From c459fb5be0aa4bb314bb0c5e05fe0a9ab43b06c9 Mon Sep 17 00:00:00 2001 From: tensor-tang Date: Fri, 31 Aug 2018 17:11:18 +0800 Subject: [PATCH] add fusion lstm batch mode --- paddle/fluid/operators/fusion_lstm_op.cc | 307 +++++++++++++---------- 1 file changed, 175 insertions(+), 132 deletions(-) diff --git a/paddle/fluid/operators/fusion_lstm_op.cc b/paddle/fluid/operators/fusion_lstm_op.cc index e4e4ac8e333..d9cb75b77d6 100644 --- a/paddle/fluid/operators/fusion_lstm_op.cc +++ b/paddle/fluid/operators/fusion_lstm_op.cc @@ -22,7 +22,7 @@ limitations under the License. */ #include "paddle/fluid/operators/math/sequence2batch.h" #include "paddle/fluid/platform/cpu_info.h" -DEFINE_bool(seq_mode, true, "Use sequence mode"); +DEFINE_bool(seq_mode, false, "Use sequence mode"); namespace paddle { namespace operators { @@ -42,10 +42,16 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const { "Output(Hidden) of LSTM should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Cell"), "Output(Cell) of LSTM should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"), - "Output(BatchedGate) of LSTM should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"), - "Output(BatchedGate) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"), + "Output(BatchedInput) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"), + "Output(BatchedHidden) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"), + "Output(BatchedCell) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"), + "Output(ReorderedH0) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"), + "Output(ReorderedC0) of LSTM should not be null."); auto x_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); @@ -97,8 +103,9 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const { framework::DDim out_dims({x_dims[0], frame_size}); ctx->SetOutputDim("Hidden", out_dims); ctx->SetOutputDim("Cell", out_dims); - ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]}); - ctx->SetOutputDim("BatchCellPreAct", out_dims); + ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]}); + ctx->SetOutputDim("BatchedHidden", out_dims); + ctx->SetOutputDim("BatchedCell", out_dims); ctx->ShareLoD("X", "Hidden"); ctx->ShareLoD("X", "Cell"); @@ -169,9 +176,11 @@ void FusionLSTMOpMaker::Make() { " where T is the total time steps in this mini-batch," " D is the hidden size, M is the dim size of x input.") .AsIntermediate(); - AddOutput("BatchedGate", "(LoDTensor) (same as LSTMOp).").AsIntermediate(); - AddOutput("BatchCellPreAct", "(LoDTensor) (same as LSTMOp).") - .AsIntermediate(); + AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate(); + AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate(); + AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate(); + AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate(); + AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate(); AddAttr("use_peepholes", "(bool, defalut: True) " "whether to enable diagonal/peephole connections.") @@ -203,17 +212,6 @@ This operator fuse the X into LSTM, more details can refer to LSTM op. )DOC"); } -template -inline void ReorderInitState(const DeviceContext& ctx, - const framework::Tensor& src, - framework::Vector index_lod, - framework::Tensor* dst, bool indexed_src) { - math::CopyMatrixRowsFunctor row_shuffle; - dst->mutable_data(src.dims(), ctx.GetPlace()); - // TODO(TJ): check mem copy perf - row_shuffle(ctx, src, index_lod, dst, indexed_src); -} - template class FuisonLSTMKernel : public framework::OpKernel { public: @@ -290,12 +288,12 @@ class FuisonLSTMKernel : public framework::OpKernel { for (int i = 0; i < N; ++i) { int bid = is_reverse ? N - 1 - i : i; int seq_len = x_lod[0][bid + 1] - x_lod[0][bid]; - const T* prev_cell_data = NULL; - const T* prev_hidden_data = NULL; + const T* prev_c_data = NULL; + const T* prev_h_data = NULL; int tstart = 0; if (h0_data) { - prev_hidden_data = h0_data + bid * D; - prev_cell_data = c0_data + bid * D; + prev_h_data = h0_data + bid * D; + prev_c_data = c0_data + bid * D; } else { // W_ch, W_ih, W_fh, W_oh act_gate(D3, xx_data + D, xx_data + D); @@ -307,23 +305,22 @@ class FuisonLSTMKernel : public framework::OpKernel { blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data); // prev - prev_hidden_data = hidden_out_data; - prev_cell_data = cell_out_data; + prev_h_data = hidden_out_data; + prev_c_data = cell_out_data; tstart = 1; move_step(); } for (int step = tstart; step < seq_len; ++step) { blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast(1), - prev_hidden_data, D, wh_data, D4, static_cast(1), xx_data, - D4); + prev_h_data, D, wh_data, D4, static_cast(1), xx_data, D4); // W_ch, W_ih, W_fh, W_oh act_gate(D3, xx_data + D, xx_data + D); act_cand(D, xx_data, xx_data); // a = forget * prev_cell - blas.VMUL(D, xx_data + D2, prev_cell_data, xx_data + D2); + blas.VMUL(D, xx_data + D2, prev_c_data, xx_data + D2); // b = input * tilde blas.VMUL(D, xx_data, xx_data + D, xx_data + D); @@ -336,8 +333,8 @@ class FuisonLSTMKernel : public framework::OpKernel { blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data); // prev - prev_hidden_data = hidden_out_data; - prev_cell_data = cell_out_data; + prev_h_data = hidden_out_data; + prev_c_data = cell_out_data; move_step(); } @@ -350,132 +347,178 @@ class FuisonLSTMKernel : public framework::OpKernel { auto* wx = ctx.Input("WeightX"); auto* wh = ctx.Input("WeightH"); auto* bias = ctx.Input("Bias"); - auto* hidden_t0 = ctx.Input("H0"); - auto* cell_t0 = ctx.Input("C0"); + auto* h0 = ctx.Input("H0"); + auto* c0 = ctx.Input("C0"); auto* xx = ctx.Output("XX"); - auto* batched_gate = ctx.Output("BatchedGate"); + auto* reordered_h0 = ctx.Output("ReorderedH0"); + auto* reordered_c0 = ctx.Output("ReorderedC0"); + auto* batched_input = ctx.Output("BatchedInput"); + auto* batched_c_out = ctx.Output("BatchedCell"); + auto* batched_h_out = ctx.Output("BatchedHidden"); auto* hidden_out = ctx.Output("Hidden"); auto* cell_out = ctx.Output("Cell"); bool is_reverse = ctx.Attr("is_reverse"); - T* xx_data = xx->mutable_data(ctx.GetPlace()); - T* batched_gate_data = batched_gate->mutable_data(ctx.GetPlace()); - hidden_out->mutable_data(ctx.GetPlace()); - cell_out->mutable_data(ctx.GetPlace()); + std::function act_gate, act_cell, act_cand; + auto& act_gate_str = ctx.Attr("gate_activation"); + auto& act_cell_str = ctx.Attr("cell_activation"); + auto& act_cand_str = ctx.Attr("candidate_activation"); + if (platform::jit::MayIUse(platform::jit::avx)) { + math::VecActivations act_functor; + act_gate = act_functor(act_gate_str); + act_cell = act_functor(act_cell_str); + act_cand = act_functor(act_cand_str); + } else { + math::VecActivations act_functor; + act_gate = act_functor(act_gate_str); + act_cell = act_functor(act_cell_str); + act_cand = act_functor(act_cand_str); + } + + auto x_dims = x->dims(); // T x M + auto wh_dims = wh->dims(); // D x 4D + + // auto x_lod = x->lod(); + // const int N = x_lod[0].size() - 1; // batch size + // if (N == 1) { + // SeqCompute(ctx); + // } + const int M = x_dims[1]; + const int D = wh_dims[0]; + const int D2 = D * 2; + const int D3 = D * 3; + const int D4 = wh_dims[1]; const T* x_data = x->data(); const T* wx_data = wx->data(); - auto x_dims = x->dims(); - auto wx_dims = wx->dims(); + const T* wh_data = wh->data(); + auto place = ctx.GetPlace(); + T* xx_data = xx->mutable_data(place); + T* batched_input_data = batched_input->mutable_data(place); + T* batched_c_out_data = batched_c_out->mutable_data(place); + T* batched_h_out_data = batched_h_out->mutable_data(place); + hidden_out->mutable_data(place); + cell_out->mutable_data(place); math::LoDTensor2BatchFunctor to_batch; auto& dev_ctx = ctx.template device_context(); auto blas = math::GetBlas(dev_ctx); - if (x_dims[1] > wx_dims[1]) { - math::FCCompute(blas, x_dims[0], wx_dims[1], x_dims[1], - x_data, wx_data, xx_data, - bias->data()); - to_batch(dev_ctx, *xx, batched_gate, true, is_reverse); + if (M > D4) { + math::FCCompute(blas, x_dims[0], D4, M, x_data, wx_data, + xx_data, bias->data()); + to_batch(dev_ctx, *xx, batched_input, true, is_reverse); } else { to_batch(dev_ctx, *x, xx, true, is_reverse); - batched_gate->set_lod(xx->lod()); - math::FCCompute(blas, x_dims[0], wx_dims[1], x_dims[1], - xx_data, wx_data, batched_gate_data, + batched_input->set_lod(xx->lod()); + math::FCCompute(blas, x_dims[0], D4, M, xx_data, + wx_data, batched_input_data, bias->data()); } - int frame_size = static_cast(wx_dims[1] / 4); - framework::DDim out_dims({x_dims[0], frame_size}); - math::LstmMetaValue lstm_value; - // no peephole - lstm_value.check_ig = nullptr; - lstm_value.check_fg = nullptr; - lstm_value.check_og = nullptr; - lstm_value.prev_state_value = nullptr; - Tensor ordered_c0; - - framework::Vector order(batched_gate->lod()[2]); - - if (cell_t0) { - // Since the batch computing for LSTM reorders the input sequence - // according to their length. The initialized cell state also needs - // to reorder. - ReorderInitState(dev_ctx, *cell_t0, order, &ordered_c0, - true); - lstm_value.prev_state_value = ordered_c0.data(); + auto batched_lod = batched_input->lod(); + const auto& seq_order = batched_lod[2]; + const int max_bs = seq_order.size(); + reordered_h0->Resize({max_bs, D}); + reordered_c0->Resize({max_bs, D}); + + int tstart = 0; + T* prev_h_data = NULL; + T* prev_c_data = NULL; + if (h0) { + // reorder h0, c0 + T* reordered_h0_data = reordered_h0->mutable_data(place); + T* reordered_c0_data = reordered_c0->mutable_data(place); + const T* h0_data = h0->data(); + const T* c0_data = c0->data(); + prev_h_data = reordered_h0_data; + prev_c_data = reordered_c0_data; + size_t sz = sizeof(T) * D; + for (int i = 0; i < max_bs; ++i) { + std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz); + std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz); + reordered_h0_data += D; + reordered_c0_data += D; + } + } else { + // compute without h0, c0 + T* cur_in_data = batched_input_data; + T* cur_h_out_data = batched_h_out_data; + T* cur_c_out_data = batched_c_out_data; + // W_ch, W_ih, W_fh, W_oh + for (int i = 0; i < max_bs; ++i) { + act_gate(D3, cur_in_data + D, cur_in_data + D); + act_cand(D, cur_in_data, cur_in_data); + // cell out= input*tilde + blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data); + // hidden out= act_state(cellout) * outgate + act_cell(D, cur_c_out_data, cur_in_data + D2); + blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data); + + // add offset + cur_in_data += D4; + cur_c_out_data += D; + cur_h_out_data += D; + } + tstart = 1; + prev_h_data = batched_h_out_data; + prev_c_data = batched_c_out_data; } + // Then start from next + const auto& batch_starts = batched_lod[0]; + const int max_seq_len = batch_starts.size() - 1; + const int offset = tstart * max_bs * D; + batched_input_data = batched_input_data + offset * 4; + batched_h_out_data = batched_h_out_data + offset; + batched_c_out_data = batched_c_out_data + offset; + for (int step = tstart; step < max_seq_len; ++step) { + const int cur_bs = batch_starts[step + 1] - batch_starts[step]; + blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast(1), + prev_h_data, D, wh_data, D4, static_cast(1), + batched_input_data, D4); + + T* cur_in_data = batched_input_data; + T* cur_prev_c_data = prev_c_data; + T* cur_c_out_data = batched_c_out_data; + T* cur_h_out_data = batched_h_out_data; + for (int i = 0; i < cur_bs; ++i) { + // W_ch, W_ih, W_fh, W_oh + act_gate(D3, cur_in_data + D, cur_in_data + D); + act_cand(D, cur_in_data, cur_in_data); + + // a = forget * prev_cell + blas.VMUL(D, cur_in_data + D2, cur_prev_c_data, cur_in_data + D2); + + // b = input * tilde + blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D); - // Use the local variable as here. - LoDTensor batch_hidden, batch_cell; - auto* batch_cell_pre_act = ctx.Output("BatchCellPreAct"); - batch_hidden.mutable_data(out_dims, ctx.GetPlace()); - batch_cell.mutable_data(out_dims, ctx.GetPlace()); - batch_cell_pre_act->mutable_data(out_dims, ctx.GetPlace()); - - auto batch_starts = batched_gate->lod()[0]; - size_t max_seq_len = batch_starts.size() - 1; - auto gate_act = math::detail::GetActivationType( - ctx.Attr("gate_activation")); - auto cell_act = math::detail::GetActivationType( - ctx.Attr("cell_activation")); - auto cand_act = math::detail::GetActivationType( - ctx.Attr("candidate_activation")); - - for (size_t n = 0; n < max_seq_len; n++) { - int bstart = static_cast(batch_starts[n]); - int bend = static_cast(batch_starts[n + 1]); - - Tensor gate_t = batched_gate->Slice(bstart, bend); - Tensor out_t = batch_hidden.Slice(bstart, bend); - Tensor cell_t = batch_cell.Slice(bstart, bend); - Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend); - - int cur_batch_size = bend - bstart; - - if (n > 0) { - int pre_h_start = static_cast(batch_starts[n - 1]); - int pre_h_end = pre_h_start + cur_batch_size; - auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end); - // TODO(TJ): use gemm directly - blas.MatMul(pre_hidden_t, false, *wh, false, static_cast(1.0), - &gate_t, static_cast(1.0)); - } else if (hidden_t0) { - // TODO(TJ): move h0 outside for - // If n == 0 and there is no initialized hidden state, that is to say - // the H0 is zeros, the calculation W_h * H0 will be skiped. - // If n == 0 and there is initialized hidden state, calculate W_h * H0. - - // Since the batch computing for LSTM reorders the input sequence - // according to their length. The initialized hidden state also needs - // to reorder. - Tensor ordered_h0; - ReorderInitState(dev_ctx, *hidden_t0, order, - &ordered_h0, true); - // TODO(TJ): use gemm directly - blas.MatMul(ordered_h0, false, *wh, false, static_cast(1.0), &gate_t, - static_cast(1.0)); + // cell out= a+b + blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data); + + // hidden out= act_state(cellout) * outgate + act_cell(D, cur_c_out_data, cur_in_data + D2); + blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data); + + cur_in_data += D4; + cur_prev_c_data += D; + cur_c_out_data += D; + cur_h_out_data += D; } - lstm_value.gate_value = gate_t.data(); - lstm_value.output_value = out_t.data(); - lstm_value.state_value = cell_t.data(); - lstm_value.state_active_value = cell_pre_act_t.data(); - math::LstmUnitFunctor::compute( - dev_ctx, lstm_value, frame_size, cur_batch_size, gate_act, cell_act, - cand_act); - lstm_value.prev_state_value = lstm_value.state_value; + prev_c_data = batched_c_out_data; + prev_h_data = batched_h_out_data; + batched_c_out_data = cur_c_out_data; + batched_h_out_data = cur_h_out_data; + batched_input_data = cur_in_data; } math::Batch2LoDTensorFunctor to_seq; - batch_hidden.set_lod(batched_gate->lod()); - // restore the output hidden in LoDTensor from the batch hidden - to_seq(dev_ctx, batch_hidden, hidden_out); - - batch_cell.set_lod(batched_gate->lod()); - // restore the output cell state in LoDTensor from the batch cell - to_seq(dev_ctx, batch_cell, cell_out); + batched_h_out->set_lod(batched_lod); + to_seq(dev_ctx, *batched_h_out, hidden_out); + batched_c_out->set_lod(batched_lod); + to_seq(dev_ctx, *batched_c_out, cell_out); } + void Compute(const framework::ExecutionContext& ctx) const override { if (FLAGS_seq_mode) { SeqCompute(ctx); -- GitLab