提交 c5cff997 编写于 作者: S ShenLiang 提交者: Dong Daxiang

fix doc of eye、gather_nd、scatter_nd、scatter_nd_add、center_loss (#19990)

* fix doc, test=document_fix test=document_preview
上级 0ec2c081
...@@ -126,7 +126,7 @@ paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', ' ...@@ -126,7 +126,7 @@ paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', '
paddle.fluid.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd4ac047e0d5e6b7b1c5ff6ef7d7cfff5')) paddle.fluid.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd4ac047e0d5e6b7b1c5ff6ef7d7cfff5'))
paddle.fluid.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'eef66730acc806088f9e8ba90252bda1')) paddle.fluid.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'eef66730acc806088f9e8ba90252bda1'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, None)), ('document', '0dc8181f14a33f91fbae9385a9b3d9fd')) paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, None)), ('document', '0dc8181f14a33f91fbae9385a9b3d9fd'))
paddle.fluid.layers.center_loss (ArgSpec(args=['input', 'label', 'num_classes', 'alpha', 'param_attr', 'update_center'], varargs=None, keywords=None, defaults=(True,)), ('document', '7129819d94625c6104054e8187768589')) paddle.fluid.layers.center_loss (ArgSpec(args=['input', 'label', 'num_classes', 'alpha', 'param_attr', 'update_center'], varargs=None, keywords=None, defaults=(True,)), ('document', '9f61b78e88de4a33c7f9f13f6ebf3a4c'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd8e405486a1e4e189b51d6ee28d67b1e')) paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd8e405486a1e4e189b51d6ee28d67b1e'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', '6d3ee14da70adfa36d85c40b18716ef2')) paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', '6d3ee14da70adfa36d85c40b18716ef2'))
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'c37d51aad655c8a9f9b045c64717320a')) paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'c37d51aad655c8a9f9b045c64717320a'))
...@@ -212,10 +212,10 @@ paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale' ...@@ -212,10 +212,10 @@ paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale'
paddle.fluid.layers.resize_trilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1, 'NCDHW')), ('document', '5b4d0f823f94c260fe5e6f7eec60a797')) paddle.fluid.layers.resize_trilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1, 'NCDHW')), ('document', '5b4d0f823f94c260fe5e6f7eec60a797'))
paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 'NCHW')), ('document', '0107a5cbae1aef3f381d3d769a6068eb')) paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 'NCHW')), ('document', '0107a5cbae1aef3f381d3d769a6068eb'))
paddle.fluid.layers.gather (ArgSpec(args=['input', 'index', 'overwrite'], varargs=None, keywords=None, defaults=(True,)), ('document', 'f985c9b66e3aec96fa753a8eb44c991c')) paddle.fluid.layers.gather (ArgSpec(args=['input', 'index', 'overwrite'], varargs=None, keywords=None, defaults=(True,)), ('document', 'f985c9b66e3aec96fa753a8eb44c991c'))
paddle.fluid.layers.gather_nd (ArgSpec(args=['input', 'index', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3cc24f9cf135770aa6263dba25b457f9')) paddle.fluid.layers.gather_nd (ArgSpec(args=['input', 'index', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7092e3da56bc91dd7b0cb967cfff101a'))
paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name', 'overwrite'], varargs=None, keywords=None, defaults=(None, True)), ('document', '69b22affd4a6326502af166f04c095ab')) paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name', 'overwrite'], varargs=None, keywords=None, defaults=(None, True)), ('document', '69b22affd4a6326502af166f04c095ab'))
paddle.fluid.layers.scatter_nd_add (ArgSpec(args=['ref', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'c2fa5ee7484b52b95a28abf1d8827cd0')) paddle.fluid.layers.scatter_nd_add (ArgSpec(args=['ref', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b797ea7aa9e7d5c0e54b208d3bde0db6'))
paddle.fluid.layers.scatter_nd (ArgSpec(args=['index', 'updates', 'shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '14b5449ce42f8ff4ac4ce79b41c86cc5')) paddle.fluid.layers.scatter_nd (ArgSpec(args=['index', 'updates', 'shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '15feefb05913d8bd14fbc586cd4c603c'))
paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'abe3f714120117a5a3d3e639853932bf')) paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'abe3f714120117a5a3d3e639853932bf'))
paddle.fluid.layers.random_crop (ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,)), ('document', '042af0b8abea96b40c22f6e70d99e042')) paddle.fluid.layers.random_crop (ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,)), ('document', '042af0b8abea96b40c22f6e70d99e042'))
paddle.fluid.layers.mean_iou (ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None), ('document', 'e714b4aa7993dfe9c1a38886875dbaac')) paddle.fluid.layers.mean_iou (ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None), ('document', 'e714b4aa7993dfe9c1a38886875dbaac'))
...@@ -341,7 +341,7 @@ paddle.fluid.layers.linspace (ArgSpec(args=['start', 'stop', 'num', 'dtype'], va ...@@ -341,7 +341,7 @@ paddle.fluid.layers.linspace (ArgSpec(args=['start', 'stop', 'num', 'dtype'], va
paddle.fluid.layers.zeros_like (ArgSpec(args=['x', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd88a23bcdc443719b3953593f7cef14a')) paddle.fluid.layers.zeros_like (ArgSpec(args=['x', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd88a23bcdc443719b3953593f7cef14a'))
paddle.fluid.layers.ones_like (ArgSpec(args=['x', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd18d42059c6b189cbd3fab2fcb206c15')) paddle.fluid.layers.ones_like (ArgSpec(args=['x', 'out'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd18d42059c6b189cbd3fab2fcb206c15'))
paddle.fluid.layers.diag (ArgSpec(args=['diagonal'], varargs=None, keywords=None, defaults=None), ('document', '88a15e15f0098d549f07a01eaebf9ce3')) paddle.fluid.layers.diag (ArgSpec(args=['diagonal'], varargs=None, keywords=None, defaults=None), ('document', '88a15e15f0098d549f07a01eaebf9ce3'))
paddle.fluid.layers.eye (ArgSpec(args=['num_rows', 'num_columns', 'batch_shape', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 'float32')), ('document', '25389d1e239a5d1cda66298f908ec549')) paddle.fluid.layers.eye (ArgSpec(args=['num_rows', 'num_columns', 'batch_shape', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 'float32')), ('document', '60cdc70ae43ba69fae36d720ef3016a1'))
paddle.fluid.layers.While ('paddle.fluid.layers.control_flow.While', ('document', '50110155608a00f43d3d3fd1be41dcb4')) paddle.fluid.layers.While ('paddle.fluid.layers.control_flow.While', ('document', '50110155608a00f43d3d3fd1be41dcb4'))
paddle.fluid.layers.While.__init__ (ArgSpec(args=['self', 'cond', 'is_test', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.layers.While.__init__ (ArgSpec(args=['self', 'cond', 'is_test', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.While.block (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.layers.While.block (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
......
...@@ -375,8 +375,10 @@ def center_loss(input, ...@@ -375,8 +375,10 @@ def center_loss(input,
""" """
**Center loss Cost layer** **Center loss Cost layer**
This layer accepts input (deep features,the output of the last hidden layer) This OP accepts input (deep features,the output of the last hidden layer)
and target label and return the center loss cost and target label and return the center loss cost. The average of the
distances of each sample in the mini-batch from the center of the
corresponding category is calculated as the center loss.
For deep features, :math:`X`, and target labels, :math:`Y`, the equation is: For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
...@@ -385,9 +387,9 @@ def center_loss(input, ...@@ -385,9 +387,9 @@ def center_loss(input,
Out = \\frac{1}{2}(X - Y)^2 Out = \\frac{1}{2}(X - Y)^2
Args: Args:
input (Variable): a 2-D tensor with shape[N x M]. input (Variable): a 2-D tensor with shape[N x M]. Its dtype should be float32 or float64.
label (Variable): the groud truth which is a 2-D tensor label (Variable): the groud truth which is a 2-D tensor
with shape[N x 1],where N is the batch size. with shape[N x 1],where N is the batch size. Its dtype should be int32.
num_classes (int): the number of classification categories. num_classes (int): the number of classification categories.
alpha (float|Variable): learning rate of centers. alpha (float|Variable): learning rate of centers.
param_attr (ParamAttr): Attribute initializer of centers. param_attr (ParamAttr): Attribute initializer of centers.
...@@ -9537,10 +9539,11 @@ def gather_nd(input, index, name=None): ...@@ -9537,10 +9539,11 @@ def gather_nd(input, index, name=None):
= [23] = [23]
Args: Args:
input (Variable): The source input input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
Its dtype should be int32, int64.
name (str|None): A name for this layer(optional). If set None, the name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically layer will be named automatically.
Returns: Returns:
output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:] output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
...@@ -9626,11 +9629,14 @@ def scatter_nd_add(ref, index, updates, name=None): ...@@ -9626,11 +9629,14 @@ def scatter_nd_add(ref, index, updates, name=None):
**Scatter_nd_add Layer** **Scatter_nd_add Layer**
Output is obtained by applying sparse addition to a single value Output is obtained by applying sparse addition to a single value
or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R` or slice in a Variable.
:attr:`ref` is a Tensor with rank :math:`R`
and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index`
has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
is a Tensor with rank :math:`K - 1 + R - Q` and its is a Tensor with rank :math:`K - 1 + R - Q` and its
shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` . shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` , According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
add the corresponding :attr:`updates` slice to the :attr:`ref` slice add the corresponding :attr:`updates` slice to the :attr:`ref` slice
which is obtained by the last one dimension of :attr:`index` . which is obtained by the last one dimension of :attr:`index` .
...@@ -9662,15 +9668,15 @@ def scatter_nd_add(ref, index, updates, name=None): ...@@ -9662,15 +9668,15 @@ def scatter_nd_add(ref, index, updates, name=None):
output = [[67, 19], [-16, -27]] output = [[67, 19], [-16, -27]]
Args: Args:
ref (Variable): The ref input. ref (Variable): The ref input. Its dtype should be int32, int64, float32, float64.
index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank. index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
Its dtype should be int32 or int64 as it is used as indexes. Its dtype should be int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter_nd_add op, and it must have the same type updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:] as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
name (str|None): The output variable name. Default None. name (str|None): The output variable name. If set None, the layer will be named automatically.
Returns: Returns:
output (Variable): The output is a tensor with the same shape and type as ref. output (Variable): The output is a tensor with the same shape and dtype as ref.
Examples: Examples:
...@@ -9719,10 +9725,10 @@ def scatter_nd(index, updates, shape, name=None): ...@@ -9719,10 +9725,10 @@ def scatter_nd(index, updates, shape, name=None):
Args: Args:
index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape). index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
Its dtype should be int32 or int64 as it is used as indexes. Its dtype should be int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter_nd op. updates (Variable): The updated value of scatter_nd op. Its dtype should be int32, int64, float32, float64.
It must have the shape index.shape[:-1] + shape[index.shape[-1]:] It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
shape(tuple|list): Shape of output tensor. shape(tuple|list): Shape of output tensor.
name (str|None): The output variable name. Default None. name (str|None): The output variable name. If set None, the layer will be named automatically.
Returns: Returns:
output (Variable): The output is a tensor with the same type as :attr:`updates` . output (Variable): The output is a tensor with the same type as :attr:`updates` .
......
...@@ -1018,10 +1018,11 @@ def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'): ...@@ -1018,10 +1018,11 @@ def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
If None, default: num_rows. If None, default: num_rows.
batch_shape(list(int)): If provided, the returned tensor will have a leading batch_shape(list(int)): If provided, the returned tensor will have a leading
batch size of this shape. batch size of this shape.
dtype(string): 'float32'|'int32'|..., the data type of the returned tensor. dtype(string): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64.
Returns: Returns:
Variable: An identity tensor of shape batch_shape + [num_rows, num_columns]. Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
Examples: Examples:
.. code-block:: python .. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册