未验证 提交 c4dd596d 编写于 作者: W wangchaochaohu 提交者: GitHub

cusum op optimization for GPU kernel (#24321)

上级 d43e4047
...@@ -13,11 +13,334 @@ See the License for the specific language governing permissions and ...@@ -13,11 +13,334 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/cum_op.h" #include "paddle/fluid/operators/cum_op.h"
#include "paddle/fluid/platform/gpu_launch_param_config.h"
namespace ops = paddle::operators; using Tensor = paddle::framework::Tensor;
using CUDA = paddle::platform::CUDADeviceContext; using LoDTensor = paddle::framework::LoDTensor;
namespace paddle {
namespace operators {
template <typename T>
__global__ void OuterScan(const T* in, T* out, int inner_dim_size,
int outer_dim_size, int scan_dim_size, bool exclusive,
bool reverse) {
int id = blockIdx.y * blockDim.x + threadIdx.x;
for (int outer_index = blockIdx.x; outer_index < outer_dim_size;
outer_index += gridDim.x) {
for (int inner_index = blockIdx.y * blockDim.x + threadIdx.x;
inner_index < inner_dim_size; inner_index += gridDim.y * blockDim.x) {
int scan_index_init = 0;
int forward_direction = 1;
int src_index =
outer_index * scan_dim_size * inner_dim_size + inner_index;
int dst_index =
outer_index * scan_dim_size * inner_dim_size + inner_index;
if (reverse) {
src_index = src_index + (scan_dim_size - 1) * inner_dim_size;
dst_index = dst_index + (scan_dim_size - 1) * inner_dim_size;
forward_direction = -1;
}
if (exclusive) {
scan_index_init = 1;
out[dst_index] = 0;
dst_index = dst_index + (forward_direction * inner_dim_size);
}
T acc = 0;
for (int scan_index = scan_index_init; scan_index < scan_dim_size;
++scan_index) {
acc = in[src_index] + acc;
out[dst_index] = acc;
src_index += (forward_direction * inner_dim_size);
dst_index += (forward_direction * inner_dim_size);
}
}
}
}
// inclusive scan
template <typename T, int num_threads_x, int num_threads_y>
__global__ void InnerMostDimInclusiveScan(const T* in, T* out,
int inner_dim_size,
int outer_dim_size, int scan_dim_size,
bool reverse) {
__shared__ T share_data[num_threads_y][num_threads_x * 2];
T* share_row = share_data[threadIdx.y];
int forward_direction = 1;
if (reverse) forward_direction = -1;
for (int block_row = blockIdx.x * blockDim.y; block_row < outer_dim_size;
block_row += blockDim.y * gridDim.x) {
int row = block_row + threadIdx.y;
T acc = 0;
const T* row_src = in + row * scan_dim_size;
T* row_dst = out + row * scan_dim_size;
int block_col = 0;
bool loop_condition = (block_col < scan_dim_size);
if (reverse) {
loop_condition = (block_col >= 0);
block_col = scan_dim_size - 1;
}
while (loop_condition) {
// Load data into share memory(two value per thread)
int col1 = block_col + threadIdx.x * forward_direction;
int col2 = block_col + (num_threads_x + threadIdx.x) * forward_direction;
if (row < outer_dim_size) {
if (col1 < scan_dim_size && col1 >= 0) {
share_row[threadIdx.x] = row_src[col1];
} else {
share_row[threadIdx.x] = 0;
}
if (col2 < scan_dim_size && col2 >= 0) {
share_row[num_threads_x + threadIdx.x] = row_src[col2];
} else {
share_row[num_threads_x + threadIdx.x] = 0;
}
// Add the previous block acc to the result
if (threadIdx.x == 0) {
share_row[0] = share_row[0] + acc;
}
}
__syncthreads();
// Up-Sweep
for (unsigned s = num_threads_x, d = 1; s >= 1; s >>= 1, d <<= 1) {
if (row < outer_dim_size && threadIdx.x < s) {
unsigned offset = (2 * threadIdx.x + 1) * d - 1;
share_row[offset + d] = share_row[offset] + share_row[offset + d];
}
__syncthreads();
}
// Down-Sweep
for (unsigned s = 2, d = blockDim.x / 2; d >= 1; s <<= 1, d >>= 1) {
if (row < outer_dim_size && threadIdx.x < s - 1) {
unsigned offset = 2 * (threadIdx.x + 1) * d - 1;
share_row[offset + d] = share_row[offset] + share_row[offset + d];
}
__syncthreads();
}
// Write to the output
if (row < outer_dim_size) {
if (col1 < scan_dim_size && col1 >= 0)
row_dst[col1] = share_row[threadIdx.x];
if (col2 < scan_dim_size && col2 >= 0)
row_dst[col2] = share_row[num_threads_x + threadIdx.x];
}
acc = share_row[2 * num_threads_x - 1];
__syncthreads();
block_col += 2 * num_threads_x * forward_direction;
if (reverse)
loop_condition = (block_col >= 0);
else
loop_condition = (block_col < scan_dim_size);
}
}
}
// exclusive block scan and store block sum for large scan
template <typename T>
__global__ void InnerMostDimExclusiveScan(const T* in, T* out, T* sum_data,
int inner_dim_size,
int outer_dim_size, int scan_dim_size,
int two_power, bool reverse) {
// https://stackoverflow.com/questions/27570552/templated-cuda-kernel-with-dynamic-shared-memory
extern __shared__ __align__(sizeof(T)) unsigned char raw_tmp[];
T* share_tmp = reinterpret_cast<T*>(raw_tmp);
int thread_id = threadIdx.x;
int block_id = blockIdx.x;
int block_scan_size = blockDim.x * 2;
int remain = scan_dim_size % (2 * blockDim.x);
if (block_id == gridDim.x - 1 && remain != 0) block_scan_size = remain;
int col1 = thread_id;
int col2 = thread_id + (block_scan_size) / 2;
int index1 = blockIdx.y * (scan_dim_size) + block_id * blockDim.x * 2 + col1;
int index2 = blockIdx.y * (scan_dim_size) + block_id * blockDim.x * 2 + col2;
if (reverse) {
index1 = blockIdx.y * (scan_dim_size) + scan_dim_size - 1 -
(block_id * blockDim.x * 2 + col1);
index2 = blockIdx.y * (scan_dim_size) + scan_dim_size - 1 -
(block_id * blockDim.x * 2 + col2);
}
int sum_index = blockIdx.y * gridDim.x + block_id;
if (thread_id < block_scan_size) {
share_tmp[col1 + (col1 >> 5)] = in[index1];
share_tmp[col2 + (col2 >> 5)] = in[index2];
} else {
share_tmp[col1 + (col1 >> 5)] = 0;
share_tmp[col2 + (col2 >> 5)] = 0;
}
// Up-Sweep
int offset = 1;
for (int d = (two_power / 2); d > 0; d >>= 1) {
__syncthreads();
if (thread_id < d) {
int tmp_index1 = offset * (2 * thread_id + 1) - 1;
int tmp_index2 = offset * (2 * thread_id + 2) - 1;
tmp_index1 = tmp_index1 + (tmp_index1 >> 5);
tmp_index2 = tmp_index2 + (tmp_index2 >> 5);
share_tmp[tmp_index2] += share_tmp[tmp_index1];
}
offset *= 2;
}
__syncthreads();
if (thread_id == 0) {
int tmp_index = (two_power - 1) + ((two_power - 1) >> 5);
sum_data[sum_index] = share_tmp[tmp_index];
share_tmp[tmp_index] = 0;
}
REGISTER_OP_CUDA_KERNEL(cumsum, ops::CumKernel<CUDA, ops::CumsumFunctor<float>>, // Down Sweep
ops::CumKernel<CUDA, ops::CumsumFunctor<double>>, for (int d = 1; d < two_power; d *= 2) {
ops::CumKernel<CUDA, ops::CumsumFunctor<int>>, offset >>= 1;
ops::CumKernel<CUDA, ops::CumsumFunctor<int64_t>>); __syncthreads();
if (thread_id < d) {
int tmp_index1 = offset * (2 * thread_id + 1) - 1;
int tmp_index2 = offset * (2 * thread_id + 2) - 1;
tmp_index1 = tmp_index1 + (tmp_index1 >> 5);
tmp_index2 = tmp_index2 + (tmp_index2 >> 5);
T tmp = share_tmp[tmp_index1];
share_tmp[tmp_index1] = share_tmp[tmp_index2];
share_tmp[tmp_index2] += tmp;
}
}
__syncthreads();
if (col1 < block_scan_size) out[index1] = share_tmp[col1 + (col1 >> 5)];
if (col2 < block_scan_size) out[index2] = share_tmp[col2 + (col2 >> 5)];
}
// for large scan_dim_size array we need to add for correct result
template <typename T>
__global__ void AddBlockScan(T* result, T* sum, int size, int scan_dim_size,
int sum_size, bool reverse) {
int idx = threadIdx.x + blockDim.x * (blockIdx.x + blockIdx.y * gridDim.x);
int block_id_start = blockIdx.y * sum_size;
int block_id_end = blockIdx.x + blockIdx.y * sum_size;
int block_id = blockIdx.x;
int thread_id = threadIdx.x;
int col = block_id * blockDim.x + thread_id + size;
int index = blockIdx.y * (scan_dim_size) + col;
if (reverse) {
index = blockIdx.y * (scan_dim_size) + scan_dim_size - 1 - col;
}
if (col >= scan_dim_size || col < 0) return;
for (int i = block_id_start; i <= block_id_end; i++) {
result[index] += sum[i];
}
}
template <typename DeviceContext, typename T>
class CumCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out");
int axis = context.Attr<int>("axis");
bool exclusive = context.Attr<bool>("exclusive");
bool reverse = context.Attr<bool>("reverse");
auto in_dims = in->dims();
auto size = in->numel();
if (axis == -1) {
axis = in_dims.size() - 1;
}
PADDLE_ENFORCE_LT(
axis, in_dims.size(),
platform::errors::InvalidArgument("axis(%d) should be less than the "
"dimension(%d) of the input tensor.",
axis, in_dims.size()));
int scan_dim_size = in_dims[axis];
bool optimize_condition = (axis == (in_dims.size() - 1)) ? true : false;
int outer_dim_size = 1;
int inner_dim_size = 1;
// treat all dim index < axis as outer_dim_size
for (size_t i = 0; i < axis; i++) {
outer_dim_size *= in_dims[i];
}
// treat all dim index > axis as innner_dim_size
for (size_t i = axis + 1; i < in_dims.size(); i++) {
inner_dim_size *= in_dims[i];
}
T* out_data = out->mutable_data<T>(context.GetPlace());
const T* in_data = in->data<T>();
auto& dev_ctx = context.template device_context<DeviceContext>();
if (optimize_condition) {
auto nextPowerOfTwo = [](int x) -> int {
int ret = 1;
while (ret < x) ret = ret * 2;
return ret;
};
if (exclusive) {
int element_per_block = nextPowerOfTwo(scan_dim_size) / 2;
if (element_per_block > 512 || element_per_block < 32) {
element_per_block = 64;
}
int two_power = element_per_block * 2;
dim3 block(element_per_block);
dim3 grid(((scan_dim_size + 1) / 2 + block.x - 1) / block.x,
outer_dim_size);
int offset_size = (element_per_block * 2) >> 5;
int share_mem_size = (element_per_block * 2 + offset_size) * sizeof(T);
Tensor scan_sum;
paddle::framework::DDim dims{
((scan_dim_size + 1) / 2 + block.x - 1) / block.x, outer_dim_size};
scan_sum.Resize(dims);
T* sum_data = scan_sum.mutable_data<T>(context.GetPlace());
InnerMostDimExclusiveScan<
T><<<grid, block, share_mem_size, dev_ctx.stream()>>>(
in_data, out_data, sum_data, inner_dim_size, outer_dim_size,
scan_dim_size, two_power, reverse);
// for large scan array we need to do add for correct result
int element_size = element_per_block * 2;
if (scan_dim_size > element_size) {
dim3 sum_block(element_per_block * 2);
dim3 sum_grid((scan_dim_size - element_size + block.x - 1) / block.x,
outer_dim_size);
int sum_size = ((scan_dim_size + 1) / 2 + block.x - 1) / block.x;
AddBlockScan<T><<<sum_grid, sum_block, 0, dev_ctx.stream()>>>(
out_data, sum_data, element_size, scan_dim_size, sum_size,
reverse);
}
} else {
dim3 block(32, 16);
dim3 grid((outer_dim_size + block.y - 1) / block.y);
InnerMostDimInclusiveScan<T, 32,
16><<<grid, block, 0, dev_ctx.stream()>>>(
in_data, out_data, inner_dim_size, outer_dim_size, scan_dim_size,
reverse);
}
} else {
dim3 block(std::min(512, inner_dim_size));
dim3 grid(outer_dim_size, (inner_dim_size + block.x - 1) / block.x);
OuterScan<T><<<grid, block, 0, dev_ctx.stream()>>>(
in_data, out_data, inner_dim_size, outer_dim_size, scan_dim_size,
exclusive, reverse);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
cumsum, ops::CumCUDAKernel<paddle::platform::CUDADeviceContext, float>,
ops::CumCUDAKernel<paddle::platform::CUDADeviceContext, double>,
ops::CumCUDAKernel<paddle::platform::CUDADeviceContext, int>,
ops::CumCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);
...@@ -108,24 +108,108 @@ class TestSumOp7(OpTest): ...@@ -108,24 +108,108 @@ class TestSumOp7(OpTest):
self.check_grad(['X'], 'Out') self.check_grad(['X'], 'Out')
class TestSumOp8(OpTest): class TestSumOpExclusive1(OpTest):
def setUp(self): def setUp(self):
self.op_type = "cumsum" self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True} self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((5, 6, 4)).astype("float64") a = np.random.random((4, 5, 65)).astype("float64")
self.inputs = {'X': a} self.inputs = {'X': a}
self.outputs = { self.outputs = {
'Out': np.concatenate( 'Out': np.concatenate(
(np.zeros( (np.zeros(
(5, 6, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)), (4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2) axis=2)
} }
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out') class TestSumOpExclusive2(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((1, 1, 888)).astype("float64")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpExclusive3(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((4, 5, 888)).astype("float32")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpExclusive4(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((1, 1, 3049)).astype("float64")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(1, 1, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpExclusive5(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, "exclusive": True}
a = np.random.random((4, 5, 3096)).astype("float64")
self.inputs = {'X': a}
self.outputs = {
'Out': np.concatenate(
(np.zeros(
(4, 5, 1), dtype=np.float64), a[:, :, :-1].cumsum(axis=2)),
axis=2)
}
def test_check_output(self):
self.check_output()
class TestSumOpReverseExclusive(OpTest):
def setUp(self):
self.op_type = "cumsum"
self.attrs = {'axis': 2, 'reverse': True, "exclusive": True}
a = np.random.random((4, 5, 6)).astype("float64")
self.inputs = {'X': a}
a = np.flip(a, axis=2)
self.outputs = {
'Out': np.concatenate(
(np.flip(
a[:, :, :-1].cumsum(axis=2), axis=2), np.zeros(
(4, 5, 1), dtype=np.float64)),
axis=2)
}
def test_check_output(self):
self.check_output()
class BadInputTest(unittest.TestCase): class BadInputTest(unittest.TestCase):
...@@ -133,7 +217,7 @@ class BadInputTest(unittest.TestCase): ...@@ -133,7 +217,7 @@ class BadInputTest(unittest.TestCase):
with fluid.program_guard(fluid.Program()): with fluid.program_guard(fluid.Program()):
def test_bad_x(): def test_bad_x():
data = [1, 2, 3] data = [1, 2, 4]
result = fluid.layers.cumsum(data, axis=0) result = fluid.layers.cumsum(data, axis=0)
self.assertRaises(TypeError, test_bad_x) self.assertRaises(TypeError, test_bad_x)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册