Tensor x, float eps = 1e-6f) -> Tensor(out) - args : (Tensor x, Tensor out_grad, float eps) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : logit_grad - -- backward_op : logsigmoid_grad - forward : logsigmoid (Tensor x) -> Tensor(out) - args : (Tensor x, Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : logsigmoid_grad - inplace : (out_grad -> x_grad) - - backward_op : logsumexp_grad forward : logsumexp(Tensor x, int64_t[] axis, bool keepdim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keepdim, bool reduce_all) @@ -1625,17 +1516,6 @@ output : Tensor(x_grad) invoke : real_grad_impl(out_grad, x_grad) -- backward_op : reciprocal_grad - forward : reciprocal (Tensor x) -> Tensor(out) - args : (Tensor out, Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [out] - kernel : - func : reciprocal_grad - inplace : (out_grad -> x_grad) - - backward_op : reduce_prod_grad forward : reduce_prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims, bool keep_dim, bool reduce_all) @@ -1803,17 +1683,6 @@ data_type : x no_need_buffer : x -- backward_op : round_grad - forward : round(Tensor x) -> Tensor(out) - args : (Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param: [out_grad] - kernel : - func : round_grad - inplace : (out_grad -> x_grad) - - backward_op : rsqrt_double_grad forward : rsqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x) args : (Tensor out, Tensor grad_x, Tensor grad_x_grad) @@ -1964,17 +1833,6 @@ output : Tensor(x_grad) invoke : scale(out_grad, 0.0, 0.0, true) -- backward_op : silu_grad - forward : silu (Tensor x) -> Tensor(out) - args : (Tensor x, Tensor out_grad) - output : Tensor(x_grad) - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : silu_grad - inplace : (out_grad -> x_grad) - - backward_op : slice_double_grad forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input) args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) @@ -2068,7 +1926,6 @@ args : (Tensor[] out_grad, Scalar axis = -1) output : Tensor(x_grad) invoke : concat( out_grad, axis) -# TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future. - backward_op : sqrt_double_grad forward : sqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x) diff --git a/paddle/phi/api/yaml/legacy_ops.yaml b/paddle/phi/api/yaml/legacy_ops.yaml index e6aa3b18f5f8648bf9a5a5f126257660f4858829..c42bc74461e5ad90ba75f5bc383204e839a2fb8b 100755 --- a/paddle/phi/api/yaml/legacy_ops.yaml +++ b/paddle/phi/api/yaml/legacy_ops.yaml @@ -357,16 +357,6 @@ data_type : x backward : cast_grad -- op : ceil - args : (Tensor x) - output : Tensor(out) - infer_meta : - func : UnchangedInferMeta - kernel : - func : ceil - inplace : (x -> out) - backward : ceil_grad - - op : celu args : (Tensor x, float alpha) output : Tensor(out) @@ -757,16 +747,6 @@ optional : y backward : expand_as_grad -- op : expm1 - args : (Tensor x) - output : Tensor - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : expm1 - backward : expm1_grad - - op : exponential_ args : (Tensor x, float lam) output : Tensor(out) @@ -834,16 +814,6 @@ intermediate : xshape backward : flatten_grad -- op : floor - args : (Tensor x) - output : Tensor(out) - infer_meta : - func : UnchangedInferMeta - kernel : - func : floor - inplace : (x -> out) - backward : floor_grad - - op : floor_divide args : (Tensor x, Tensor y) output : Tensor(out) @@ -1046,26 +1016,6 @@ func : gumbel_softmax backward : gumbel_softmax_grad -- op : hardshrink - args : (Tensor x, float threshold) - output : Tensor - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : hard_shrink - backward : hardshrink_grad - -- op : hardsigmoid - args : (Tensor x, float slope, float offset) - output : Tensor - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : hard_sigmoid - backward : hardsigmoid_grad - - op : hardswish args : (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) output : Tensor @@ -1359,33 +1309,6 @@ func : log backward: log_grad -- op : log10 - args : (Tensor x) - output : Tensor - infer_meta : - func : UnchangedInferMeta - kernel : - func : log10 - backward: log10_grad - -- op : log1p - args : (Tensor x) - output : Tensor - infer_meta : - func : UnchangedInferMeta - kernel : - func : log1p - backward: log1p_grad - -- op : log2 - args : (Tensor x) - output : Tensor - infer_meta : - func : UnchangedInferMeta - kernel : - func : log2 - backward: log2_grad - - op : log_loss args : (Tensor input, Tensor label, float epsilon) output : Tensor @@ -1445,25 +1368,6 @@ kernel : func : logical_xor -- op : logit - args : (Tensor x, float eps = 1e-6f) - output : Tensor - infer_meta : - func : UnchangedInferMeta - param : [x] - kernel : - func : logit - backward : logit_grad - -- op : logsigmoid - args : (Tensor x) - output : Tensor - infer_meta : - func : UnchangedInferMeta - kernel : - func : logsigmoid - backward : logsigmoid_grad - - op : logsumexp args : (Tensor x, int64_t[] axis, bool keepdim, bool reduce_all) output : Tensor(out) @@ -1989,16 +1893,6 @@ func : real backward : real_grad -- op : reciprocal - args : (Tensor x) - output : Tensor(out) - infer_meta : - func : UnchangedInferMeta - kernel : - func : reciprocal - inplace : (x -> out) - backward : reciprocal_grad - - op : reduce_prod args : (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) output : Tensor @@ -2130,16 +2024,6 @@ func : roll backward : roll_grad -- op : round - args : (Tensor x) - output : Tensor(out) - infer_meta : - func : UnchangedInferMeta - kernel : - func : round - inplace : (x -> out) - backward : round_grad - - op : rsqrt args : (Tensor x) output : Tensor(out) @@ -2295,15 +2179,6 @@ func : sign backward : sign_grad -- op : silu - args : (Tensor x) - output : Tensor - infer_meta : - func : UnchangedInferMeta - kernel : - func : silu - backward : silu_grad - - op : slice args : (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor diff --git a/paddle/phi/api/yaml/op_compat.yaml b/paddle/phi/api/yaml/op_compat.yaml index 533a9d9dc040b7edff0fb6c462deba458c2282f8..2857beccb10d2dfcffe09361f489bc11cc18cfc6 100644 --- a/paddle/phi/api/yaml/op_compat.yaml +++ b/paddle/phi/api/yaml/op_compat.yaml @@ -120,6 +120,10 @@ - op : ceil backward : ceil_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] @@ -347,6 +351,10 @@ - op : expm1 backward : expm1_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] @@ -398,6 +406,10 @@ - op : floor backward : floor_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] @@ -457,6 +469,20 @@ extra : attrs : [bool use_mkldnn = false] +- op : hardshrink (hard_shrink) + backward : hardshrink_grad (hard_shrink_grad) + inputs : + x : X + outputs : + out : Out + +- op : hardsigmoid (hard_sigmoid) + backward : hardsigmoid_grad (hard_sigmoid_grad) + inputs : + x : X + outputs : + out : Out + - op : heaviside (elementwise_heaviside) backward : heaviside_grad (elementwise_heaviside_grad) extra : @@ -496,16 +522,28 @@ - op : log10 backward : log10_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] - op : log1p backward : log1p_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] - op : log2 backward : log2_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] @@ -514,6 +552,18 @@ extra : attrs : [bool use_mkldnn = false] +- op : logit + inputs : + x : X + outputs : + out : Out + +- op : logsigmoid + inputs : + x : X + outputs : + out : Out + - op : logsigmoid backward : logsigmoid_grad extra : @@ -620,6 +670,10 @@ - op : reciprocal backward : reciprocal_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] @@ -688,6 +742,10 @@ - op : round backward : round_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] @@ -728,6 +786,10 @@ - op : silu backward : silu_grad + inputs : + x : X + outputs : + out : Out extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] diff --git a/paddle/phi/api/yaml/ops.yaml b/paddle/phi/api/yaml/ops.yaml index 39bdde76ca2a3af1782075542c31c5f6a73894ca..5fd80df6864cf231dd64fab35e4d177d13b78f27 100644 --- a/paddle/phi/api/yaml/ops.yaml +++ b/paddle/phi/api/yaml/ops.yaml @@ -96,6 +96,16 @@ func : bmm backward : bmm_grad +- op : ceil + args : (Tensor x) + output : Tensor(out) + infer_meta : + func : UnchangedInferMeta + kernel : + func : ceil + inplace : (x -> out) + backward : ceil_grad + - op : cholesky args : (Tensor x, bool upper=false) output : Tensor @@ -226,6 +236,16 @@ inplace : (x -> out) backward : exp_grad +- op : expm1 + args : (Tensor x) + output : Tensor + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : expm1 + backward : expm1_grad + - op : fft_c2c args : (Tensor x, int64_t[] axes, str normalization, bool forward) output : Tensor @@ -262,6 +282,36 @@ func : flip backward : flip_grad +- op : floor + args : (Tensor x) + output : Tensor(out) + infer_meta : + func : UnchangedInferMeta + kernel : + func : floor + inplace : (x -> out) + backward : floor_grad + +- op : hardshrink + args : (Tensor x, float threshold = 0.5) + output : Tensor (out) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : hard_shrink + backward : hardshrink_grad + +- op : hardsigmoid + args : (Tensor x, float slope = 0.2, float offset = 0.5) + output : Tensor (out) + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : hard_sigmoid + backward : hardsigmoid_grad + - op : lgamma args : (Tensor x) output : Tensor(out) @@ -271,6 +321,52 @@ func : lgamma backward : lgamma_grad +- op : log10 + args : (Tensor x) + output : Tensor + infer_meta : + func : UnchangedInferMeta + kernel : + func : log10 + backward: log10_grad + +- op : log1p + args : (Tensor x) + output : Tensor + infer_meta : + func : UnchangedInferMeta + kernel : + func : log1p + backward: log1p_grad + +- op : log2 + args : (Tensor x) + output : Tensor + infer_meta : + func : UnchangedInferMeta + kernel : + func : log2 + backward: log2_grad + +- op : logit + args : (Tensor x, float eps = 1e-6f) + output : Tensor + infer_meta : + func : UnchangedInferMeta + param : [x] + kernel : + func : logit + backward : logit_grad + +- op : logsigmoid + args : (Tensor x) + output : Tensor + infer_meta : + func : UnchangedInferMeta + kernel : + func : logsigmoid + backward : logsigmoid_grad + - op : mv args : (Tensor x, Tensor vec) output : Tensor @@ -289,6 +385,26 @@ func : poisson backward : poisson_grad +- op : reciprocal + args : (Tensor x) + output : Tensor(out) + infer_meta : + func : UnchangedInferMeta + kernel : + func : reciprocal + inplace : (x -> out) + backward : reciprocal_grad + +- op : round + args : (Tensor x) + output : Tensor(out) + infer_meta : + func : UnchangedInferMeta + kernel : + func : round + inplace : (x -> out) + backward : round_grad + - op : send_uv args : (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, str message_op = "ADD") output : Tensor(out) @@ -299,6 +415,15 @@ data_type : x backward : send_uv_grad +- op : silu + args : (Tensor x) + output : Tensor + infer_meta : + func : UnchangedInferMeta + kernel : + func : silu + backward : silu_grad + - op : sin args : (Tensor x) output : Tensor diff --git a/paddle/phi/ops/compat/activation_sig.cc b/paddle/phi/ops/compat/activation_sig.cc index 990790e4798ed27b87b00f0aa0b37210d0c4798b..85e8f7c2de721d94a771444111b65acd5366b0f1 100644 --- a/paddle/phi/ops/compat/activation_sig.cc +++ b/paddle/phi/ops/compat/activation_sig.cc @@ -47,16 +47,10 @@ DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(ThresholdedRelu, "thresholded_relu", "threshold"); DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(SoftShrink, "soft_shrink", "lambda"); -DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(HardShrink, "hard_shrink", "threshold"); DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Mish, "mish", "threshold"); DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(TanhShrink, "tanh_shrink", ); // NOLINT -DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Silu, "silu", ); // NOLINT DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Softsign, "softsign", ); // NOLINT -DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(LogSigmoid, "logsigmoid", ); // NOLINT DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Log, "log", ); // NOLINT -DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Log2, "log2", ); // NOLINT -DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Log10, "log10", ); // NOLINT -DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Log1p, "log1p", ); // NOLINT DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Celu, "celu", "alpha"); // NOLINT DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(HardSwish, "hard_swish", @@ -75,15 +69,10 @@ DEFINE_ACT_GRAD_DEPX_OP_ARGMAP(Softplus, DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Relu, "relu", ); // NOLINT DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Tanh, "tanh", ); // NOLINT DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Sigmoid, "sigmoid", ); // NOLINT -DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Expm1, "expm1", ); // NOLINT -DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Reciprocal, "reciprocal", ); // NOLINT DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Sqrt, "sqrt", ); // NOLINT DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Rsqrt, "rsqrt", ); // NOLINT DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(Relu6, "relu6", "threshold"); // NOLINT -DEFINE_ACT_GRAD_DEPOUT_OP_ARGMAP(HardSigmoid, - "hard_sigmoid", - "slope" comma "offset"); // NOLINT KernelSignature SqrtActiOpArgumentMapping(const ArgumentMappingContext& ctx) { if (ctx.IsDenseTensorInput("X")) { return KernelSignature("sqrt", {"X"}, {}, {"Out"}); @@ -100,10 +89,6 @@ KernelSignature SquareActiOpArgumentMapping(const ArgumentMappingContext& ctx) { } } -DEFINE_ACT_GRAD_NODEP_OP_ARGMAP(Round, "round", ); // NOLINT -DEFINE_ACT_GRAD_NODEP_OP_ARGMAP(Floor, "floor", ); // NOLINT -DEFINE_ACT_GRAD_NODEP_OP_ARGMAP(Ceil, "ceil", ); // NOLINT - KernelSignature ReluDoubleGradOpArgumentMapping( const ArgumentMappingContext& ctx) { return KernelSignature("relu_double_grad", {"Out", "DDX"}, {}, {"DDOut"}); @@ -151,10 +136,6 @@ KernelSignature EluOpArgumentMapping(const ArgumentMappingContext& ctx) { return KernelSignature("elu", {"X"}, {"alpha"}, {"Out"}); } -KernelSignature LogitGradOpArgumentMapping(const ArgumentMappingContext& ctx) { - return KernelSignature("logit_grad", {"X", "Out@GRAD"}, {"eps"}, {"X@GRAD"}); -} - KernelSignature EluGradOpArgumentMapping(const ArgumentMappingContext& ctx) { return KernelSignature( "elu_grad", {"X", "Out", "Out@GRAD"}, {"alpha"}, {"X@GRAD"}); @@ -233,10 +214,7 @@ PD_REGISTER_BASE_KERNEL_NAME(brelu_grad, hard_tanh_grad); PD_REGISTER_ARG_MAPPING_FN(relu_grad, phi::ReluGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(expm1_grad, phi::Expm1GradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(square_grad, phi::SquareGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(reciprocal_grad, - phi::ReciprocalGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(sqrt_grad, phi::SqrtGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(sqrt_grad_grad, phi::SqrtDoubleGradOpArgumentMapping); @@ -265,40 +243,26 @@ PD_REGISTER_ARG_MAPPING_FN(thresholded_relu_grad, PD_REGISTER_ARG_MAPPING_FN(relu6_grad, phi::Relu6GradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(softshrink_grad, phi::SoftShrinkGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(hard_shrink_grad, - phi::HardShrinkGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(tanh_shrink_grad, phi::TanhShrinkGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(elu, phi::EluOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(elu_grad, phi::EluGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(elu_grad_grad, phi::EluDoubleGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(silu_grad, phi::SiluGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(softsign_grad, phi::SoftsignGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(sigmoid_grad, phi::SigmoidGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(sigmoid_grad_grad, phi::SigmoidDoubleGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(sigmoid_triple_grad, phi::SigmoidTripleGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(logsigmoid_grad, - phi::LogSigmoidGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(hard_sigmoid_grad, - phi::HardSigmoidGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(logit_grad, phi::LogitGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(log_grad, phi::LogGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(log_grad_grad, phi::LogDoubleGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(log2_grad, phi::Log2GradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(log10_grad, phi::Log10GradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(log1p_grad, phi::Log1pGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(sqrt, phi::SqrtActiOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(square, phi::SquareActiOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(hard_swish_grad, phi::HardSwishGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(swish_grad, phi::SwishGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(round_grad, phi::RoundGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(floor_grad, phi::FloorGradOpArgumentMapping); -PD_REGISTER_ARG_MAPPING_FN(ceil_grad, phi::CeilGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(pow_grad, phi::PowGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(pow, phi::PowOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(celu_grad, phi::CeluGradOpArgumentMapping); diff --git a/python/paddle/tensor/ops.py b/python/paddle/tensor/ops.py index 3aa63e2e0938734a5494f4dd98f84fe2e47d80cc..4a5994076cf89b32debfa06d6312b1d2cec20b9a 100644 --- a/python/paddle/tensor/ops.py +++ b/python/paddle/tensor/ops.py @@ -39,14 +39,9 @@ __activations_noattr__ = [ ] __unary_func__ = [ - 'expm1', 'sqrt', 'rsqrt', 'abs', - 'ceil', - 'floor', - 'round', - 'reciprocal', 'square', ] @@ -119,15 +114,12 @@ add_sample_code( r""" Examples: .. code-block:: python - import paddle import paddle.nn.functional as F - x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0]) out = F.silu(x) print(out) # [ 0.7310586 1.7615942 2.8577224, 3.9280552 ] - """, ) @@ -136,31 +128,12 @@ add_sample_code( r""" Examples: .. code-block:: python - import paddle import paddle.nn.functional as F - x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = F.log_sigmoid(x) print(out) # [-0.91301525 -0.79813887 -0.64439666 -0.55435524] - -""", -) - -add_sample_code( - globals()["expm1"], - r""" -Examples: - .. code-block:: python - - import paddle - - x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) - out = paddle.expm1(x) - print(out) - # [-0.32967997, -0.18126924, 0.10517092, 0.34985882] - """, ) @@ -245,70 +218,6 @@ Examples: """, ) -add_sample_code( - globals()["ceil"], - r""" -Examples: - .. code-block:: python - - import paddle - - x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) - out = paddle.ceil(x) - print(out) - # [-0. -0. 1. 1.] - -""", -) - -add_sample_code( - globals()["floor"], - r""" -Examples: - .. code-block:: python - - import paddle - - x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) - out = paddle.floor(x) - print(out) - # [-1. -1. 0. 0.] - -""", -) - -add_sample_code( - globals()["round"], - r""" -Examples: - .. code-block:: python - - import paddle - - x = paddle.to_tensor([-0.5, -0.2, 0.6, 1.5]) - out = paddle.round(x) - print(out) - # [-1. -0. 1. 2.] - -""", -) - -add_sample_code( - globals()["reciprocal"], - r""" -Examples: - .. code-block:: python - - import paddle - - x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) - out = paddle.reciprocal(x) - print(out) - # [-2.5 -5. 10. 3.33333333] - -""", -) - add_sample_code( globals()["square"], r""" @@ -582,6 +491,44 @@ def atanh(x, name=None): return out +def ceil(x, name=None): + """ + + Ceil Operator. Computes ceil of x element-wise. + + .. math:: + out = \\left \\lceil x \\right \\rceil + + Args: + x (Tensor): Input of Ceil operator, an N-D Tensor, with data type float32, float64 or float16. + name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. + + Returns: + Tensor. Output of Ceil operator, a Tensor with shape same as input. + + Examples: + .. code-block:: python + + import paddle + + x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) + out = paddle.ceil(x) + print(out) + # [-0. -0. 1. 1.] + + """ + if in_dygraph_mode(): + return _C_ops.ceil(x) + if _in_legacy_dygraph(): + return _legacy_C_ops.ceil(x) + + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'ceil') + helper = LayerHelper('ceil', **locals()) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='ceil', inputs={"X": x}, outputs={"Out": out}) + return out + + def cos(x, name=None): """ Cosine Operator. Computes cosine of x element-wise. @@ -627,18 +574,18 @@ def cosh(x, name=None): Input range `(-inf, inf)`, output range `(1, inf)`. - .. math:: - out = \frac{exp(x)+exp(-x)}{2} + .. math:: + out = \\frac{exp(x)+exp(-x)}{2} - Args: - x (Tensor): Input of Cosh operator, an N-D Tensor, with data type float32, float64 or float16. - name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. + Args: + x (Tensor): Input of Cosh operator, an N-D Tensor, with data type float32, float64 or float16. + name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. - Returns: - Tensor. Output of Cosh operator, a Tensor with shape same as input. + Returns: + Tensor. Output of Cosh operator, a Tensor with shape same as input. - Examples: - .. code-block:: python + Examples: + .. code-block:: python import paddle @@ -711,6 +658,167 @@ def exp(x, name=None): return out +def expm1(x, name=None): + """ + + Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base. + + .. math:: + out = e^x - 1 + + Args: + x (Tensor): Input of Expm1 operator, an N-D Tensor, with data type float32, float64 or float16. + name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. + + Returns: + Tensor. Output of Expm1 operator, a Tensor with shape same as input. + + Examples: + .. code-block:: python + + import paddle + + x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) + out = paddle.expm1(x) + print(out) + # [-0.32967997, -0.18126924, 0.10517092, 0.34985882] + + """ + if in_dygraph_mode(): + return _C_ops.expm1(x) + if _in_legacy_dygraph(): + return _legacy_C_ops.expm1(x) + + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'expm1') + helper = LayerHelper('expm1', **locals()) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='expm1', inputs={"X": x}, outputs={"Out": out}) + return out + + +def floor(x, name=None): + """ + + Floor Activation Operator. Computes floor of x element-wise. + + .. math:: + out = \\lfloor x \\rfloor + + Args: + x (Tensor): Input of Floor operator, an N-D Tensor, with data type float32, float64 or float16. + name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. + + Returns: + Tensor. Output of Floor operator, a Tensor with shape same as input. + + Examples: + .. code-block:: python + + import paddle + + x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) + out = paddle.floor(x) + print(out) + # [-1. -1. 0. 0.] + + """ + if in_dygraph_mode(): + return _C_ops.floor(x) + if _in_legacy_dygraph(): + return _legacy_C_ops.floor(x) + + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'floor') + helper = LayerHelper('floor', **locals()) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='floor', inputs={"X": x}, outputs={"Out": out}) + return out + + +def reciprocal(x, name=None): + """ + + Reciprocal Activation Operator. + + .. math:: + out = \\frac{1}{x} + + Args: + x (Tensor): Input of Reciprocal operator, an N-D Tensor, with data type float32, float64 or float16. + name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. + + Returns: + Tensor. Output of Reciprocal operator, a Tensor with shape same as input. + + Examples: + .. code-block:: python + + import paddle + + x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) + out = paddle.reciprocal(x) + print(out) + # [-2.5 -5. 10. 3.33333333] + + """ + if in_dygraph_mode(): + return _C_ops.reciprocal(x) + if _in_legacy_dygraph(): + return _legacy_C_ops.reciprocal(x) + + check_variable_and_dtype( + x, 'x', ['float16', 'float32', 'float64'], 'reciprocal' + ) + helper = LayerHelper('reciprocal', **locals()) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='reciprocal', inputs={"X": x}, outputs={"Out": out}) + return out + + +def round(x, name=None): + """ + + Round the values in the input to the nearest integer value. + + .. code-block:: text + + input: + x.shape = [4] + x.data = [1.2, -0.9, 3.4, 0.9] + + output: + out.shape = [4] + out.data = [1., -1., 3., 1.] + + Args: + x (Tensor): Input of Round operator, an N-D Tensor, with data type float32, float64 or float16. + name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. + + Returns: + Tensor. Output of Round operator, a Tensor with shape same as input. + + Examples: + .. code-block:: python + + import paddle + + x = paddle.to_tensor([-0.5, -0.2, 0.6, 1.5]) + out = paddle.round(x) + print(out) + # [-1. -0. 1. 2.] + + """ + if in_dygraph_mode(): + return _C_ops.round(x) + if _in_legacy_dygraph(): + return _legacy_C_ops.round(x) + + check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'round') + helper = LayerHelper('round', **locals()) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + helper.append_op(type='round', inputs={"X": x}, outputs={"Out": out}) + return out + + def sin(x, name=None): """ Sine Activation Operator.