提交 c43fed25 编写于 作者: T Travis CI

Deploy to GitHub Pages: f6dfccb6

上级 f727071f
# Fluid Distributed Training
## Introduction
In this article, we'll explain how to config and run distributed training jobs with PaddlePaddle Fluid in a bare metal cluster.
## Preparations
### Get your cluster ready
Prepare your computer nodes in the cluster. Nodes in this cluster can be of any specification that runs PaddlePaddle, and with a unique IP address assigned to it. Make sure they can communicate with each other.
### Have PaddlePaddle installed
PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes, be sure to properly install drivers and CUDA libraries.
PaddlePaddle build and installation guide can be found from [here](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html).
### Update training script
#### Non-cluster training script
Let's take [Deep Learning 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)'s first chapter: "fit a line" as an example.
This demo's non-cluster version with fluid API is as follows:
``` python
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
```
We created a simple fully connected neural networks training program and handed it to the fluid executor to run for 100 passes.
Now let's try to convert it to a distributed version to run in a cluster.
#### Introducing parameter server
As you see from the non-cluster version of training script, there is only one role in it: the trainer, who does the computing as well as holding parameters. In cluster training, since multi-trainers are working on the same task, they need one centralized place to hold and distribute parameters. This centralized place is called the Parameter Server in PaddlePaddle.
![parameter server architect](src/trainer.png)
Parameter Server in fluid does not only hold parameters but is also assigned with a part of the program. Trainers communicate with parameter servers via send/receive OPs. For more tech detail, please refer to this [document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/dist_refactor/distributed_architecture.md).
Now we need to create program for both trainers and parameter servers, the question is how?
#### Slice the program
Fluid provides a tool called "Distribute Transpiler" to automatically convert the non-cluster program into cluster program.
The idea behind this tool is to find optimize OPs and gradient parameters, slice the program into 2 pieces and connect them with send/receive OP.
Optimize OPs and gradient parameters can be found from the return values of optimizer's minimize function.
To put them together:
``` python
... #define the program, cost, and create sgd optimizer
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters
t = fluid.DistributeTranspiler() # create transpiler instance
# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
... #create executor
# in pserver, run this
exe.run(fluid.default_startup_program())
#current_endpoint here means current pserver IP:PORT you wish to run on
exe.run(t.get_pserver_program(current_endpoint, optimize_ops))
# in trainer, run this
... # define data reader
exe.run(fluid.default_startup_program())
for pass_id in range(100):
for data in train_reader():
exe.run(t.get_trainer_program())
```
### E2E demo
Please find the complete demo from [here](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py). In parameter server node run this in the command line:
``` bash
PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=PSERVER python notest_dist_fit_a_line.py
```
*please note we assume that your parameter server runs at 192.168.1.2:6174*
Wait until the prompt `Server listening on 192.168.1.2:6174`
Then in 2 of your trainer node run this:
``` bash
PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=TRAINER python notest_dist_fit_a_line.py
```
*the reason you need to run this command twice in 2 nodes is: in the script we set the trainer count to be 2. You can change this setting on line 50*
Now you have 2 trainers and 1 parameter server up and running.
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Fluid Distributed Training &mdash; PaddlePaddle documentation</title>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index"
href="../../../genindex.html"/>
<link rel="search" title="Search" href="../../../search.html"/>
<link rel="top" title="PaddlePaddle documentation" href="../../../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../../../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../../../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../dev/build_en.html">Build using Docker</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="cluster_train_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="fabric_en.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="openmpi_en.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="k8s_en.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="k8s_aws_en.html">kubernetes on AWS</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_en.html">Contribute Documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/regularizer.html">Regularizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/io.html">IO</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_ios_en.html">Build PaddlePaddle for iOS</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Fluid Distributed Training</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="fluid-distributed-training">
<span id="fluid-distributed-training"></span><h1>Fluid Distributed Training<a class="headerlink" href="#fluid-distributed-training" title="Permalink to this headline"></a></h1>
<div class="section" id="introduction">
<span id="introduction"></span><h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
<p>In this article, we&#8217;ll explain how to config and run distributed training jobs with PaddlePaddle Fluid in a bare metal cluster.</p>
</div>
<div class="section" id="preparations">
<span id="preparations"></span><h2>Preparations<a class="headerlink" href="#preparations" title="Permalink to this headline"></a></h2>
<div class="section" id="get-your-cluster-ready">
<span id="get-your-cluster-ready"></span><h3>Get your cluster ready<a class="headerlink" href="#get-your-cluster-ready" title="Permalink to this headline"></a></h3>
<p>Prepare your computer nodes in the cluster. Nodes in this cluster can be of any specification that runs PaddlePaddle, and with a unique IP address assigned to it. Make sure they can communicate with each other.</p>
</div>
<div class="section" id="have-paddlepaddle-installed">
<span id="have-paddlepaddle-installed"></span><h3>Have PaddlePaddle installed<a class="headerlink" href="#have-paddlepaddle-installed" title="Permalink to this headline"></a></h3>
<p>PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes, be sure to properly install drivers and CUDA libraries.</p>
<p>PaddlePaddle build and installation guide can be found from <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html">here</a>.</p>
</div>
<div class="section" id="update-training-script">
<span id="update-training-script"></span><h3>Update training script<a class="headerlink" href="#update-training-script" title="Permalink to this headline"></a></h3>
<div class="section" id="non-cluster-training-script">
<span id="non-cluster-training-script"></span><h4>Non-cluster training script<a class="headerlink" href="#non-cluster-training-script" title="Permalink to this headline"></a></h4>
<p>Let&#8217;s take <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html">Deep Learning 101</a>&#8216;s first chapter: &#8220;fit a line&#8221; as an example.</p>
<p>This demo&#8217;s non-cluster version with fluid API is as follows:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.v2</span> <span class="kn">as</span> <span class="nn">paddle</span>
<span class="kn">import</span> <span class="nn">paddle.v2.fluid</span> <span class="kn">as</span> <span class="nn">fluid</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;x&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">13</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">y_predict</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">square_error_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">y_predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
<span class="n">avg_cost</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="n">cost</span><span class="p">)</span>
<span class="n">sgd_optimizer</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">learning_rate</span><span class="o">=</span><span class="mf">0.001</span><span class="p">)</span>
<span class="n">sgd_optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">avg_cost</span><span class="p">)</span>
<span class="n">BATCH_SIZE</span> <span class="o">=</span> <span class="mi">20</span>
<span class="n">train_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">reader</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">dataset</span><span class="o">.</span><span class="n">uci_housing</span><span class="o">.</span><span class="n">train</span><span class="p">(),</span> <span class="n">buf_size</span><span class="o">=</span><span class="mi">500</span><span class="p">),</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">BATCH_SIZE</span><span class="p">)</span>
<span class="n">place</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">CPUPlace</span><span class="p">()</span>
<span class="n">feeder</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DataFeeder</span><span class="p">(</span><span class="n">place</span><span class="o">=</span><span class="n">place</span><span class="p">,</span> <span class="n">feed_list</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">])</span>
<span class="n">exe</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Executor</span><span class="p">(</span><span class="n">place</span><span class="p">)</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>
<span class="n">PASS_NUM</span> <span class="o">=</span> <span class="mi">100</span>
<span class="k">for</span> <span class="n">pass_id</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">PASS_NUM</span><span class="p">):</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">save_persistables</span><span class="p">(</span><span class="n">exe</span><span class="p">,</span> <span class="s2">&quot;./fit_a_line.model/&quot;</span><span class="p">)</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">io</span><span class="o">.</span><span class="n">load_persistables</span><span class="p">(</span><span class="n">exe</span><span class="p">,</span> <span class="s2">&quot;./fit_a_line.model/&quot;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">train_reader</span><span class="p">():</span>
<span class="n">avg_loss_value</span><span class="p">,</span> <span class="o">=</span> <span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_main_program</span><span class="p">(),</span>
<span class="n">feed</span><span class="o">=</span><span class="n">feeder</span><span class="o">.</span><span class="n">feed</span><span class="p">(</span><span class="n">data</span><span class="p">),</span>
<span class="n">fetch_list</span><span class="o">=</span><span class="p">[</span><span class="n">avg_cost</span><span class="p">])</span>
<span class="k">if</span> <span class="n">avg_loss_value</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">&lt;</span> <span class="mf">10.0</span><span class="p">:</span>
<span class="nb">exit</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># if avg cost less than 10.0, we think our code is good.</span>
<span class="nb">exit</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div>
<p>We created a simple fully connected neural networks training program and handed it to the fluid executor to run for 100 passes.</p>
<p>Now let&#8217;s try to convert it to a distributed version to run in a cluster.</p>
</div>
<div class="section" id="introducing-parameter-server">
<span id="introducing-parameter-server"></span><h4>Introducing parameter server<a class="headerlink" href="#introducing-parameter-server" title="Permalink to this headline"></a></h4>
<p>As you see from the non-cluster version of training script, there is only one role in it: the trainer, who does the computing as well as holding parameters. In cluster training, since multi-trainers are working on the same task, they need one centralized place to hold and distribute parameters. This centralized place is called the Parameter Server in PaddlePaddle.</p>
<p><img alt="parameter server architect" src="../../../_images/trainer.png" /></p>
<p>Parameter Server in fluid does not only hold parameters but is also assigned with a part of the program. Trainers communicate with parameter servers via send/receive OPs. For more tech detail, please refer to this <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/dist_refactor/distributed_architecture.md">document</a>.</p>
<p>Now we need to create program for both trainers and parameter servers, the question is how?</p>
</div>
<div class="section" id="slice-the-program">
<span id="slice-the-program"></span><h4>Slice the program<a class="headerlink" href="#slice-the-program" title="Permalink to this headline"></a></h4>
<p>Fluid provides a tool called &#8220;Distribute Transpiler&#8221; to automatically convert the non-cluster program into cluster program.</p>
<p>The idea behind this tool is to find optimize OPs and gradient parameters, slice the program into 2 pieces and connect them with send/receive OP.</p>
<p>Optimize OPs and gradient parameters can be found from the return values of optimizer&#8217;s minimize function.</p>
<p>To put them together:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="o">...</span> <span class="c1">#define the program, cost, and create sgd optimizer</span>
<span class="n">optimize_ops</span><span class="p">,</span> <span class="n">params_grads</span> <span class="o">=</span> <span class="n">sgd_optimizer</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">avg_cost</span><span class="p">)</span> <span class="c1">#get optimize OPs and gradient parameters</span>
<span class="n">t</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DistributeTranspiler</span><span class="p">()</span> <span class="c1"># create transpiler instance</span>
<span class="c1"># slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers</span>
<span class="n">t</span><span class="o">.</span><span class="n">transpile</span><span class="p">(</span><span class="n">optimize_ops</span><span class="p">,</span> <span class="n">params_grads</span><span class="p">,</span> <span class="n">pservers</span><span class="o">=</span><span class="n">pserver_endpoints</span><span class="p">,</span> <span class="n">trainers</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="o">...</span> <span class="c1">#create executor</span>
<span class="c1"># in pserver, run this</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>
<span class="c1">#current_endpoint here means current pserver IP:PORT you wish to run on</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">t</span><span class="o">.</span><span class="n">get_pserver_program</span><span class="p">(</span><span class="n">current_endpoint</span><span class="p">,</span> <span class="n">optimize_ops</span><span class="p">))</span>
<span class="c1"># in trainer, run this</span>
<span class="o">...</span> <span class="c1"># define data reader</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">fluid</span><span class="o">.</span><span class="n">default_startup_program</span><span class="p">())</span>
<span class="k">for</span> <span class="n">pass_id</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">):</span>
<span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">train_reader</span><span class="p">():</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">t</span><span class="o">.</span><span class="n">get_trainer_program</span><span class="p">())</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="e2e-demo">
<span id="e2e-demo"></span><h3>E2E demo<a class="headerlink" href="#e2e-demo" title="Permalink to this headline"></a></h3>
<p>Please find the complete demo from <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py">here</a>. In parameter server node run this in the command line:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">PSERVERS</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">SERVER_ENDPOINT</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">TRAINING_ROLE</span><span class="o">=</span>PSERVER python notest_dist_fit_a_line.py
</pre></div>
</div>
<p><em>please note we assume that your parameter server runs at 192.168.1.2:6174</em></p>
<p>Wait until the prompt <code class="docutils literal"><span class="pre">Server</span> <span class="pre">listening</span> <span class="pre">on</span> <span class="pre">192.168.1.2:6174</span></code></p>
<p>Then in 2 of your trainer node run this:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">PSERVERS</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">SERVER_ENDPOINT</span><span class="o">=</span><span class="m">192</span>.168.1.2:6174 <span class="nv">TRAINING_ROLE</span><span class="o">=</span>TRAINER python notest_dist_fit_a_line.py
</pre></div>
</div>
<p><em>the reason you need to run this command twice in 2 nodes is: in the script we set the trainer count to be 2. You can change this setting on line 50</em></p>
<p>Now you have 2 trainers and 1 parameter server up and running.</p>
</div>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../../../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../../../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册