提交 c49644a4 编写于 作者: Q qiaolongfei

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into topology

......@@ -126,7 +126,7 @@ class ImageClassifier():
# For oversampling, average predictions across crops.
# If not, the shape of output[name]: (1, class_number),
# the mean is also applicable.
return output[output_layer].mean(0)
return output[output_layer]['value'].mean(0)
def predict(self, image=None, output_layer=None):
assert isinstance(image, basestring)
......
import numpy
import paddle.v2 as paddle
import mnist_util
......@@ -27,19 +26,14 @@ def main():
cost = paddle.layer.classification_cost(input=inference, label=label)
parameters = paddle.parameters.create(cost)
for param_name in parameters.keys():
array = parameters.get(param_name)
array[:] = numpy.random.uniform(low=-1.0, high=1.0, size=array.shape)
parameters.set(parameter_name=param_name, value=array)
adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
para = parameters.get('___fc_2__.w0')
print "Pass %d, Batch %d, Cost %f, Weight Mean Of Fc 2 is %f" % (
event.pass_id, event.batch_id, event.cost, para.mean())
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
pass
......
......@@ -156,7 +156,7 @@ class ImageClassifier():
# For oversampling, average predictions across crops.
# If not, the shape of output[name]: (1, class_number),
# the mean is also applicable.
res[name] = output[name].mean(0)
res[name] = output[name]['value'].mean(0)
return res
......
......@@ -139,24 +139,12 @@ lstmemory
:members: lstmemory
:noindex:
lstm_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: lstm_step_layer
:noindex:
grumemory
---------
.. automodule:: paddle.trainer_config_helpers.layers
:members: grumemory
:noindex:
gru_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: gru_step_layer
:noindex:
Recurrent Layer Group
=====================
......@@ -172,6 +160,18 @@ recurrent_group
:members: recurrent_group
:noindex:
lstm_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: lstm_step_layer
:noindex:
gru_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: gru_step_layer
:noindex:
beam_search
------------
.. automodule:: paddle.trainer_config_helpers.layers
......@@ -308,6 +308,12 @@ repeat_layer
:members: repeat_layer
:noindex:
rotate_layer
------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: rotate_layer
:noindex:
seq_reshape_layer
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
......@@ -462,6 +468,12 @@ ctc_layer
:members: ctc_layer
:noindex:
warp_ctc_layer
--------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: warp_ctc_layer
:noindex:
nce_layer
-----------
.. automodule:: paddle.trainer_config_helpers.layers
......
......@@ -38,6 +38,13 @@ Arguments* Arguments::createByPaddleArgumentVector(void* ptr) {
return args;
}
Arguments* Arguments::createByPaddleArgument(const void* ptr) {
auto p = (paddle::Argument*)(ptr);
auto args = new Arguments();
args->m->outputs.push_back(*p);
return args;
}
Matrix* Arguments::getSlotValue(size_t idx) const throw(RangeError) {
auto& a = m->getArg(idx);
return Matrix::createByPaddleMatrixPtr(&a.value);
......
......@@ -27,3 +27,18 @@ std::string Evaluator::toString() {
m->rawPtr->printStats(sout);
return sout.str();
}
std::vector<std::string> Evaluator::getNames() const {
std::vector<std::string> retv;
m->rawPtr->getNames(&retv);
return retv;
}
double Evaluator::getValue(const std::string name) const {
paddle::Error err;
double v = m->rawPtr->getValue(name, &err);
if (err) {
throw std::runtime_error(err.msg());
}
return v;
}
......@@ -144,12 +144,12 @@ Parameter* GradientMachine::getParameter(size_t i) throw(RangeError) {
void GradientMachine::randParameters() { m->machine->randParameters(); }
Matrix* GradientMachine::getLayerOutput(const std::string& layerName) const
Arguments* GradientMachine::getLayerOutput(const std::string& layerName) const
throw(UnsupportError) {
auto nn = std::dynamic_pointer_cast<paddle::NeuralNetwork>(m->machine);
auto nn = m->machine;
if (nn) {
auto mat = nn->getLayerOutput(layerName);
return Matrix::createByPaddleMatrixPtr(&mat);
auto arg = nn->getLayerOutput(layerName);
return Arguments::createByPaddleArgument(&arg);
} else {
throw UnsupportError();
}
......
......@@ -454,6 +454,7 @@ public:
private:
static Arguments* createByPaddleArgumentVector(void* ptr);
static Arguments* createByPaddleArgument(const void* ptr);
void* getInternalArgumentsPtr() const;
private:
......@@ -769,7 +770,7 @@ public:
void randParameters();
Matrix* getLayerOutput(const std::string& layerName) const
Arguments* getLayerOutput(const std::string& layerName) const
throw(UnsupportError);
/**
......@@ -900,6 +901,10 @@ public:
*/
std::string toString();
std::vector<std::string> getNames() const;
double getValue(const std::string name) const;
private:
EvaluatorPrivate* m;
......@@ -952,7 +957,7 @@ public:
Arguments* getForwardOutput();
Matrix* getLayerOutput(const std::string& layerName);
Arguments* getLayerOutput(const std::string& layerName) const;
};
/// the N-Best results generated from one input sequence.
......
......@@ -131,12 +131,11 @@ void Trainer::testOneDataBatch(size_t batchSize, const Arguments& args) {
void TrainerPrivate::finishTestPeriod() { tester_->finishTestPeriod(); }
void Trainer::finishTestPeriod() { m->finishTestPeriod(); }
Matrix* Trainer::getLayerOutput(const std::string& layerName) {
auto nn = std::dynamic_pointer_cast<paddle::NeuralNetwork>(
this->m->getGradientMachine());
Arguments* Trainer::getLayerOutput(const std::string& layerName) const {
auto nn = this->m->getGradientMachine();
CHECK(nn) << "trainerInternal_.getGradientMachine() is not NeuralNetwork";
auto m = nn->getLayerOutput(layerName);
return Matrix::createByPaddleMatrixPtr(&m);
auto arg = nn->getLayerOutput(layerName);
return Arguments::createByPaddleArgument(&arg);
}
void Trainer::forwardOneBatch(size_t batchSize) {
......
......@@ -89,9 +89,14 @@ def main():
except Exception as e:
print e
ev = m.makeEvaluator()
ev.start()
m.forwardBackward(inArgs, outArgs, swig_paddle.PASS_TRAIN,
update_callback)
m.eval(ev)
ev.finish()
for name in ev.getNames():
print name, ev.getValue(name)
for optimizer in optimizers:
optimizer.finishBatch()
......
......@@ -134,6 +134,10 @@ public:
backward(callback);
}
virtual Argument getLayerOutput(const std::string& layerName) {
return *((Argument*)nullptr);
}
// see comment in Layer.h for the function with the same name
virtual void resetState() {}
......
......@@ -282,6 +282,18 @@ void MultiGradientMachine::forwardBackward(const std::vector<Argument>& inArgs,
backwardImp(callback);
}
Argument MultiGradientMachine::getLayerOutput(const std::string& layerName) {
std::vector<Argument> args;
args.reserve(threads_.size());
for (auto& thread : threads_) {
args.push_back(thread->getGradientMachine()->getLayerOutput(layerName));
}
outLayerArgs_.concat(args, false /* use_gpu */, outArgStream_, passType_);
return outLayerArgs_;
}
void MultiGradientMachine::backwardImp(const UpdateCallback& callback) {
for (size_t i = 0; i < parameters_.size(); i++) {
if (!parameters_[i]->useGpu() || parameters_[i]->isStatic()) continue;
......
......@@ -189,6 +189,8 @@ public:
PassType passType,
const UpdateCallback& callback);
virtual Argument getLayerOutput(const std::string& layerName);
virtual void onPassEnd();
virtual void finish();
......@@ -314,6 +316,8 @@ protected:
std::vector<Argument> outArgs_;
hl_stream_t outArgStream_;
Argument outLayerArgs_;
/// ParameterType which needs to be merged from each GPU
std::vector<ParameterType> mergeTypes_;
int numDevices_; /* number of gpu devices */
......
......@@ -293,11 +293,10 @@ void NeuralNetwork::backward(const UpdateCallback& callback) {
}
}
MatrixPtr NeuralNetwork::getLayerOutput(const std::string& layerName) {
auto it = layerMap_.find(layerName);
CHECK(it != layerMap_.end()) << "Cannot find layer: " << layerName;
return it->second->getOutputValue();
Argument NeuralNetwork::getLayerOutput(const std::string& layerName) {
return getLayer(layerName)->getOutput();
}
void NeuralNetwork::onPassEnd() {
for (auto& layer : layers_) {
layer->onPassEnd();
......
......@@ -87,7 +87,8 @@ public:
virtual void backward(const UpdateCallback& callback = nullptr);
MatrixPtr getLayerOutput(const std::string& layerName);
virtual Argument getLayerOutput(const std::string& layerName);
const LayerPtr& getLayer(const std::string& layerName) const {
auto it = layerMap_.find(layerName);
CHECK(it != layerMap_.end()) << "Unknown layer " << layerName;
......
......@@ -42,7 +42,7 @@ void CosSimLayer::forward(PassType passType) {
/* malloc memory for the output_ if necessary */
int batchSize = getInputValue(0)->getHeight();
int size = getSize();
CHECK_EQ(forward_.size(), 1) << "Only one forward function needed";
CHECK_EQ(forward_.size(), 1UL) << "Only one forward function needed";
{
REGISTER_TIMER_INFO("CosFwResetTimer", getName().c_str());
......@@ -68,7 +68,7 @@ void CosSimLayer::forward(PassType passType) {
void CosSimLayer::backward(const UpdateCallback& callback) {
/* activation */ {
REGISTER_TIMER_INFO("CosBpAtvTimer", getName().c_str());
CHECK_EQ(backward_.size(), 1) << "Only one backward function needed";
CHECK_EQ(backward_.size(), 1UL) << "Only one backward function needed";
const auto outG = this->getOutputGrad();
const auto outV = this->getOutputValue();
......
......@@ -112,7 +112,7 @@ bool CosSimVecMatLayer::init(const LayerMap& layerMap,
void CosSimVecMatLayer::forward(PassType passType) {
Layer::forward(passType);
CHECK_EQ(forward_.size(), 1) << "Only one forward function needed";
CHECK_EQ(forward_.size(), 1UL) << "Only one forward function needed";
MatrixPtr inV0 = getInputValue(0);
MatrixPtr inV1 = getInputValue(1);
......@@ -145,7 +145,7 @@ void CosSimVecMatLayer::forward(PassType passType) {
}
void CosSimVecMatLayer::backward(const UpdateCallback& callback) {
CHECK_EQ(backward_.size(), 1) << "Only one forward function needed";
CHECK_EQ(backward_.size(), 1UL) << "Only one forward function needed";
MatrixPtr inV0 = getInputValue(0);
MatrixPtr inV1 = getInputValue(1);
......
......@@ -17,10 +17,10 @@ limitations under the License. */
TEST(RowBuffer, testAutoGrow) {
paddle::RowBuffer buf(128);
ASSERT_EQ(128, buf.getWidth());
ASSERT_EQ(128UL, buf.getWidth());
ASSERT_TRUE(buf.isAutoGrowth());
buf.resize(2);
ASSERT_EQ(2, buf.getRowCount());
ASSERT_EQ(2UL, buf.getRowCount());
for (size_t i = 0; i < buf.getWidth() * 2; ++i) {
buf.data()[i] = i;
}
......@@ -35,7 +35,7 @@ TEST(RowBuffer, testAutoGrow) {
data[i] = i;
}
ASSERT_EQ(3, buf.getRowCount());
ASSERT_EQ(3UL, buf.getRowCount());
for (size_t i = 0; i < buf.getRowCount() - 1; ++i) {
for (size_t j = 0; j < buf.getWidth(); ++j) {
ASSERT_NEAR(i * buf.getWidth() + j, buf.get(i)[j], 1e-5);
......@@ -51,7 +51,7 @@ TEST(RowBuffer, testWithMemBuf) {
std::make_shared<paddle::CpuMemoryHandle>(128 * 2 * sizeof(real));
paddle::RowBuffer buf(mem, 128);
ASSERT_TRUE(!buf.isAutoGrowth());
ASSERT_EQ(2, buf.getRowCount());
ASSERT_EQ(2UL, buf.getRowCount());
for (size_t i = 0; i < buf.getWidth() * 2; ++i) {
buf.data()[i] = i;
}
......
......@@ -23,7 +23,8 @@ __all__ = ['DataProviderConverter']
class IScanner(object):
def __init__(self, input_type, pos):
self.input_type = input_type
assert isinstance(self.input_type, dp2.InputType)
if not isinstance(self.input_type, dp2.InputType):
raise ValueError("input type should be dataprovider2.InputType")
self.pos = pos
def scan(self, dat):
......@@ -50,7 +51,6 @@ class DenseScanner(IScanner):
def finish_scan(self, argument):
assert isinstance(argument, swig_paddle.Arguments)
assert isinstance(self.input_type, dp2.InputType)
if self.__mat__.dtype != numpy.float32:
self.__mat__ = self.__mat__.astype(numpy.float32)
m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True, False)
......@@ -63,7 +63,6 @@ class SparseBinaryScanner(IScanner):
self.__rows__ = [0]
self.__cols__ = []
self.__height__ = 0
self.__nnz__ = 0
self.__value__ = []
def scan(self, dat):
......@@ -76,7 +75,6 @@ class SparseBinaryScanner(IScanner):
def finish_scan(self, argument):
assert isinstance(argument, swig_paddle.Arguments)
assert isinstance(self.input_type, dp2.InputType)
m = swig_paddle.Matrix.createSparse(self.__height__,
self.input_type.dim,
len(self.__cols__),
......
......@@ -208,7 +208,7 @@ def __monkeypatch_gradient_machine__():
output = dict()
for name in layerNames:
output[name] = __matrix_to_numpy__(self.getLayerOutput(name))
output[name] = __arguments_to_numpy__(0, self.getLayerOutput(name))
return output
swig_paddle.GradientMachine.getLayerOutputs = getLayerOutputs
......
......@@ -10,28 +10,30 @@ RUN apt-get update && \
apt-get install -y wget unzip tar xz-utils bzip2 gzip coreutils && \
apt-get install -y curl sed grep graphviz libjpeg-dev zlib1g-dev && \
apt-get install -y python-numpy python-matplotlib gcc g++ gfortran && \
apt-get install -y automake clang-3.8 llvm-3.8 libclang-3.8-dev && \
apt-get install -y automake && \
apt-get clean -y
RUN pip install --upgrade pip && \
pip install -U protobuf && \
pip install -U "protobuf==3.1.0" && \
pip install -U wheel pillow BeautifulSoup && \
pip install -U docopt PyYAML sphinx && \
pip install -U sphinx_rtd_theme recommonmark jupyter
RUN curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j4 && make install && \
cd cmake-3.4.1 && ./bootstrap && make -j `nproc` && make install && \
cd .. && rm -rf cmake-3.4.1
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=OFF
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
RUN mkdir /paddle
......
......@@ -10,28 +10,30 @@ RUN apt-get update && \
apt-get install -y wget unzip tar xz-utils bzip2 gzip coreutils && \
apt-get install -y curl sed grep graphviz libjpeg-dev zlib1g-dev && \
apt-get install -y python-numpy python-matplotlib gcc g++ gfortran && \
apt-get install -y automake clang-3.8 llvm-3.8 libclang-3.8-dev && \
apt-get install -y automake && \
apt-get clean -y
RUN pip install --upgrade pip && \
pip install -U protobuf && \
pip install -U "protobuf==3.1.0" && \
pip install -U wheel pillow BeautifulSoup && \
pip install -U docopt PyYAML sphinx && \
pip install -U sphinx_rtd_theme recommonmark jupyter
RUN curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j4 && make install && \
cd cmake-3.4.1 && ./bootstrap && make -j `nproc` && make install && \
cd .. && rm -rf cmake-3.4.1
ARG BUILD_WOBOQ
ARG BUILD_AND_INSTALL
ARG WITH_AVX
ARG WITH_DOC
ARG WITH_STYLE_CHECK
ENV BUILD_WOBOQ=${BUILD_WOBOQ:-OFF}
ENV BUILD_AND_INSTALL=${BUILD_AND_INSTALL:-OFF}
ENV WITH_GPU=ON
ENV WITH_AVX=${WITH_AVX:-ON}
ENV WITH_DOC=${WITH_DOC:-ON}
ENV WITH_DOC=${WITH_DOC:-OFF}
ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
RUN mkdir /paddle
......
......@@ -11,7 +11,7 @@ set -e
# If Dockerfile.* sets BUILD_AND_INSTALL to 'ON', it would have copied
# source tree to /paddle, and this scripts should build it into
# /paddle/build.
if [[ ${BUILD_AND_INSTALL:-ON} == 'ON' ]]; then
if [[ ${BUILD_AND_INSTALL:-OFF} == 'ON' ]]; then
if [[ ${WITH_GPU:-OFF} == 'ON' ]]; then
ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so /usr/lib/libcudnn.so
fi
......@@ -19,7 +19,7 @@ if [[ ${BUILD_AND_INSTALL:-ON} == 'ON' ]]; then
mkdir -p /paddle/build # -p means no error if exists
cd /paddle/build
cmake .. \
-DWITH_DOC=ON \
-DWITH_DOC=${WITH_DOC:-OFF} \
-DWITH_GPU=${WITH_GPU:-OFF} \
-DWITH_AVX=${WITH_AVX:-OFF} \
-DWITH_SWIG_PY=ON \
......@@ -29,6 +29,8 @@ if [[ ${BUILD_AND_INSTALL:-ON} == 'ON' ]]; then
make -j `nproc`
make install
if [[ ${BUILD_WOBOQ:-OFF} == 'ON' ]]; then
apt-get install -y clang-3.8 llvm-3.8 libclang-3.8-dev
# Install woboq_codebrowser.
git clone https://github.com/woboq/woboq_codebrowser /woboq
cd /woboq
......@@ -49,8 +51,10 @@ if [[ ${BUILD_AND_INSTALL:-ON} == 'ON' ]]; then
/woboq/indexgenerator/codebrowser_indexgenerator $WOBOQ_OUT
cd /woboq
make clean
fi
pip install /usr/local/opt/paddle/share/wheels/*.whl
pip install /usr/local/opt/paddle/share/wheels/py_paddle*linux*.whl
pip install /usr/local/opt/paddle/share/wheels/paddle*.whl
paddle version
fi
......
......@@ -25,6 +25,7 @@ add_custom_target(paddle_python ALL DEPENDS
add_subdirectory(paddle/trainer_config_helpers/tests)
add_subdirectory(paddle/reader/tests)
add_subdirectory(paddle/v2/tests)
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/
DESTINATION opt/paddle/share/wheels
......
......@@ -21,3 +21,5 @@
#
# r = paddle.reader.buffered(paddle.reader.creator.text("hello.txt"))
from decorator import *
import creator
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['np_array', 'text_file']
def np_array(x):
"""
Creates a reader that yields elements of x, if it is a
numpy vector. Or rows of x, if it is a numpy matrix.
Or any sub-hyperplane indexed by the highest dimension.
:param x: the numpy array to create reader from.
:returns: data reader created from x.
"""
def reader():
if x.ndim < 1:
yield x
for e in x:
yield e
return reader
def text_file(path):
"""
Creates a data reader that outputs text line by line from given text file.
Trailing new line ('\n') of each line will be removed.
:path: path of the text file.
:returns: data reader of text file
"""
def reader():
f = open(path, "r")
for l in f:
yield l.rstrip('\n')
f.close()
return reader
......@@ -2,3 +2,8 @@ add_test(NAME reader_decorator_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/reader/tests/decorator_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
add_test(NAME reader_creator_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/reader/tests/creator_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.reader.creator
import numpy as np
import os
class TestNumpyArray(unittest.TestCase):
def test_numpy_array(self):
l = [[1, 2, 3], [4, 5, 6]]
x = np.array(l, np.int32)
reader = paddle.reader.creator.np_array(x)
for idx, e in enumerate(reader()):
self.assertItemsEqual(e, l[idx])
class TestTextFile(unittest.TestCase):
def test_text_file(self):
path = os.path.join(os.path.dirname(__file__), "test_data_creator.txt")
reader = paddle.reader.creator.text_file(path)
for idx, e in enumerate(reader()):
self.assertEqual(e, str(idx * 2) + " " + str(idx * 2 + 1))
if __name__ == '__main__':
unittest.main()
......@@ -112,6 +112,8 @@ __all__ = [
'priorbox_layer',
'spp_layer',
'pad_layer',
'eos_layer',
'layer_support',
]
......@@ -708,6 +710,7 @@ class MixedLayerType(LayerOutput):
# update the size which might be computed inside MixedLayer
# according to the operator's output size
self.size = ml.config.size
self.finalized = True
@wrap_name_default("mixed")
......@@ -1287,6 +1290,12 @@ def last_seq(input,
"""
Get Last Timestamp Activation of a sequence.
The simple usage is:
.. code-block:: python
seq = last_seq(input=layer)
:param agg_level: Aggregated level
:param name: Layer name.
:type name: basestring
......@@ -1325,6 +1334,12 @@ def first_seq(input,
"""
Get First Timestamp Activation of a sequence.
The simple usage is:
.. code-block:: python
seq = first_seq(input=layer)
:param agg_level: aggregation level
:param name: Layer name.
:type name: basestring
......@@ -1425,7 +1440,7 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
.. code-block:: python
expand = repeat_layer(layer, 4)
expand = repeat_layer(input=layer, num_repeats=4)
:param input: Input layer
:type input: LayerOutput
......@@ -1797,6 +1812,12 @@ def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Note that the above computation is for one sample. Multiple samples are
processed in one batch.
The example usage is:
.. code-block:: python
cos = cos_sim(a=layer1, b=layer2, size=3)
:param name: layer name
:type name: basestring
:param a: input layer a
......@@ -1958,6 +1979,16 @@ def img_conv_layer(input,
pieces. First 256/4 = 64 channels will process by first 32 filters. The
rest channels will be processed by rest group of filters.
The example usage is:
.. code-block:: python
conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
:param name: Layer name.
:type name: basestring
:param input: Layer Input.
......@@ -2097,6 +2128,34 @@ def img_pool_layer(input,
.. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
The example usage is:
.. code-block:: python
maxpool = img_pool_layer(input=conv,
pool_size=3,
pool_size_y=5,
num_channels=8,
stride=1,
stride_y=2,
padding=1,
padding_y=2,
pool_type=MaxPooling())
:param padding: pooling padding width.
:type padding: int
:param padding_y: pooling padding height. It's equal to padding by default.
......@@ -2123,19 +2182,6 @@ def img_pool_layer(input,
:param ceil_mode: Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(ceil(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(floor(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
:type ceil_mode: bool
:return: LayerOutput object.
:rtype: LayerOutput
......@@ -2197,6 +2243,15 @@ def spp_layer(input,
The details please refer to
`Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.
The example usage is:
.. code-block:: python
spp = spp_layer(input=data,
pyramid_height=2,
num_channels=16,
pool_type=MaxPooling())
:param name: layer name.
:type name: basestring
:param input: layer's input.
......@@ -2285,6 +2340,12 @@ def img_cmrnorm_layer(input,
The details please refer to
`Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
The example usage is:
.. code-block:: python
norm = img_cmrnorm_layer(input=net, size=5)
:param name: layer name.
:type name: None|basestring
:param input: layer's input.
......@@ -2340,6 +2401,12 @@ def batch_norm_layer(input,
The details of batch normalization please refer to this
`paper <http://arxiv.org/abs/1502.03167>`_.
The example usage is:
.. code-block:: python
norm = batch_norm_layer(input=net, act=ReluActivation())
:param name: layer name.
:type name: basestring
:param input: batch normalization input. Better be linear activation.
......@@ -3903,13 +3970,13 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
.. code-block:: python
conv_shift = conv_shift_layer(input=[layer1, layer2])
conv_shift = conv_shift_layer(a=layer1, b=layer2)
:param name: layer name
:type name: basestring
:param a: Input layer a.
:type a: LayerOutput
:param b: input layer b
:param b: input layer b.
:type b: LayerOutput
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
......@@ -4001,8 +4068,8 @@ def tensor_layer(a,
@wrap_act_default()
@layer_support()
def selective_fc_layer(input,
select,
size,
select=None,
act=None,
name=None,
pass_generation=False,
......@@ -4029,6 +4096,7 @@ def selective_fc_layer(input,
:type input: LayerOutput|list|tuple
:param select: The select layer. The output of select layer should be a
sparse binary matrix, and treat as the mask of selective fc.
If is None, acts exactly like fc_layer.
:type select: LayerOutput
:param size: The layer dimension.
:type size: int
......@@ -4257,7 +4325,7 @@ def block_expand_layer(input,
.. code-block:: python
block_expand = block_expand_layer(input,
block_expand = block_expand_layer(input=layer,
num_channels=128,
stride_x=1,
stride_y=1,
......@@ -4594,6 +4662,13 @@ def crf_decoding_layer(input,
this layer will also calculate error. output.value[i] is 1 for incorrect
decoding or 0 for correct decoding.
The simple usage:
.. code-block:: python
crf_decoding = crf_decoding_layer(input=input,
size=label_dim)
:param input: The first input layer.
:type input: LayerOutput
:param size: size of this layer.
......
......@@ -19,12 +19,14 @@ import trainer
import event
import data_type
import topology
import data_feeder
import attr
import pooling
import py_paddle.swig_paddle as api
__all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'topology', 'attr'
'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'topology'
]
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import swig_paddle
from py_paddle import DataProviderConverter
import data_type
__all__ = ['DataFeeder']
class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sampe.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
The example usage:
data_types = [('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
reader_dict = {'image':0, 'label':1}
feeder = DataFeeder(data_types=data_types, reader_dict=reader_dict)
minibatch_data = [
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ), # first sample
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ) # second sample
]
# or minibatch_data = [
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample
# ]
arg = feeder(minibatch_data)
"""
def __init__(self, data_types, reader_dict):
"""
:param data_types: A list to specify data name and type. Each item is
a tuple of (data_name, data_type). For example:
[('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
:type data_types: A list of tuple
:param reader_dict: A dictionary to specify the position of each data
in the input data.
:type reader_dict: dict()
"""
self.input_names = []
input_types = []
self.reader_dict = reader_dict
for each in data_types:
self.input_names.append(each[0])
assert isinstance(each[1], data_type.InputType)
input_types.append(each[1])
DataProviderConverter.__init__(self, input_types)
def convert(self, dat, argument=None):
"""
:param dat: A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.
for example:
[
([0.2, 0.2], ), # first sample
([0.8, 0.3], ), # second sample
]
or,
[
[[0.2, 0.2], ], # first sample
[[0.8, 0.3], ], # second sample
]
:type dat: List
:param argument: An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.
:type argument: swig_paddle.Arguments
"""
def reorder_data(data):
retv = []
for each in data:
reorder = []
for name in self.input_names:
reorder.append(each[self.reader_dict[name]])
retv.append(reorder)
return retv
return DataProviderConverter.convert(self, reorder_data(dat), argument)
......@@ -14,9 +14,9 @@
from paddle.trainer.PyDataProvider2 import \
InputType, dense_vector, sparse_binary_vector,\
sparse_vector, integer_value, DataType
sparse_vector, integer_value, integer_value_sequence
__all__ = [
'InputType', 'dense_vector', 'sparse_binary_vector', 'sparse_vector',
'integer_value', 'DataType'
'integer_value', 'integer_value_sequence'
]
import os
__all__ = ['DATA_HOME']
DATA_HOME = os.path.expanduser('~/.cache/paddle_data_set')
if not os.path.exists(DATA_HOME):
os.makedirs(DATA_HOME)
import sklearn.datasets.mldata
import sklearn.model_selection
import numpy
from config import DATA_HOME
__all__ = ['train_creator', 'test_creator']
def __mnist_reader_creator__(data, target):
def reader():
n_samples = data.shape[0]
for i in xrange(n_samples):
yield (data[i] / 255.0).astype(numpy.float32), int(target[i])
return reader
TEST_SIZE = 10000
data = sklearn.datasets.mldata.fetch_mldata(
"MNIST original", data_home=DATA_HOME)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
data.data, data.target, test_size=TEST_SIZE, random_state=0)
def train_creator():
return __mnist_reader_creator__(X_train, y_train)
def test_creator():
return __mnist_reader_creator__(X_test, y_test)
def unittest():
assert len(list(test_creator()())) == TEST_SIZE
if __name__ == '__main__':
unittest()
......@@ -3,8 +3,6 @@ All training events.
There are:
* BeginTraining
* EndTraining
* BeginIteration
* EndIteration
* BeginPass
......@@ -12,15 +10,62 @@ There are:
TODO(yuyang18): Complete it!
"""
__all__ = ['EndIteration']
import py_paddle.swig_paddle as api
__all__ = ['EndIteration', 'BeginIteration', 'BeginPass', 'EndPass']
class EndIteration(object):
class WithMetric(object):
def __init__(self, evaluator):
if not isinstance(evaluator, api.Evaluator):
raise TypeError("Evaluator should be api.Evaluator type")
self.__evaluator__ = evaluator
@property
def metrics(self):
names = self.__evaluator__.getNames()
retv = dict()
for each_name in names:
val = self.__evaluator__.getValue(each_name)
retv[each_name] = val
return retv
class BeginPass(object):
"""
Event On One Pass Training Start.
"""
def __init__(self, pass_id):
self.pass_id = pass_id
class EndPass(WithMetric):
"""
Event On One Pass Training Complete.
"""
def __init__(self, pass_id, evaluator):
self.pass_id = pass_id
WithMetric.__init__(self, evaluator)
class BeginIteration(object):
"""
Event On One Batch Training Start.
"""
def __init__(self, pass_id, batch_id):
self.pass_id = pass_id
self.batch_id = batch_id
class EndIteration(WithMetric):
"""
Event On One Batch Training Complete.
"""
def __init__(self, pass_id, batch_id, cost):
def __init__(self, pass_id, batch_id, cost, evaluator):
self.pass_id = pass_id
self.batch_id = batch_id
self.cost = cost
WithMetric.__init__(self, evaluator)
......@@ -71,19 +71,37 @@ import collections
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
from paddle.trainer_config_helpers.layers import layer_support
import data_type
import activation
import attr
__all__ = [
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
'parse_network', 'data', 'fc', 'conv_shift', 'img_conv', 'img_pool', 'spp',
'maxout', 'img_cmrnorm', 'batch_norm', 'sum_to_one_norm', 'recurrent',
'lstmemory', 'grumemory', 'pool', 'last_seq', 'first_seq', 'concat',
'seq_concat', 'block_expand', 'expand', 'repeat', 'seq_reshape', 'addto',
'linear_comb', 'interpolation', 'bilinear_interp', 'power', 'scaling',
'slope_intercept', 'tensor', 'cos_sim', 'trans', 'max_id', 'sampling_id',
'pad', 'classification_cost', 'cross_entropy_cost',
'cross_entropy_with_selfnorm_cost', 'regression_cost',
'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
'sum_cost', 'huber_cost'
'sum_cost', 'huber_cost', 'crf', 'crf_decoding', 'ctc', 'warp_ctc', 'nce',
'hsigmoid', 'eos'
]
__projection_names__ = filter(lambda x: x.endswith('_projection'),
dir(conf_helps))
__all__ += __projection_names__
__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__
def parse_network(*outputs):
"""
......@@ -101,9 +119,8 @@ def parse_network(*outputs):
class Layer(object):
def __init__(self, name, parent_layers):
def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
assert isinstance(name, basestring)
self.name = name
self.__parent_layers__ = parent_layers
......@@ -122,22 +139,25 @@ class Layer(object):
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.name not in context:
if self.name is None:
return self.to_proto_impl(**kwargs)
elif self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def __convert_to_v2__(method_name, name_prefix, parent_names):
if name_prefix is not None:
wrapper = wrap_name_default(name_prefix=name_prefix)
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
if is_default_name:
wrapper = wrap_name_default(name_prefix=method_name)
else:
wrapper = None
class V2LayerImpl(Layer):
def __init__(self, name=None, **kwargs):
def __init__(self, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
......@@ -148,6 +168,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
if key not in parent_names:
other_kwargs[key] = kwargs[key]
name = kwargs.get('name', None)
super(V2LayerImpl, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs
......@@ -160,7 +181,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(name=self.name, **args)
return getattr(conf_helps, method_name)(**args)
return V2LayerImpl
......@@ -191,69 +212,171 @@ class DataLayerV2(Layer):
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
LayerV2 = Layer
class MixedLayerV2(Layer):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class AddToSealedMixedLayerExceptionV2(Exception):
pass
def __init__(self,
size=0,
input=None,
name=None,
act=None,
bias_attr=None,
layer_attr=None):
self.__method_name__ = 'mixed_layer'
self.finalized = False
self.__inputs__ = []
if input is not None:
self.__inputs__ = input
other_kwargs = dict()
other_kwargs['name'] = name
other_kwargs['size'] = size
other_kwargs['act'] = act
other_kwargs['bias_attr'] = bias_attr
other_kwargs['layer_attr'] = layer_attr
parent_layers = {"input": self.__inputs__}
super(MixedLayerV2, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs
def __iadd__(self, other):
if not self.finalized:
self.__inputs__.append(other)
return self
else:
raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()
def __enter__(self):
assert len(self.__inputs__) == 0
return self
def __exit__(self, *args, **kwargs):
self.finalized = True
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, self.__method_name__)(**args)
@wrap_name_default("mixed")
@wrap_act_default(act=activation.Linear())
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
name=None,
input=None,
act=None,
bias_attr=False,
layer_attr=None):
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
data = DataLayerV2
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
'maxid_layer', name_prefix='maxid', parent_names=['input'])
classification_cost = __convert_to_v2__(
'classification_cost',
name_prefix='classification_cost',
parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
'regression_cost',
name_prefix='regression_cost',
parent_names=['input', 'label', 'weight'])
cross_entropy_cost = __convert_to_v2__(
'cross_entropy',
name_prefix='cross_entropy',
parent_names=['input', 'label'])
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
'cross_entropy_with_selfnorm',
name_prefix='cross_entropy_with_selfnorm',
parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
'multi_binary_label_cross_entropy',
name_prefix='multi_binary_label_cross_entropy',
parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
'rank_cost',
name_prefix='rank_cost',
parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
if __name__ == '__main__':
pixel = data(name='pixel', type=data_type.dense_vector(784))
label = data(name='label', type=data_type.integer_value(10))
weight = data(name='weight', type=data_type.dense_vector(10))
score = data(name='score', type=data_type.dense_vector(1))
hidden = fc(input=pixel,
size=100,
act=activation.Sigmoid(),
param_attr=attr.Param(name='hidden'))
inference = fc(input=hidden, size=10, act=activation.Softmax())
maxid = max_id(input=inference)
cost1 = classification_cost(input=inference, label=label)
cost2 = classification_cost(input=inference, label=label, weight=weight)
cost3 = cross_entropy_cost(input=inference, label=label)
cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
cost5 = regression_cost(input=inference, label=label)
cost6 = regression_cost(input=inference, label=label, weight=weight)
cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
cost8 = rank_cost(left=score, right=score, label=score)
cost9 = lambda_cost(input=inference, score=score)
cost10 = sum_cost(input=inference)
cost11 = huber_cost(input=score, label=label)
print parse_network(cost1, cost2)
print parse_network(cost3, cost4)
print parse_network(cost5, cost6)
print parse_network(cost7, cost8, cost9, cost10, cost11)
print parse_network(inference, maxid)
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
layer_list = [
# [V2LayerImpl, V1_method_name, parent_names]
# fully connected layers
['fc', 'fc_layer', ['input']],
# conv layers
['conv_shift', 'conv_shift_layer', ['a', 'b']],
['img_conv', 'img_conv_layer', ['input']],
# image pooling layers
['img_pool', 'img_pool_layer', ['input']],
['spp', 'spp_layer', ['input']],
['maxout', 'maxout_layer', ['input']],
# norm layers
['img_cmrnorm', 'img_cmrnorm_layer', ['input']],
['batch_norm', 'batch_norm_layer', ['input']],
['sum_to_one_norm', 'sum_to_one_norm_layer', ['input']],
# recurrent layers
['recurrent', 'recurrent_layer', ['input']],
['lstmemory', 'lstmemory', ['input']],
['grumemory', 'grumemory', ['input']],
# aggregate layers
['pool', 'pooling_layer', ['input']],
['last_seq', 'last_seq', ['input']],
['first_seq', 'first_seq', ['input']],
['concat', 'concat_layer', ['input']],
['seq_concat', 'seq_concat_layer', ['a', 'b']],
# reshaping layers
['block_expand', 'block_expand_layer', ['input']],
['expand', 'expand_layer', ['input', 'expand_as']],
['repeat', 'repeat_layer', ['input']],
['rotate', 'rotate_layer', ['input']],
['seq_reshape', 'seq_reshape_layer', ['input']],
# math layers
['addto', 'addto_layer', ['input']],
['linear_comb', 'linear_comb_layer', ['weights', 'vectors']],
['interpolation', 'interpolation_layer', ['input', 'weight']],
['bilinear_interp', 'bilinear_interp_layer', ['input']],
['power', 'power_layer', ['input', 'weight']],
['scaling', 'scaling_layer', ['input', 'weight']],
['slope_intercept', 'slope_intercept_layer', ['input']],
['tensor', 'tensor_layer', ['a', 'b']],
['cos_sim', 'cos_sim', ['a', 'b']],
['trans', 'trans_layer', ['input']],
# sampling layers
['max_id', 'maxid_layer', ['input']],
['sampling_id', 'sampling_id_layer', ['input']],
# slicing and joining layers
['pad', 'pad_layer', ['input']],
# cost layers
[
'classification_cost', 'classification_cost',
['input', 'label', 'weight']
],
['regression_cost', 'regression_cost', ['input', 'label', 'weight']],
['cross_entropy_cost', 'cross_entropy', ['input', 'label']],
[
'cross_entropy_with_selfnorm_cost', 'cross_entropy_with_selfnorm',
['input', 'label']
],
[
'multi_binary_label_cross_entropy_cost',
'multi_binary_label_cross_entropy', ['input', 'label']
],
['rank_cost', 'rank_cost', ['left', 'right', 'label', 'weight']],
['lambda_cost', 'lambda_cost', ['input', 'score']],
['sum_cost', 'sum_cost', ['input']],
['huber_cost', 'huber_cost', ['input', 'label']],
['crf', 'crf_layer', ['input', 'label']],
['crf_decoding', 'crf_decoding_layer', ['input']],
['ctc', 'ctc_layer', ['input', 'label']],
['warp_ctc', 'warp_ctc_layer', ['input', 'label']],
['nce', 'nce_layer', ['input', 'label']],
['hsigmoid', 'hsigmoid', ['input', 'label']],
# check layers
['eos', 'eos_layer', ['input']]
]
for l in layer_list:
globals()[l[0]] = __convert_to_v2__(l[1], l[2])
# convert projection
for prj in __projection_names__:
globals()[prj] = __convert_to_v2__(
prj, parent_names=['input'], is_default_name=False)
# convert operator
operator_list = [
# [V1_method_name, parent_names],
['dotmul_operator', ['a', 'b']],
['conv_operator', ['img', 'filter']]
]
for op in operator_list:
globals()[op[0]] = __convert_to_v2__(
op[0], parent_names=op[1], is_default_name=False)
......@@ -3,7 +3,10 @@ import paddle.trainer_config_helpers.optimizers as v1_optimizers
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
import paddle.v2
__all__ = ['Adam', 'Adamax']
__all__ = [
'Momentum', 'Adam', 'Adamax', 'AdaGrad', 'DecayedAdaGrad', 'AdaDelta',
'RMSProp', 'ModelAverage', 'L2Regularization'
]
class Optimizer(object):
......@@ -38,6 +41,14 @@ class Optimizer(object):
pass_num)
class Momentum(Optimizer):
def __init__(self, momentum=None, sparse=False, **kwargs):
learning_method = v1_optimizers.MomentumOptimizer(
momentum=None, sparse=False)
super(Momentum, self).__init__(
learning_method=learning_method, **kwargs)
class Adam(Optimizer):
def __init__(self, beta1=0.9, beta2=0.999, epsilon=1e-8, **kwargs):
learning_method = v1_optimizers.AdamOptimizer(
......@@ -52,7 +63,45 @@ class Adamax(Optimizer):
super(Adamax, self).__init__(learning_method=learning_method, **kwargs)
class AdaGrad(Optimizer):
def __init__(self, **kwargs):
learning_method = v1_optimizers.AdaGradOptimizer()
super(AdaGrad, self).__init__(learning_method=learning_method, **kwargs)
class DecayedAdaGrad(Optimizer):
def __init__(self, rho=0.95, epsilon=1e-06, **kwargs):
learning_method = v1_optimizers.DecayedAdaGradOptimizer(
rho=rho, epsilon=epsilon)
super(DecayedAdaGrad, self).__init__(
learning_method=learning_method, **kwargs)
class AdaDelta(Optimizer):
def __init__(self, rho=0.95, epsilon=1e-06, **kwargs):
learning_method = v1_optimizers.AdaDeltaOptimizer(
rho=rho, epsilon=epsilon)
super(AdaDelta, self).__init__(
learning_method=learning_method, **kwargs)
class RMSProp(Optimizer):
def __init__(self, rho=0.95, epsilon=1e-6, **kwargs):
learning_method = v1_optimizers.RMSPropOptimizer(
rho=rho, epsilon=epsilon)
super(RMSProp, self).__init__(learning_method=learning_method, **kwargs)
ModelAverage = v1_optimizers.ModelAverage
L2Regularization = v1_optimizers.L2Regularization
if __name__ == '__main__':
swig_api.initPaddle('--use_gpu=false')
opt = paddle.v2.optimizer.Adam()
print opt.enable_types()
for opt in [
Momentum(), Adam(), Adamax(), AdaGrad(), DecayedAdaGrad(),
AdaDelta(), RMSProp(), Adam(
model_average=ModelAverage(average_window=0.5),
regularization=L2Regularization(rate=0.5),
gradient_clipping_threshold=25)
]:
print opt, opt.enable_types()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers.poolings import *
__all__ = ["Max", "CudnnMax", "Avg", "CudnnAvg", "Sum", "SquareRootN"]
Max = MaxPooling
CudnnMax = CudnnMaxPooling
Avg = AvgPooling
CudnnAvg = CudnnAvgPooling
Sum = SumPooling
SquareRootN = SquareRootNPooling
add_test(NAME test_v2_layer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
add_test(NAME test_v2_api
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE})
add_test(NAME topology_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/topology_test.py
......
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
pushd `dirname $0` > /dev/null
SCRIPTPATH=$PWD
popd > /dev/null
cd $SCRIPTPATH
$1 -m pip install ../../../../paddle/dist/*.whl
test_list="test_data_feeder.py"
export PYTHONPATH=$PWD/../../../../python/
for fn in $test_list
do
echo "test $fn"
$1 $fn
if [ $? -ne 0 ]; then
exit 1
fi
done
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import py_paddle.swig_paddle as api
import numpy as np
from paddle.v2 import data_type
from paddle.v2.data_feeder import DataFeeder
class DataFeederTest(unittest.TestCase):
def dense_reader(self, size):
data = np.random.random(size)
return data
def sparse_binary_reader(self, high, size_limit, non_empty=False):
num = np.random.randint(size_limit) # num could be 0
while non_empty and num == 0:
num = np.random.randint(size_limit)
return np.random.randint(high, size=num).tolist()
def test_dense(self):
def compare(input):
feeder = DataFeeder([('image', data_type.dense_vector(784))],
{'image': 0})
arg = feeder(input)
output = arg.getSlotValue(0).copyToNumpyMat()
input = np.array(input, dtype='float32')
self.assertAlmostEqual(input.all(), output.all())
# test numpy array
batch_size = 32
dim = 784
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(self.dense_reader(dim))
data.append(each_sample)
compare(data)
# each feature is a list
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(self.dense_reader(dim).tolist())
data.append(each_sample)
compare(data)
# test tuple
data = []
for i in xrange(batch_size):
each_sample = (self.dense_reader(dim).tolist(), )
data.append(each_sample)
compare(data)
def test_sparse_binary(self):
dim = 10000
batch_size = 32
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(self.sparse_binary_reader(dim, 50))
data.append(each_sample)
feeder = DataFeeder([('input', data_type.sparse_binary_vector(dim))],
{'input': 0})
arg = feeder(data)
output = arg.getSlotValue(0)
assert isinstance(output, api.Matrix)
for i in xrange(batch_size):
self.assertEqual(output.getSparseRowCols(i), data[i][0])
def test_sparse(self):
dim = 10000
batch_size = 32
v = []
w = []
data = []
for dat in xrange(batch_size):
each_sample = []
a = self.sparse_binary_reader(dim, 40, non_empty=True)
b = self.dense_reader(len(a)).tolist()
v.append(a)
w.append(np.array(b, dtype="float32"))
each_sample.append(zip(a, b))
data.append(each_sample)
feeder = DataFeeder([('input', data_type.sparse_vector(dim))],
{'input': 0})
arg = feeder(data)
output = arg.getSlotValue(0)
assert isinstance(output, api.Matrix)
for i in xrange(batch_size):
self.assertEqual(output.getSparseRowCols(i), v[i])
cols_value = output.getSparseRowColsVal(i)
value = [val[1] for val in cols_value]
value = np.array(value, dtype="float32")
self.assertAlmostEqual(value.all(), w[i].all())
def test_integer(self):
dim = 100
batch_size = 32
index = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(np.random.randint(dim))
index.append(each_sample)
feeder = DataFeeder([('input', data_type.integer_value(dim))],
{'input': 0})
arg = feeder(index)
output = arg.getSlotIds(0).copyToNumpyArray()
index = np.array(index, dtype='int')
self.assertEqual(output.all(), index.flatten().all())
def test_integer_sequence(self):
dim = 10000
batch_size = 32
start = [0]
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(
self.sparse_binary_reader(
dim, 30, non_empty=True))
data.append(each_sample)
start.append(len(each_sample[0]) + start[-1])
feeder = DataFeeder([('input', data_type.integer_value_sequence(dim))],
{'input': 0})
arg = feeder(data)
output_data = arg.getSlotIds(0).copyToNumpyArray()
output_start = arg.getSlotSequenceStartPositions(0).copyToNumpyArray()
index = []
for dat in data:
index.extend(x for x in dat[0]) # only one feature, so dat[0]
index = np.array(index, dtype='int')
start = np.array(start, dtype='int')
self.assertEqual(output_data.all(), index.all())
self.assertEqual(output_start.all(), start.all())
def test_multiple_features(self):
batch_size = 2
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(np.random.randint(10))
each_sample.append(
self.sparse_binary_reader(
20000, 40, non_empty=True))
each_sample.append(self.dense_reader(100))
data.append(each_sample)
# test multiple features
data_types = [('fea0', data_type.dense_vector(100)),
('fea1', data_type.sparse_binary_vector(20000)),
('fea2', data_type.integer_value(10))]
feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
arg = feeder(data)
output_dense = arg.getSlotValue(0).copyToNumpyMat()
output_sparse = arg.getSlotValue(1)
output_index = arg.getSlotIds(2).copyToNumpyArray()
for i in xrange(batch_size):
self.assertEqual(output_dense[i].all(), data[i][2].all())
self.assertEqual(output_sparse.getSparseRowCols(i), data[i][1])
self.assertEqual(output_index[i], data[i][0])
# reader returns 3 features, but only use 2 features
data_types = [('fea0', data_type.dense_vector(100)),
('fea2', data_type.integer_value(10))]
feeder = DataFeeder(data_types, {'fea0': 2, 'fea2': 0})
arg = feeder(data)
output_dense = arg.getSlotValue(0).copyToNumpyMat()
output_index = arg.getSlotIds(1).copyToNumpyArray()
for i in xrange(batch_size):
self.assertEqual(output_dense[i].all(), data[i][2].all())
self.assertEqual(output_index[i], data[i][0])
# reader returns 3 featreus, one is duplicate data
data_types = [('fea0', data_type.dense_vector(100)),
('fea1', data_type.sparse_binary_vector(20000)),
('fea2', data_type.integer_value(10)),
('fea3', data_type.dense_vector(100))]
feeder = DataFeeder(data_types,
{'fea0': 2,
'fea1': 1,
'fea2': 0,
'fea3': 2})
arg = feeder(data)
fea0 = arg.getSlotValue(0).copyToNumpyMat()
fea1 = arg.getSlotValue(1)
fea2 = arg.getSlotIds(2).copyToNumpyArray()
fea3 = arg.getSlotValue(3).copyToNumpyMat()
for i in xrange(batch_size):
self.assertEqual(fea0[i].all(), data[i][2].all())
self.assertEqual(fea1.getSparseRowCols(i), data[i][1])
self.assertEqual(fea2[i], data[i][0])
self.assertEqual(fea3[i].all(), data[i][2].all())
def test_multiple_features_tuple(self):
batch_size = 2
data = []
for i in xrange(batch_size):
a = np.random.randint(10)
b = self.sparse_binary_reader(20000, 40, non_empty=True)
c = self.dense_reader(100)
each_sample = (a, b, c)
data.append(each_sample)
# test multiple features
data_types = [('fea0', data_type.dense_vector(100)),
('fea1', data_type.sparse_binary_vector(20000)),
('fea2', data_type.integer_value(10))]
feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
arg = feeder(data)
out_dense = arg.getSlotValue(0).copyToNumpyMat()
out_sparse = arg.getSlotValue(1)
out_index = arg.getSlotIds(2).copyToNumpyArray()
for i in xrange(batch_size):
self.assertEqual(out_dense[i].all(), data[i][2].all())
self.assertEqual(out_sparse.getSparseRowCols(i), data[i][1])
self.assertEqual(out_index[i], data[i][0])
if __name__ == '__main__':
api.initPaddle("--use_gpu=0")
unittest.main()
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import difflib
import unittest
import paddle.trainer_config_helpers as conf_helps
import paddle.v2.activation as activation
import paddle.v2.attr as attr
import paddle.v2.data_type as data_type
import paddle.v2.layer as layer
import paddle.v2.pooling as pooling
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as parse_network
pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
label = layer.data(name='label', type=data_type.integer_value(10))
weight = layer.data(name='weight', type=data_type.dense_vector(10))
score = layer.data(name='score', type=data_type.dense_vector(1))
hidden = layer.fc(input=pixel,
size=100,
act=activation.Sigmoid(),
param_attr=attr.Param(name='hidden'))
inference = layer.fc(input=hidden, size=10, act=activation.Softmax())
conv = layer.img_conv(
input=pixel,
filter_size=1,
filter_size_y=1,
num_channels=8,
num_filters=16,
act=activation.Linear())
class ImageLayerTest(unittest.TestCase):
def test_conv_layer(self):
conv_shift = layer.conv_shift(a=pixel, b=score)
print layer.parse_network(conv, conv_shift)
def test_pooling_layer(self):
maxpool = layer.img_pool(
input=conv,
pool_size=2,
num_channels=16,
padding=1,
pool_type=pooling.Max())
spp = layer.spp(input=conv,
pyramid_height=2,
num_channels=16,
pool_type=pooling.Max())
maxout = layer.maxout(input=conv, num_channels=16, groups=4)
print layer.parse_network(maxpool, spp, maxout)
def test_norm_layer(self):
norm1 = layer.img_cmrnorm(input=conv, size=5)
norm2 = layer.batch_norm(input=conv)
norm3 = layer.sum_to_one_norm(input=conv)
print layer.parse_network(norm1, norm2, norm3)
class AggregateLayerTest(unittest.TestCase):
def test_aggregate_layer(self):
pool = layer.pool(
input=pixel,
pooling_type=pooling.Avg(),
agg_level=layer.AggregateLevel.EACH_SEQUENCE)
last_seq = layer.last_seq(input=pixel)
first_seq = layer.first_seq(input=pixel)
concat = layer.concat(input=[last_seq, first_seq])
seq_concat = layer.seq_concat(a=last_seq, b=first_seq)
print layer.parse_network(pool, last_seq, first_seq, concat, seq_concat)
class MathLayerTest(unittest.TestCase):
def test_math_layer(self):
addto = layer.addto(input=[pixel, pixel])
linear_comb = layer.linear_comb(weights=weight, vectors=hidden, size=10)
interpolation = layer.interpolation(
input=[hidden, hidden], weight=score)
bilinear = layer.bilinear_interp(input=conv, out_size_x=4, out_size_y=4)
power = layer.power(input=pixel, weight=score)
scaling = layer.scaling(input=pixel, weight=score)
slope = layer.slope_intercept(input=pixel)
tensor = layer.tensor(a=pixel, b=pixel, size=1000)
cos_sim = layer.cos_sim(a=pixel, b=pixel)
trans = layer.trans(input=tensor)
print layer.parse_network(addto, linear_comb, interpolation, power,
scaling, slope, tensor, cos_sim, trans)
class ReshapeLayerTest(unittest.TestCase):
def test_reshape_layer(self):
block_expand = layer.block_expand(
input=conv, num_channels=4, stride_x=1, block_x=1)
expand = layer.expand(
input=weight,
expand_as=pixel,
expand_level=layer.ExpandLevel.FROM_TIMESTEP)
repeat = layer.repeat(input=pixel, num_repeats=4)
reshape = layer.seq_reshape(input=pixel, reshape_size=4)
rotate = layer.rotate(input=pixel, height=16, width=49)
print layer.parse_network(block_expand, expand, repeat, reshape, rotate)
class RecurrentLayerTest(unittest.TestCase):
def test_recurrent_layer(self):
word = layer.data(name='word', type=data_type.integer_value(12))
recurrent = layer.recurrent(input=word)
lstm = layer.lstmemory(input=word)
gru = layer.grumemory(input=word)
print layer.parse_network(recurrent, lstm, gru)
class CostLayerTest(unittest.TestCase):
def test_cost_layer(self):
cost1 = layer.classification_cost(input=inference, label=label)
cost2 = layer.classification_cost(
input=inference, label=label, weight=weight)
cost3 = layer.cross_entropy_cost(input=inference, label=label)
cost4 = layer.cross_entropy_with_selfnorm_cost(
input=inference, label=label)
cost5 = layer.regression_cost(input=inference, label=label)
cost6 = layer.regression_cost(
input=inference, label=label, weight=weight)
cost7 = layer.multi_binary_label_cross_entropy_cost(
input=inference, label=label)
cost8 = layer.rank_cost(left=score, right=score, label=score)
cost9 = layer.lambda_cost(input=inference, score=score)
cost10 = layer.sum_cost(input=inference)
cost11 = layer.huber_cost(input=score, label=label)
print layer.parse_network(cost1, cost2)
print layer.parse_network(cost3, cost4)
print layer.parse_network(cost5, cost6)
print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
crf = layer.crf(input=inference, label=label)
crf_decoding = layer.crf_decoding(input=inference, size=3)
ctc = layer.ctc(input=inference, label=label)
warp_ctc = layer.warp_ctc(input=pixel, label=label)
nce = layer.nce(input=inference, label=label, num_classes=3)
hsigmoid = layer.hsigmoid(input=inference, label=label, num_classes=3)
print layer.parse_network(crf, crf_decoding, ctc, warp_ctc, nce,
hsigmoid)
class OtherLayerTest(unittest.TestCase):
def test_sampling_layer(self):
maxid = layer.max_id(input=inference)
sampling_id = layer.sampling_id(input=inference)
eos = layer.eos(input=maxid, eos_id=5)
print layer.parse_network(maxid, sampling_id, eos)
def test_slicing_joining_layer(self):
pad = layer.pad(input=conv, pad_c=[2, 3], pad_h=[1, 2], pad_w=[3, 1])
print layer.parse_network(pad)
class ProjOpTest(unittest.TestCase):
def test_projection(self):
input = layer.data(name='data', type=data_type.dense_vector(784))
word = layer.data(
name='word', type=data_type.integer_value_sequence(10000))
fc0 = layer.fc(input=input, size=100, act=activation.Sigmoid())
fc1 = layer.fc(input=input, size=200, act=activation.Sigmoid())
mixed0 = layer.mixed(
size=256,
input=[
layer.full_matrix_projection(input=fc0),
layer.full_matrix_projection(input=fc1)
])
with layer.mixed(size=200) as mixed1:
mixed1 += layer.full_matrix_projection(input=fc0)
mixed1 += layer.identity_projection(input=fc1)
table = layer.table_projection(input=word)
emb0 = layer.mixed(size=512, input=table)
with layer.mixed(size=512) as emb1:
emb1 += table
scale = layer.scaling_projection(input=fc0)
scale0 = layer.mixed(size=100, input=scale)
with layer.mixed(size=100) as scale1:
scale1 += scale
dotmul = layer.dotmul_projection(input=fc0)
dotmul0 = layer.mixed(size=100, input=dotmul)
with layer.mixed(size=100) as dotmul1:
dotmul1 += dotmul
context = layer.context_projection(input=fc0, context_len=5)
context0 = layer.mixed(size=100, input=context)
with layer.mixed(size=100) as context1:
context1 += context
conv = layer.conv_projection(
input=input,
filter_size=1,
num_channels=1,
num_filters=128,
stride=1,
padding=0)
conv0 = layer.mixed(input=conv, bias_attr=True)
with layer.mixed(bias_attr=True) as conv1:
conv1 += conv
print layer.parse_network(mixed0)
print layer.parse_network(mixed1)
print layer.parse_network(emb0)
print layer.parse_network(emb1)
print layer.parse_network(scale0)
print layer.parse_network(scale1)
print layer.parse_network(dotmul0)
print layer.parse_network(dotmul1)
print layer.parse_network(conv0)
print layer.parse_network(conv1)
def test_operator(self):
ipt0 = layer.data(name='data', type=data_type.dense_vector(784))
ipt1 = layer.data(name='word', type=data_type.dense_vector(128))
fc0 = layer.fc(input=ipt0, size=100, act=activation.Sigmoid())
fc1 = layer.fc(input=ipt0, size=100, act=activation.Sigmoid())
dotmul_op = layer.dotmul_operator(a=fc0, b=fc1)
dotmul0 = layer.mixed(input=dotmul_op)
with layer.mixed() as dotmul1:
dotmul1 += dotmul_op
conv = layer.conv_operator(
img=ipt0,
filter=ipt1,
filter_size=1,
num_channels=1,
num_filters=128,
stride=1,
padding=0)
conv0 = layer.mixed(input=conv)
with layer.mixed() as conv1:
conv1 += conv
print layer.parse_network(dotmul0)
print layer.parse_network(dotmul1)
print layer.parse_network(conv0)
print layer.parse_network(conv1)
if __name__ == '__main__':
unittest.main()
......@@ -3,6 +3,7 @@ import collections
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter
from data_feeder import DataFeeder
from . import event as v2_event
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters
......@@ -68,7 +69,8 @@ class SGD(ITrainer):
test_data_reader=None,
event_handler=None,
batch_size=32,
data_types=None):
data_types=None,
reader_dict=None):
"""
Training method. Will train num_passes of input data.
......@@ -96,22 +98,37 @@ class SGD(ITrainer):
self.__optimizer__.enable_types())
assert isinstance(gm, api.GradientMachine)
parameters.append_gradient_machine(gm)
gm.randParameters()
updater = self.__optimizer__.create_local_updater()
updater.init(gm)
gm.start()
batch_evaluator = gm.makeEvaluator()
assert isinstance(batch_evaluator, api.Evaluator)
pass_evaluator = gm.makeEvaluator()
assert isinstance(pass_evaluator, api.Evaluator)
out_args = api.Arguments.createArguments(0)
data_types_lists = [data_type[1] for data_type in topology.data_type()]
converter = DataProviderConverter(input_types=data_types_lists)
feeder = DataFeeder(data_types, reader_dict)
for pass_id in xrange(num_passes):
event_handler(v2_event.BeginPass(pass_id))
pass_evaluator.start()
updater.startPass()
for batch_id, data_batch in enumerate(
__data_reader_to_batch__(train_data_reader, batch_size,
topology)):
batch_evaluator.start()
event_handler(
v2_event.BeginIteration(
pass_id=pass_id, batch_id=batch_id))
pass_type = updater.startBatch(len(data_batch))
gm.forwardBackward(converter(data_batch), out_args, pass_type)
gm.forwardBackward(feeder(data_batch), out_args, pass_type)
gm.eval(pass_evaluator)
gm.eval(batch_evaluator)
for each_param in gm.getParameters():
updater.update(each_param)
# Get cost. We use numpy to calculate total cost for this batch.
......@@ -119,11 +136,17 @@ class SGD(ITrainer):
cost_vec = cost_vec.copyToNumpyMat()
cost = cost_vec.sum() / len(data_batch)
updater.finishBatch(cost)
batch_evaluator.finish()
event_handler(
v2_event.EndIteration(
pass_id=pass_id, batch_id=batch_id, cost=cost))
pass_id=pass_id,
batch_id=batch_id,
cost=cost,
evaluator=batch_evaluator))
updater.finishPass()
pass_evaluator.finish()
event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
gm.finish()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册