Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c4d03052
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c4d03052
编写于
4月 05, 2020
作者:
W
WuHaobo
提交者:
GitHub
4月 05, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add tril op and triu op (#23469)
add tril op and triu op
上级
3eb12bd1
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
575 addition
and
4 deletion
+575
-4
paddle/fluid/operators/tril_triu_op.cc
paddle/fluid/operators/tril_triu_op.cc
+116
-0
paddle/fluid/operators/tril_triu_op.cu
paddle/fluid/operators/tril_triu_op.cu
+30
-0
paddle/fluid/operators/tril_triu_op.h
paddle/fluid/operators/tril_triu_op.h
+101
-0
python/paddle/fluid/tests/unittests/test_tril_triu_op.py
python/paddle/fluid/tests/unittests/test_tril_triu_op.py
+139
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+2
-2
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+187
-2
未找到文件。
paddle/fluid/operators/tril_triu_op.cc
0 → 100644
浏览文件 @
c4d03052
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/tril_triu_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
class
TrilTriuOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
platform
::
errors
::
NotFound
(
"Input(X) of TrilTriuOp is not found."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
platform
::
errors
::
NotFound
(
"Output(Out) of TrilTriuOp is not found."
));
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Input(X)'s rank must be at least 2 in TrilTriuOp."
));
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
class
TrilTriuOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"Tensor, the input of tril_triu op"
);
AddOutput
(
"Out"
,
"Tensor, the output tensor, with the same shape and data type as "
"input(x)"
);
AddAttr
<
int
>
(
"diagonal"
,
"int number, the diagonal to consider."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"lower"
,
"boolnumber, lower triangular or upper triangular."
);
AddComment
(
R"DOC(
TrilTriu Operator.
The tril operator returns the lower triangular part of the matrix (2-D tensor)
or batch of matrices $input$. The lower triangular part of the matrix is defined
as the elements on and below the diagonal.
The triu operator returns the upper triangular part of a matrix (2-D tensor)
or batch of matrices $input$. The upper triangular part of the matrix is defined
as the elements on and above the diagonal.
The other elements of the result tensor out are set to 0.
The argument diagonal controls which diagonal to consider, default value is 0.
)DOC"
);
}
};
class
TrilTriuGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
true
,
platform
::
errors
::
NotFound
(
"Input(Out@GRAD) of TrilTriuOp should not be null"
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
true
,
platform
::
errors
::
NotFound
(
"Output(X@Grad) of TrilTriuOp should not be null"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
)));
}
};
template
<
typename
T
>
class
TrilTriuGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"tril_triu_grad"
);
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetAttrMap
(
this
->
Attrs
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
tril_triu
,
ops
::
TrilTriuOp
,
ops
::
TrilTriuOpMaker
,
ops
::
TrilTriuGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
TrilTriuGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
tril_triu_grad
,
ops
::
TrilTriuGradOp
);
REGISTER_OP_CPU_KERNEL
(
tril_triu
,
ops
::
TrilTriuOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
TrilTriuOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
TrilTriuOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
TrilTriuOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
tril_triu_grad
,
ops
::
TrilTriuGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
TrilTriuGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
TrilTriuGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
TrilTriuGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/tril_triu_op.cu
0 → 100644
浏览文件 @
c4d03052
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/tril_triu_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
tril_triu
,
ops
::
TrilTriuOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TrilTriuOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
TrilTriuOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
TrilTriuOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
tril_triu_grad
,
ops
::
TrilTriuGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TrilTriuGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
TrilTriuGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
TrilTriuGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/tril_triu_op.h
0 → 100644
浏览文件 @
c4d03052
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
TrilTriuCompute
{
public:
HOSTDEVICE
TrilTriuCompute
(
const
T
*
in
,
const
int
diagonal
,
const
bool
lower
,
const
int64_t
H
,
const
int64_t
W
,
T
*
out
)
:
in_
(
in
),
diagonal_
(
diagonal
),
lower_
(
lower
),
H_
(
H
),
W_
(
W
),
out_
(
out
)
{}
HOSTDEVICE
void
operator
()(
int64_t
idx
)
{
const
int64_t
row
=
(
idx
/
W_
)
%
H_
;
const
int64_t
col
=
idx
%
W_
;
const
bool
mask
=
lower_
?
(
col
-
row
>
diagonal_
)
:
(
col
-
row
<
diagonal_
);
out_
[
idx
]
=
mask
?
static_cast
<
T
>
(
0
)
:
in_
[
idx
];
}
private:
const
T
*
in_
;
const
int
diagonal_
;
const
bool
lower_
;
const
int64_t
H_
;
const
int64_t
W_
;
T
*
out_
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
TrilTriuOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
diagonal
=
context
.
Attr
<
int
>
(
"diagonal"
);
const
bool
lower
=
context
.
Attr
<
bool
>
(
"lower"
);
const
auto
&
dims
=
x
->
dims
();
const
auto
H
=
dims
[
dims
.
size
()
-
2
];
const
auto
W
=
dims
[
dims
.
size
()
-
1
];
platform
::
ForRange
<
DeviceContext
>
for_range
(
context
.
template
device_context
<
DeviceContext
>(),
static_cast
<
size_t
>
(
x
->
numel
()));
paddle
::
operators
::
TrilTriuCompute
<
T
>
tril_triu_computer
(
x_data
,
diagonal
,
lower
,
H
,
W
,
out_data
);
for_range
(
tril_triu_computer
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
TrilTriuGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
auto
*
d_out
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
auto
*
dout_data
=
d_out
->
data
<
T
>
();
auto
*
d_x
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
diagonal
=
context
.
Attr
<
int
>
(
"diagonal"
);
const
bool
lower
=
context
.
Attr
<
bool
>
(
"lower"
);
const
auto
&
dims
=
d_out
->
dims
();
const
auto
H
=
dims
[
dims
.
size
()
-
2
];
const
auto
W
=
dims
[
dims
.
size
()
-
1
];
platform
::
ForRange
<
DeviceContext
>
for_range
(
context
.
template
device_context
<
DeviceContext
>(),
static_cast
<
size_t
>
(
d_out
->
numel
()));
paddle
::
operators
::
TrilTriuCompute
<
T
>
tril_triu_grad_computer
(
dout_data
,
diagonal
,
lower
,
H
,
W
,
dx_data
);
for_range
(
tril_triu_grad_computer
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_tril_triu_op.py
0 → 100644
浏览文件 @
c4d03052
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at #
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle.tensor
as
tensor
class
TrilTriuOpDefaultTest
(
OpTest
):
""" the base class of other op testcases
"""
def
setUp
(
self
):
self
.
initTestCase
()
self
.
real_np_op
=
getattr
(
np
,
self
.
real_op_type
)
self
.
op_type
=
"tril_triu"
self
.
inputs
=
{
'X'
:
self
.
X
}
self
.
attrs
=
{
'diagonal'
:
self
.
diagonal
,
'lower'
:
True
if
self
.
real_op_type
==
'tril'
else
False
,
}
self
.
outputs
=
{
'Out'
:
self
.
real_np_op
(
self
.
X
,
self
.
diagonal
)
if
self
.
diagonal
else
self
.
real_np_op
(
self
.
X
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
def
initTestCase
(
self
):
self
.
real_op_type
=
np
.
random
.
choice
([
'triu'
,
'tril'
])
self
.
diagonal
=
None
self
.
X
=
np
.
arange
(
1
,
101
,
dtype
=
"float64"
).
reshape
([
10
,
-
1
])
def
case_generator
(
op_type
,
Xshape
,
diagonal
,
expected
):
"""
Generate testcases with the params shape of X, diagonal and op_type.
If arg`expercted` is 'success', it will register an Optest case and expect to pass.
Otherwise, it will register an API case and check the expect failure.
"""
cls_name
=
"{0}_{1}_shape_{2}_diag_{3}"
.
format
(
expected
,
op_type
,
Xshape
,
diagonal
)
errmsg
=
{
"diagonal: TypeError"
:
"diagonal in {} must be a python Int"
.
format
(
op_type
),
"input: ValueError"
:
"input shape in {} must be at least 2-D"
.
format
(
op_type
),
}
class
FailureCase
(
unittest
.
TestCase
):
def
test_failure
(
self
):
data
=
fluid
.
data
(
shape
=
Xshape
,
dtype
=
'float64'
,
name
=
cls_name
)
with
self
.
assertRaisesRegexp
(
eval
(
expected
.
split
(
':'
)[
-
1
]),
errmsg
[
expected
]):
getattr
(
tensor
,
op_type
)(
input
=
data
,
diagonal
=
diagonal
)
class
SuccessCase
(
TrilTriuOpDefaultTest
):
def
initTestCase
(
self
):
self
.
real_op_type
=
op_type
self
.
diagonal
=
diagonal
self
.
X
=
np
.
random
.
random
(
Xshape
).
astype
(
"float64"
)
CLASS
=
locals
()[
'SuccessCase'
if
expected
==
"success"
else
'FailureCase'
]
CLASS
.
__name__
=
cls_name
globals
()[
cls_name
]
=
CLASS
### NOTE: meaningful diagonal is [1 - min(H, W), max(H, W) -1]
### test the diagonal just at the border, upper/lower the border,
### negative/positive integer within range and a zero
cases
=
{
'success'
:
{
(
2
,
2
,
3
,
4
,
5
):
[
-
100
,
-
3
,
-
1
,
0
,
2
,
4
,
100
],
# normal shape
(
10
,
10
,
1
,
1
):
[
-
100
,
-
1
,
0
,
1
,
100
],
# small size of matrix
},
'diagonal: TypeError'
:
{
(
20
,
20
):
[
'2020'
,
[
20
],
{
20
:
20
},
(
20
,
20
),
20.20
,
],
# str, list, dict, tuple, float
},
'input: ValueError'
:
{
(
2020
,
):
[
None
],
},
}
for
_op_type
in
[
'tril'
,
'triu'
]:
for
_expected
,
_params
in
cases
.
items
():
for
_Xshape
,
_diaglist
in
_params
.
items
():
list
(
map
(
lambda
_diagonal
:
case_generator
(
_op_type
,
_Xshape
,
_diagonal
,
_expected
),
_diaglist
))
class
TestTrilTriuOpAPI
(
unittest
.
TestCase
):
""" test case by using API and has -1 dimension
"""
def
test_api
(
self
):
data
=
np
.
random
.
random
([
1
,
9
,
9
,
4
]).
astype
(
'float32'
)
x
=
fluid
.
data
(
shape
=
[
1
,
9
,
-
1
,
4
],
dtype
=
'float32'
,
name
=
'x'
)
tril_out
,
triu_out
=
tensor
.
tril
(
x
),
tensor
.
triu
(
x
)
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
tril_out
,
triu_out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
data
},
fetch_list
=
[
tril_out
,
triu_out
],
)
self
.
assertTrue
(
np
.
allclose
(
tril_out
,
np
.
tril
(
data
)))
self
.
assertTrue
(
np
.
allclose
(
triu_out
,
np
.
triu
(
data
)))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
c4d03052
...
...
@@ -32,8 +32,8 @@ from .creation import linspace #DEFINE_ALIAS
from
.creation
import
full
#DEFINE_ALIAS
# from .creation import linspace #DEFINE_ALIAS
# from .creation import full_like #DEFINE_ALIAS
# from .creation import triu
#DEFINE_ALIAS
# from .creation import tril
#DEFINE_ALIAS
from
.creation
import
triu
#DEFINE_ALIAS
from
.creation
import
tril
#DEFINE_ALIAS
# from .creation import meshgrid #DEFINE_ALIAS
# from .stat import mean #DEFINE_ALIAS
# from .stat import reduce_mean #DEFINE_ALIAS
...
...
python/paddle/tensor/creation.py
浏览文件 @
c4d03052
...
...
@@ -34,8 +34,8 @@ __all__ = [
# 'eye',
'full'
,
# 'full_like',
#
'triu',
#
'tril',
'triu'
,
'tril'
,
# 'meshgrid'
]
...
...
@@ -404,3 +404,188 @@ def full(shape,
out
=
fill_constant
(
shape
=
shape
,
dtype
=
dtype
,
value
=
fill_value
,
out
=
out
)
return
out
def
_tril_triu_op
(
helper
):
"""Base op of tril_op and triu_op
"""
op_type
=
helper
.
layer_type
x
=
helper
.
kwargs
.
get
(
'input'
,
None
)
assert
x
is
not
None
,
'x cannot be None in {}'
.
format
(
op_type
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
op_type
)
if
len
(
x
.
shape
)
<
2
:
raise
ValueError
(
"input shape in {} must be at least 2-D"
.
format
(
op_type
))
diagonal
=
helper
.
kwargs
.
get
(
'diagonal'
,
0
)
if
not
isinstance
(
diagonal
,
(
int
,
)):
raise
TypeError
(
"diagonal in {} must be a python Int"
.
format
(
op_type
))
name
=
helper
.
kwargs
.
get
(
'name'
,
None
)
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"tril_triu"
,
inputs
=
{
"X"
:
x
},
attrs
=
{
"diagonal"
:
diagonal
,
"lower"
:
True
if
op_type
==
'tril'
else
False
,
},
outputs
=
{
"Out"
:
out
},
)
return
out
def
tril
(
input
,
diagonal
=
0
,
name
=
None
):
"""
This op returns the lower triangular part of a matrix (2-D tensor) or batch
of matrices :attr:`input`, the other elements of the result tensor are set
to 0. The lower triangular part of the matrix is defined as the elements
on and below the diagonal.
Args:
input (Variable): The input variable which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main
diagonal, and similarly a negative value excludes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
it's data type is the same as input's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`input` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle.tensor as tensor
import paddle.fluid as fluid
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
# example 1, default diagonal
tril = tensor.tril(x)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 1, 0, 0, 0],
# [ 5, 6, 0, 0],
# [ 9, 10, 11, 0]])
.. code-block:: python
# example 2, positive diagonal value
tril = tensor.tril(x, diagonal=2)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 1, 2, 3, 0],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
.. code-block:: python
# example 3, negative diagonal value
tril = tensor.tril(x, diagonal=-1)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 0, 0, 0, 0],
# [ 5, 0, 0, 0],
# [ 9, 10, 0, 0]])
"""
return
_tril_triu_op
(
LayerHelper
(
'tril'
,
**
locals
()))
def
triu
(
input
,
diagonal
=
0
,
name
=
None
):
"""
This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
:attr:`input`, the other elements of the result tensor are set to 0.
The upper triangular part of the matrix is defined as the elements on and
above the diagonal.
Args:
input (Variable): The input variable which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and above the main diagonal are
retained. A positive value excludes just as many diagonals above the main
diagonal, and similarly a negative value includes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
it's data type is the same as input's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`input` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
import paddle.tensor as tensor
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
# example 1, default diagonal
triu = tensor.triu(x)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[ 1, 2, 3, 4],
# [ 0, 6, 7, 8],
# [ 0, 0, 11, 12]])
.. code-block:: python
# example 2, positive diagonal value
triu = tensor.triu(x, diagonal=2)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[0, 0, 3, 4],
# [0, 0, 0, 8],
# [0, 0, 0, 0]])
.. code-block:: python
# example 3, negative diagonal value
triu = tensor.triu(x, diagonal=-1)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 0, 10, 11, 12]])
"""
return
_tril_triu_op
(
LayerHelper
(
'triu'
,
**
locals
()))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录