提交 c43edffb 编写于 作者: W wanghaoshuang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into whs_doc1

...@@ -55,12 +55,14 @@ option(WITH_FLUID_ONLY "Compile PaddlePaddle fluid only" OFF) ...@@ -55,12 +55,14 @@ option(WITH_FLUID_ONLY "Compile PaddlePaddle fluid only" OFF)
option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF) option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF)
option(GLIDE_INSTALL "Download and install go dependencies " ON) option(GLIDE_INSTALL "Download and install go dependencies " ON)
option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF) option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF)
option(WITH_DISTRIBUTE "Compile with grpc distributed support" OFF) option(WITH_DISTRIBUTE "Compile with distributed support" OFF)
option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF) option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF)
option(EIGEN_USE_THREADS "Compile with multi-threaded Eigen" OFF) option(EIGEN_USE_THREADS "Compile with multi-threaded Eigen" OFF)
option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF) option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF)
option(WITH_FAST_BUNDLE_TEST "Bundle tests that can be run in a single process together to reduce launch overhead" OFF) option(WITH_FAST_BUNDLE_TEST "Bundle tests that can be run in a single process together to reduce launch overhead" OFF)
option(WITH_CONTRIB "Compile the third-party contributation" OFF) option(WITH_CONTRIB "Compile the third-party contributation" OFF)
option(WITH_ANAKIN "Compile with Anakin library" OFF)
option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE})
# CMAKE_BUILD_TYPE # CMAKE_BUILD_TYPE
if(NOT CMAKE_BUILD_TYPE) if(NOT CMAKE_BUILD_TYPE)
...@@ -147,7 +149,16 @@ include(external/any) # download libn::any ...@@ -147,7 +149,16 @@ include(external/any) # download libn::any
include(external/eigen) # download eigen3 include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11 include(external/pybind11) # download pybind11
include(external/cares) include(external/cares)
include(external/grpc)
if(WITH_DISTRIBUTE)
if(WITH_GRPC)
include(external/grpc)
else()
include(external/leveldb)
include(external/brpc)
endif()
endif()
include(external/snappy) # download snappy include(external/snappy) # download snappy
include(external/snappystream) include(external/snappystream)
include(external/threadpool) include(external/threadpool)
...@@ -183,7 +194,10 @@ set(EXTERNAL_LIBS ...@@ -183,7 +194,10 @@ set(EXTERNAL_LIBS
if(WITH_GPU) if(WITH_GPU)
include(cuda) include(cuda)
include(tensorrt) include(tensorrt)
endif(WITH_GPU) include(external/anakin)
else()
set(WITH_ANAKIN OFF CACHE STRING "Anakin is valid only when GPU is set." FORCE)
endif()
if(WITH_AMD_GPU) if(WITH_AMD_GPU)
find_package(HIP) find_package(HIP)
......
...@@ -24,7 +24,7 @@ COPY ./paddle/scripts/docker/root/ /root/ ...@@ -24,7 +24,7 @@ COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y --allow-downgrades \ apt-get install -y --allow-downgrades \
git python-pip python-dev openssh-server bison \ git python-pip python-dev python-opencv openssh-server bison \
libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 \ libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \ wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \ curl sed grep graphviz libjpeg-dev zlib1g-dev \
...@@ -76,8 +76,7 @@ RUN easy_install -U pip && \ ...@@ -76,8 +76,7 @@ RUN easy_install -U pip && \
pip install sphinx-rtd-theme==0.1.9 recommonmark pip install sphinx-rtd-theme==0.1.9 recommonmark
RUN pip install pre-commit 'ipython==5.3.0' && \ RUN pip install pre-commit 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip install 'ipykernel==4.6.0' 'jupyter==1.0.0'
pip install opencv-python
#For docstring checker #For docstring checker
RUN pip install pylint pytest astroid isort RUN pip install pylint pytest astroid isort
......
...@@ -7,3 +7,6 @@ paddle/rnn/imdb.pkl ...@@ -7,3 +7,6 @@ paddle/rnn/imdb.pkl
caffe/image/logs caffe/image/logs
tensorflow/image/logs tensorflow/image/logs
tensorflow/rnn/logs tensorflow/rnn/logs
fluid/models/*.pyc
fluid/logs
fluid/nohup.out
FROM nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04 FROM nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
RUN apt-get update && apt-get install -y python python-pip iputils-ping libgtk2.0-dev wget vim net-tools iftop RUN apt-get update && apt-get install -y python python-pip iputils-ping libgtk2.0-dev wget vim net-tools iftop python-opencv
RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.7 /usr/lib/libcudnn.so && ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/libnccl.so RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.7 /usr/lib/libcudnn.so && ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/libnccl.so
RUN pip install -U pip RUN pip install -U pip
RUN pip install -U kubernetes opencv-python paddlepaddle RUN pip install -U kubernetes paddlepaddle
# IMPORTANT: # IMPORTANT:
# Add "ENV http_proxy=http://ip:port" if your download is slow, and don't forget to unset it at runtime. # Add "ENV http_proxy=http://ip:port" if your download is slow, and don't forget to unset it at runtime.
...@@ -19,4 +19,4 @@ ADD *.whl / ...@@ -19,4 +19,4 @@ ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl && chmod +x /usr/bin/paddle_k8s RUN pip install /*.whl && rm -f /*.whl && chmod +x /usr/bin/paddle_k8s
ENV LD_LIBRARY_PATH=/usr/local/lib ENV LD_LIBRARY_PATH=/usr/local/lib
ADD fluid_benchmark.py dataset.py models/ /workspace/ ADD fluid_benchmark.py recordio_converter.py models/ /workspace/
...@@ -28,10 +28,14 @@ Currently supported `--model` argument include: ...@@ -28,10 +28,14 @@ Currently supported `--model` argument include:
``` ```
You can choose to use GPU/CPU training. With GPU training, you can specify You can choose to use GPU/CPU training. With GPU training, you can specify
`--gpus <gpu_num>` to run multi GPU training. `--gpus <gpu_num>` to run multi GPU training.
You can set async mode parameter server. With async mode, you can specify
`--async_mode` to train model asynchronous.
* Run distributed training with parameter servers: * Run distributed training with parameter servers:
* see [run_fluid_benchmark.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/fluid/run_fluid_benchmark.sh) as an example.
* start parameter servers: * start parameter servers:
```bash ```bash
PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=1 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method pserver PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=1 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method pserver
sleep 15
``` ```
* start trainers: * start trainers:
```bash ```bash
...@@ -42,6 +46,16 @@ Currently supported `--model` argument include: ...@@ -42,6 +46,16 @@ Currently supported `--model` argument include:
PADDLE_PSERVER_PORT=7164 PADDLE_TRAINER_IPS=192.168.0.2,192.168.0.3 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method nccl2 PADDLE_PSERVER_PORT=7164 PADDLE_TRAINER_IPS=192.168.0.2,192.168.0.3 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method nccl2
``` ```
## Prepare the RecordIO file to Achieve Better Performance
Run the following command will generate RecordIO files like "mnist.recordio" under the path
and batch_size you choose, you can use batch_size=1 so that later reader can change the batch_size
at any time using `fluid.batch`.
```bash
python -c 'from recordio_converter import *; prepare_mnist("data", 1)'
```
## Run Distributed Benchmark on Kubernetes Cluster ## Run Distributed Benchmark on Kubernetes Cluster
You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
__all__ = ['parse_args', ]
BENCHMARK_MODELS = [
"machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm"
]
def parse_args():
parser = argparse.ArgumentParser('Fluid model benchmarks.')
parser.add_argument(
'--model',
type=str,
choices=BENCHMARK_MODELS,
default='resnet',
help='The model to run benchmark with.')
parser.add_argument(
'--batch_size', type=int, default=32, help='The minibatch size.')
# args related to learning rate
parser.add_argument(
'--learning_rate', type=float, default=0.001, help='The learning rate.')
# TODO(wuyi): add "--use_fake_data" option back.
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument(
'--pass_num', type=int, default=100, help='The number of passes.')
parser.add_argument(
'--data_format',
type=str,
default='NCHW',
choices=['NCHW', 'NHWC'],
help='The data data_format, now only support NCHW.')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type.')
parser.add_argument(
'--gpus',
type=int,
default=1,
help='If gpus > 1, will use ParallelExecutor to run, else use Executor.')
# this option is available only for vgg and resnet.
parser.add_argument(
'--cpus',
type=int,
default=1,
help='If cpus > 1, will use ParallelDo to run, else use Executor.')
parser.add_argument(
'--data_set',
type=str,
default='flowers',
choices=['cifar10', 'flowers'],
help='Optional dataset for benchmark.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
parser.add_argument(
'--use_cprof', action='store_true', help='If set, use cProfile.')
parser.add_argument(
'--use_nvprof',
action='store_true',
help='If set, use nvprof for CUDA.')
parser.add_argument(
'--no_test',
action='store_true',
help='If set, do not test the testset during training.')
parser.add_argument(
'--memory_optimize',
action='store_true',
help='If set, optimize runtime memory before start.')
parser.add_argument(
'--use_fake_data',
action='store_true',
help='If set ommit the actual read data operators.')
parser.add_argument(
'--profile', action='store_true', help='If set, profile a few steps.')
parser.add_argument(
'--update_method',
type=str,
default='local',
choices=['local', 'pserver', 'nccl2'],
help='Choose parameter update method, can be local, pserver, nccl2.')
parser.add_argument(
'--no_split_var',
action='store_true',
default=False,
help='Whether split variables into blocks when update_method is pserver')
parser.add_argument(
'--async_mode',
action='store_true',
default=False,
help='Whether start pserver in async mode to support ASGD')
parser.add_argument(
'--use_reader_op',
action='store_true',
help='Whether to use reader op, and must specify the data path if set this to true.'
)
parser.add_argument(
'--data_path',
type=str,
default="",
help='Directory that contains all the training recordio files.')
args = parser.parse_args()
return args
...@@ -24,90 +24,7 @@ import paddle.fluid.core as core ...@@ -24,90 +24,7 @@ import paddle.fluid.core as core
import paddle.fluid.profiler as profiler import paddle.fluid.profiler as profiler
import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler
BENCHMARK_MODELS = [ from args import *
"machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm"
]
def parse_args():
parser = argparse.ArgumentParser('Fluid model benchmarks.')
parser.add_argument(
'--model',
type=str,
choices=BENCHMARK_MODELS,
default='resnet',
help='The model to run benchmark with.')
parser.add_argument(
'--batch_size', type=int, default=32, help='The minibatch size.')
parser.add_argument(
'--learning_rate',
type=float,
default=0.001,
help='The minibatch size.')
# TODO(wuyi): add "--use_fake_data" option back.
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument(
'--pass_num', type=int, default=100, help='The number of passes.')
parser.add_argument(
'--data_format',
type=str,
default='NCHW',
choices=['NCHW', 'NHWC'],
help='The data data_format, now only support NCHW.')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type.')
parser.add_argument(
'--gpus',
type=int,
default=1,
help='If gpus > 1, will use ParallelExecutor to run, else use Executor.')
parser.add_argument(
'--data_set',
type=str,
default='flowers',
choices=['cifar10', 'flowers'],
help='Optional dataset for benchmark.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
parser.add_argument(
'--use_cprof', action='store_true', help='If set, use cProfile.')
parser.add_argument(
'--use_nvprof',
action='store_true',
help='If set, use nvprof for CUDA.')
parser.add_argument(
'--no_test',
action='store_false',
help='If set, test the testset during training.')
parser.add_argument(
'--memory_optimize',
action='store_true',
help='If set, optimize runtime memory before start.')
parser.add_argument(
'--use_fake_data',
action='store_true',
help='If set ommit the actual read data operators.')
parser.add_argument(
'--profile', action='store_true', help='If set, profile a few steps.')
parser.add_argument(
'--update_method',
type=str,
default='local',
choices=['local', 'pserver', 'nccl2'],
help='Choose parameter update method, can be local, pserver, nccl2.')
args = parser.parse_args()
return args
def append_nccl2_prepare(trainer_id): def append_nccl2_prepare(trainer_id):
...@@ -142,7 +59,7 @@ def append_nccl2_prepare(trainer_id): ...@@ -142,7 +59,7 @@ def append_nccl2_prepare(trainer_id):
"nccl-based dist train.") "nccl-based dist train.")
def dist_transpile(trainer_id): def dist_transpile(trainer_id, args):
if trainer_id < 0: if trainer_id < 0:
return None, None return None, None
...@@ -164,7 +81,12 @@ def dist_transpile(trainer_id): ...@@ -164,7 +81,12 @@ def dist_transpile(trainer_id):
training_role = os.getenv("PADDLE_TRAINING_ROLE") training_role = os.getenv("PADDLE_TRAINING_ROLE")
t = distribute_transpiler.DistributeTranspiler() t = distribute_transpiler.DistributeTranspiler()
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers) t.transpile(
trainer_id,
pservers=pserver_endpoints,
trainers=trainers,
sync_mode=not args.async_mode,
slice_var_up=not args.no_split_var)
if training_role == "PSERVER": if training_role == "PSERVER":
pserver_program = t.get_pserver_program(current_endpoint) pserver_program = t.get_pserver_program(current_endpoint)
pserver_startup_program = t.get_startup_program(current_endpoint, pserver_startup_program = t.get_startup_program(current_endpoint,
...@@ -208,6 +130,8 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc, ...@@ -208,6 +130,8 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0) place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
if not args.use_reader_op:
feed_var_list = [ feed_var_list = [
var for var in train_prog.global_block().vars.itervalues() var for var in train_prog.global_block().vars.itervalues()
if var.is_data if var.is_data
...@@ -217,27 +141,46 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc, ...@@ -217,27 +141,46 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
iters, num_samples, start_time = 0, 0, time.time() iters, num_samples, start_time = 0, 0, time.time()
for pass_id in range(args.pass_num): for pass_id in range(args.pass_num):
train_losses = [] train_losses = []
for batch_id, data in enumerate(train_reader()): if not args.use_reader_op:
reader_generator = train_reader()
batch_id = 0
data = None
while True:
if not args.use_reader_op:
data = next(reader_generator, None)
if data == None:
break
if iters == args.iterations:
break
if iters == args.skip_batch_num: if iters == args.skip_batch_num:
start_time = time.time() start_time = time.time()
num_samples = 0 num_samples = 0
if iters == args.iterations:
if args.use_reader_op:
try:
loss = exe.run(train_prog, fetch_list=[avg_loss])
except fluid.core.EnforceNotMet as ex:
break break
else:
loss = exe.run(train_prog, loss = exe.run(train_prog,
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[avg_loss]) fetch_list=[avg_loss])
iters += 1 iters += 1
batch_id += 1
# FIXME(wuyi): For use_reader_op, if the current
# pass is not the last, the last batch of this pass
# is also equal to args.batch_size.
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
num_samples += len(data) num_samples += len(data)
train_losses.append(loss) train_losses.append(loss)
print("Pass: %d, Iter: %d, Loss: %f\n" % print("Pass: %d, Iter: %d, Loss: %f\n" %
(pass_id, iters, np.mean(train_losses))) (pass_id, iters, np.mean(train_losses)))
train_elapsed = time.time() - start_time print_train_time(start_time, time.time(), num_samples)
examples_per_sec = num_samples / train_elapsed print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses))),
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sec\n' %
(num_samples, train_elapsed, examples_per_sec))
print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses)))
# evaluation # evaluation
if not args.no_test and batch_acc != None: if not args.no_test and batch_acc and not args.use_reader_op:
pass_test_acc = test(exe, infer_prog, test_reader, feeder, pass_test_acc = test(exe, infer_prog, test_reader, feeder,
batch_acc) batch_acc)
print(", Test Accuracy: %f" % pass_test_acc) print(", Test Accuracy: %f" % pass_test_acc)
...@@ -251,10 +194,14 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc, ...@@ -251,10 +194,14 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader, def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_acc, args, train_prog, startup_prog, nccl_id_var, batch_acc, args, train_prog, startup_prog, nccl_id_var,
num_trainers, trainer_id): num_trainers, trainer_id):
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
if not args.use_reader_op:
feed_var_list = [ feed_var_list = [
var for var in train_prog.global_block().vars.itervalues() var for var in train_prog.global_block().vars.itervalues()
if var.is_data if var.is_data
] ]
feeder = fluid.DataFeeder(feed_var_list, place)
# generate fake: # generate fake:
if args.use_fake_data: if args.use_fake_data:
for var in feed_var_list: for var in feed_var_list:
...@@ -271,7 +218,6 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader, ...@@ -271,7 +218,6 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
"value": 1.0, "value": 1.0,
"dtype": var.dtype}) "dtype": var.dtype})
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
if nccl_id_var and trainer_id == 0: if nccl_id_var and trainer_id == 0:
#FIXME(wuyi): wait other trainer to start listening #FIXME(wuyi): wait other trainer to start listening
time.sleep(30) time.sleep(30)
...@@ -288,12 +234,21 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader, ...@@ -288,12 +234,21 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
num_trainers=num_trainers, num_trainers=num_trainers,
trainer_id=trainer_id) trainer_id=trainer_id)
feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in range(args.pass_num): for pass_id in range(args.pass_num):
num_samples = 0 num_samples = 0
iters = 0 iters = 0
start_time = time.time() start_time = time.time()
for batch_id, data in enumerate(train_reader()): if not args.use_reader_op:
reader_generator = train_reader()
batch_id = 0
data = None
while True:
if not args.use_reader_op:
data = next(reader_generator, None)
if data == None:
break
if iters == args.iterations:
break
if args.profile and pass_id == 0 and batch_id == 5: if args.profile and pass_id == 0 and batch_id == 5:
profiler.start_profiler("All") profiler.start_profiler("All")
elif args.profile and pass_id == 0 and batch_id == 10: elif args.profile and pass_id == 0 and batch_id == 10:
...@@ -302,39 +257,50 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader, ...@@ -302,39 +257,50 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
if iters == args.skip_batch_num: if iters == args.skip_batch_num:
start_time = time.time() start_time = time.time()
num_samples = 0 num_samples = 0
if iters == args.iterations: if args.use_fake_data or args.use_reader_op:
break try:
if args.use_fake_data:
loss, = exe.run([avg_loss.name]) loss, = exe.run([avg_loss.name])
except fluid.core.EnforceNotMet as ex:
break
else: else:
loss, = exe.run([avg_loss.name], feed=feeder.feed(data)) loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
if args.update_method == "pserver": if args.update_method == "pserver":
exe.bcast_params() exe.bcast_params()
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
num_samples += len(data) num_samples += len(data)
iters += 1 iters += 1
if batch_id % 1 == 0: if batch_id % 1 == 0:
print("Pass %d, batch %d, loss %s" % print("Pass %d, batch %d, loss %s" %
(pass_id, batch_id, np.array(loss))) (pass_id, batch_id, np.array(loss)))
train_elapsed = time.time() - start_time batch_id += 1
examples_per_sec = num_samples / train_elapsed
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' % print_train_time(start_time, time.time(), num_samples)
(num_samples, train_elapsed, examples_per_sec)) if not args.no_test and batch_acc and not args.use_reader_op:
if not args.no_test and batch_acc != None: # we have not implement record io for test
# skip test when use args.use_reader_op
test_acc = test(startup_exe, infer_prog, test_reader, feeder, test_acc = test(startup_exe, infer_prog, test_reader, feeder,
batch_acc) batch_acc)
print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc)) print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc))
exit(0)
def print_arguments(args): def print_arguments(args):
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
vars(args)['device'] == 'GPU') vars(args)['device'] == 'GPU')
print('----------- resnet Configuration Arguments -----------') print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()): for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value)) print('%s: %s' % (arg, value))
print('------------------------------------------------') print('------------------------------------------------')
def print_train_time(start_time, end_time, num_samples):
train_elapsed = end_time - start_time
examples_per_sec = num_samples / train_elapsed
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
(num_samples, train_elapsed, examples_per_sec))
def main(): def main():
args = parse_args() args = parse_args()
print_arguments(args) print_arguments(args)
...@@ -342,7 +308,7 @@ def main(): ...@@ -342,7 +308,7 @@ def main():
# the unique trainer id, starting from 0, needed by trainer # the unique trainer id, starting from 0, needed by trainer
# only # only
nccl_id_var, num_trainers, trainer_id = ( nccl_id_var, num_trainers, trainer_id = (
None, 1, int(os.getenv("PADDLE_TRAINER_ID", "-1"))) None, 1, int(os.getenv("PADDLE_TRAINER_ID", "0")))
if args.use_cprof: if args.use_cprof:
pr = cProfile.Profile() pr = cProfile.Profile()
...@@ -356,7 +322,7 @@ def main(): ...@@ -356,7 +322,7 @@ def main():
fluid.memory_optimize(fluid.default_main_program()) fluid.memory_optimize(fluid.default_main_program())
if args.update_method == "pserver": if args.update_method == "pserver":
train_prog, startup_prog = dist_transpile(trainer_id) train_prog, startup_prog = dist_transpile(trainer_id, args)
if not train_prog: if not train_prog:
raise Exception( raise Exception(
"Must configure correct environments to run dist train.") "Must configure correct environments to run dist train.")
......
...@@ -197,6 +197,8 @@ def lodtensor_to_ndarray(lod_tensor): ...@@ -197,6 +197,8 @@ def lodtensor_to_ndarray(lod_tensor):
def get_model(args): def get_model(args):
if args.use_reader_op:
raise Exception("machine_translation do not support reader op for now.")
embedding_dim = 512 embedding_dim = 512
encoder_size = 512 encoder_size = 512
decoder_size = 512 decoder_size = 512
...@@ -221,7 +223,7 @@ def get_model(args): ...@@ -221,7 +223,7 @@ def get_model(args):
train_batch_generator = paddle.batch( train_batch_generator = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000), paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=args.batch_size) batch_size=args.batch_size * args.gpus)
test_batch_generator = paddle.batch( test_batch_generator = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
......
...@@ -20,6 +20,7 @@ import numpy as np ...@@ -20,6 +20,7 @@ import numpy as np
import argparse import argparse
import time import time
import cProfile import cProfile
import os
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -65,19 +66,49 @@ def cnn_model(data): ...@@ -65,19 +66,49 @@ def cnn_model(data):
def get_model(args): def get_model(args):
# Input data if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1, 1, 28, 28], (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.device == 'CPU' and args.cpus > 1:
places = fluid.layers.get_places(args.cpus)
pd = fluid.layers.ParallelDo(places)
with pd.do():
predict = cnn_model(pd.read_input(images))
label = pd.read_input(label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
pd.write_output(avg_cost)
pd.write_output(batch_acc)
avg_cost, batch_acc = pd()
avg_cost = fluid.layers.mean(avg_cost)
batch_acc = fluid.layers.mean(batch_acc)
else:
# Train program # Train program
predict = cnn_model(images) predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
# Evaluator # Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy(input=predict, label=label)
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
# inference program # inference program
inference_program = fluid.default_main_program().clone() inference_program = fluid.default_main_program().clone()
...@@ -88,7 +119,7 @@ def get_model(args): ...@@ -88,7 +119,7 @@ def get_model(args):
# Reader # Reader
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=args.batch_size) paddle.dataset.mnist.train(), batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch( test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=args.batch_size) paddle.dataset.mnist.test(), batch_size=args.batch_size)
return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc
...@@ -19,6 +19,7 @@ from __future__ import print_function ...@@ -19,6 +19,7 @@ from __future__ import print_function
import functools import functools
import numpy as np import numpy as np
import time import time
import os
import cProfile, pstats, StringIO import cProfile, pstats, StringIO
...@@ -26,6 +27,7 @@ import paddle ...@@ -26,6 +27,7 @@ import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid.profiler as profiler import paddle.fluid.profiler as profiler
from recordio_converter import imagenet_train, imagenet_test
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
...@@ -122,40 +124,85 @@ def get_model(args): ...@@ -122,40 +124,85 @@ def get_model(args):
else: else:
dshape = [32, 32, 3] dshape = [32, 32, 3]
model = resnet_cifar10 model = resnet_cifar10
else: train_reader = paddle.dataset.cifar.train10()
test_reader = paddle.dataset.cifar.test10()
elif args.data_set == "flowers":
class_dim = 102 class_dim = 102
if args.data_format == 'NCHW': if args.data_format == 'NCHW':
dshape = [3, 224, 224] dshape = [3, 224, 224]
else: else:
dshape = [224, 224, 3] dshape = [224, 224, 3]
model = resnet_imagenet model = resnet_imagenet
train_reader = paddle.dataset.flowers.train()
test_reader = paddle.dataset.flowers.test()
elif args.data_set == "imagenet":
class_dim = 1000
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
if not args.data_path:
raise Exception(
"Must specify --data_path when training with imagenet")
train_reader = imagenet_train(args.data_path)
test_reader = imagenet_test(args.data_path)
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + dshape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
input, label = fluid.layers.read_file(data_file)
else:
input = fluid.layers.data(name='data', shape=dshape, dtype='float32') input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
predict = model(input, class_dim)
if args.device == 'CPU' and args.cpus > 1:
places = fluid.layers.get_places(args.cpus)
pd = fluid.layers.ParallelDo(places)
with pd.do():
predict = model(pd.read_input(input), class_dim)
label = pd.read_input(label)
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
batch_size_tensor = fluid.layers.create_tensor(dtype='int64') pd.write_output(avg_cost)
batch_acc = fluid.layers.accuracy( pd.write_output(batch_acc)
input=predict, label=label, total=batch_size_tensor)
avg_cost, batch_acc = pd()
avg_cost = fluid.layers.mean(avg_cost)
batch_acc = fluid.layers.mean(batch_acc)
else:
predict = model(input, class_dim)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc = fluid.layers.accuracy(input=predict, label=label)
inference_program = fluid.default_main_program().clone() inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program): with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program( inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor]) target_vars=[batch_acc])
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9) optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
train_reader = paddle.batch( batched_train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
paddle.dataset.cifar.train10() train_reader, buf_size=5120),
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), batch_size=args.batch_size * args.gpus,
buf_size=5120), drop_last=True)
batch_size=args.batch_size) batched_test_reader = paddle.batch(
test_reader = paddle.batch( train_reader, batch_size=args.batch_size, drop_last=True)
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), return avg_cost, inference_program, optimizer, batched_train_reader,\
batch_size=args.batch_size) batched_test_reader, batch_acc
return avg_cost, inference_program, optimizer, train_reader, test_reader, batch_acc
...@@ -44,6 +44,9 @@ def crop_sentence(reader, crop_size): ...@@ -44,6 +44,9 @@ def crop_sentence(reader, crop_size):
def get_model(args): def get_model(args):
if args.use_reader_op:
raise Exception(
"stacked_dynamic_lstm do not support reader op for now.")
lstm_size = 512 lstm_size = 512
emb_dim = 512 emb_dim = 512
crop_size = 1500 crop_size = 1500
...@@ -115,7 +118,7 @@ def get_model(args): ...@@ -115,7 +118,7 @@ def get_model(args):
train_reader = batch( train_reader = batch(
paddle.reader.shuffle( paddle.reader.shuffle(
crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000), crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000),
batch_size=args.batch_size) batch_size=args.batch_size * args.gpus)
test_reader = batch( test_reader = batch(
paddle.reader.shuffle( paddle.reader.shuffle(
crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000), crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000),
......
...@@ -22,6 +22,7 @@ import paddle.fluid as fluid ...@@ -22,6 +22,7 @@ import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import argparse import argparse
import functools import functools
import os
def vgg16_bn_drop(input): def vgg16_bn_drop(input):
...@@ -65,8 +66,24 @@ def get_model(args): ...@@ -65,8 +66,24 @@ def get_model(args):
else: else:
data_shape = [224, 224, 3] data_shape = [224, 224, 3]
# Input data if args.use_reader_op:
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + data_shape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(
name='data', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program # Train program
...@@ -95,7 +112,7 @@ def get_model(args): ...@@ -95,7 +112,7 @@ def get_model(args):
paddle.dataset.cifar.train10() paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120), buf_size=5120),
batch_size=args.batch_size) batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch( test_reader = paddle.batch(
paddle.dataset.cifar.test10() paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.dataset import mnist, cifar, flowers, image
def convert_2_recordio(py_reader, outfilepath, batch_size, shape_data,
shape_label):
num_batches = 0
with fluid.program_guard(fluid.Program(), fluid.Program()):
reader = paddle.batch(py_reader(), batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=shape_data),
fluid.layers.data(
name='label', shape=shape_label, dtype='int64'),
],
place=fluid.CPUPlace())
num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
outfilepath, reader, feeder)
return num_batches
def prepare_mnist(outpath, batch_size):
outfilepath = os.path.join(outpath, "mnist.recordio")
convert_2_recordio(mnist.train, outfilepath, batch_size, [784], [1])
def prepare_cifar10(outpath, batch_size):
outfilepath = os.path.join(outpath, "cifar.recordio")
convert_2_recordio(cifar.train10, outfilepath, batch_size, [3, 32, 32], [1])
def prepare_flowers(outpath, batch_size):
outfilepath = os.path.join(outpath, "flowers.recordio")
convert_2_recordio(flowers.train, outfilepath, batch_size, [3, 224, 224],
[1])
def default_mapper(sample):
img, label = sample
img = image.simple_transform(
img, 256, 224, True, mean=[103.94, 116.78, 123.68])
return img.flatten().astype('float32'), label
def imagenet_train(data_dir):
contents = os.listdir(data_dir)
if set(contents) != set(
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
raise Exception("Imagenet data contents error!")
img2label = dict()
imgfilelist = []
with open(os.path.join(data_dir, "train.txt")) as fn:
while 1:
l = fn.readline()
if not l:
break
img, lbl = l[:-1].split(" ")
img2label[img] = int(lbl)
imgfilelist.append(img)
# shuffle all, this is slow
random.shuffle(imgfilelist)
def train_reader():
for idx, imgfile in enumerate(imgfilelist):
data = image.load_image(
os.path.join(data_dir, "train", imgfile.lower()))
label = [img2label[imgfile], ]
yield [data, label]
return paddle.reader.map_readers(default_mapper, train_reader)
def imagenet_test(data_dir):
contents = os.listdir(data_dir)
if set(contents) != set(
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
raise Exception("Imagenet data contents error!")
img2label = dict()
imgfilelist = []
with open(os.path.join(data_dir, "val.txt")) as fn:
while 1:
l = fn.readline()
if not l:
break
img, lbl = l[:-1].split(" ")
img2label[img] = int(lbl)
imgfilelist.append(img)
def test_reader():
for idx, imgfile in enumerate(imgfilelist):
base_path = os.path.join(data_dir, "val", imgfile.split(".")[0])
image_path = ".".join([base_path, "jpeg"])
data = image.load_image(image_path)
label = [img2label[imgfile], ]
yield [data, label]
return paddle.reader.map_readers(default_mapper, test_reader)
# FIXME(wuyi): delete this when https://github.com/PaddlePaddle/Paddle/pull/11066 is merged
def convert_reader_to_recordio_files(
filename,
batch_per_file,
reader_creator,
feeder,
compressor=core.RecordIOWriter.Compressor.Snappy,
max_num_records=1000,
feed_order=None):
if feed_order is None:
feed_order = feeder.feed_names
f_name, f_ext = os.path.splitext(filename)
assert (f_ext == ".recordio")
lines = []
f_idx = 0
counter = 0
for idx, batch in enumerate(reader_creator()):
lines.append(batch)
if idx >= batch_per_file and idx % batch_per_file == 0:
filename = "%s-%05d%s" % (f_name, f_idx, f_ext)
with fluid.recordio_writer.create_recordio_writer(
filename, compressor, max_num_records) as writer:
for l in lines:
res = feeder.feed(l)
for each in feed_order:
writer.append_tensor(res[each])
writer.complete_append_tensor()
counter += 1
lines = []
f_idx += 1
print("written file: ", filename)
return counter
def prepare_imagenet(inpath, outpath, batch_size):
r = paddle.batch(imagenet_train(inpath), batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[
fluid.layers.data(
name="image", shape=[3, 224, 224]), fluid.layers.data(
name="label", shape=[1], dtype='int64')
],
place=fluid.CPUPlace())
outpath = os.path.join(outpath, "imagenet.recordio")
convert_reader_to_recordio_files(outpath, 10000, r, feeder)
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
# This script benchmarking the PaddlePaddle Fluid on # This script benchmarking the PaddlePaddle Fluid on
# single thread single GPU. # single thread single GPU.
mkdir -p logs
#export FLAGS_fraction_of_gpu_memory_to_use=0.0 #export FLAGS_fraction_of_gpu_memory_to_use=0.0
export CUDNN_PATH=/paddle/cudnn_v5 export CUDNN_PATH=/paddle/cudnn_v5
...@@ -35,6 +36,7 @@ nohup stdbuf -oL nvidia-smi \ ...@@ -35,6 +36,7 @@ nohup stdbuf -oL nvidia-smi \
--format=csv \ --format=csv \
--filename=mem.log \ --filename=mem.log \
-l 1 & -l 1 &
# mnist # mnist
# mnist gpu mnist 128 # mnist gpu mnist 128
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
...@@ -43,7 +45,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ ...@@ -43,7 +45,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--batch_size=128 \ --batch_size=128 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=500 \ --iterations=500 \
2>&1 | tee -a mnist_gpu_128.log 2>&1 | tee -a logs/mnist_gpu_128.log
# vgg16 # vgg16
# gpu cifar10 128 # gpu cifar10 128
...@@ -53,7 +55,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ ...@@ -53,7 +55,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--batch_size=128 \ --batch_size=128 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 | tee -a vgg16_gpu_128.log 2>&1 | tee -a logs/vgg16_gpu_128.log
# flowers gpu 128 # flowers gpu 128
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
...@@ -63,28 +65,28 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ ...@@ -63,28 +65,28 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--data_set=flowers \ --data_set=flowers \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 | tee -a vgg16_gpu_flowers_32.log 2>&1 | tee -a logs/vgg16_gpu_flowers_32.log
# resnet50 # resnet50
# resnet50 gpu cifar10 128 # resnet50 gpu cifar10 128
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=resnet50 \ --model=resnet \
--device=GPU \ --device=GPU \
--batch_size=128 \ --batch_size=128 \
--data_set=cifar10 \ --data_set=cifar10 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 | tee -a resnet50_gpu_128.log 2>&1 | tee -a logs/resnet50_gpu_128.log
# resnet50 gpu flowers 64 # resnet50 gpu flowers 64
FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--model=resnet50 \ --model=resnet \
--device=GPU \ --device=GPU \
--batch_size=64 \ --batch_size=64 \
--data_set=flowers \ --data_set=flowers \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 | tee -a resnet50_gpu_flowers_64.log 2>&1 | tee -a logs/resnet50_gpu_flowers_64.log
# lstm # lstm
# lstm gpu imdb 32 # tensorflow only support batch=32 # lstm gpu imdb 32 # tensorflow only support batch=32
...@@ -94,7 +96,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ ...@@ -94,7 +96,7 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--batch_size=32 \ --batch_size=32 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 | tee -a lstm_gpu_32.log 2>&1 | tee -a logs/lstm_gpu_32.log
# seq2seq # seq2seq
# seq2seq gpu wmb 128 # seq2seq gpu wmb 128
...@@ -104,4 +106,4 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \ ...@@ -104,4 +106,4 @@ FLAGS_benchmark=true stdbuf -oL python fluid_benchmark.py \
--batch_size=128 \ --batch_size=128 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 | tee -a lstm_gpu_128.log 2>&1 | tee -a logs/lstm_gpu_128.log
#!/bin/bash
PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model resnet --device CPU --update_method pserver --iterations=10000 &
sleep 15
CUDA_VISIBLE_DEVICES=0,1 PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model resnet --device GPU --update_method pserver --iterations=10000 --gpus 2 &
CUDA_VISIBLE_DEVICES=2,3 PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=1 python fluid_benchmark.py --model resnet --device GPU --update_method pserver --iterations=10000 --gpus 2 &
...@@ -92,6 +92,9 @@ if(WITH_GPU) ...@@ -92,6 +92,9 @@ if(WITH_GPU)
if(${CUDNN_MAJOR_VERSION} VERSION_LESS 7) if(${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
message(FATAL_ERROR "TensorRT needs CUDNN >= 7.0 to compile") message(FATAL_ERROR "TensorRT needs CUDNN >= 7.0 to compile")
endif() endif()
if(${TENSORRT_MAJOR_VERSION} VERSION_LESS 4)
message(FATAL_ERROR "Paddle needs TensorRT >= 4.0 to compile")
endif()
include_directories(${TENSORRT_INCLUDE_DIR}) include_directories(${TENSORRT_INCLUDE_DIR})
endif() endif()
elseif(WITH_AMD_GPU) elseif(WITH_AMD_GPU)
...@@ -115,6 +118,10 @@ endif() ...@@ -115,6 +118,10 @@ endif()
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${SIMD_FLAG}") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${SIMD_FLAG}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${SIMD_FLAG}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${SIMD_FLAG}")
if(WITH_DISTRIBUTE)
add_definitions(-DPADDLE_WITH_DISTRIBUTE)
endif()
if(WITH_GOLANG) if(WITH_GOLANG)
# we need to symlink Paddle directory into GOPATH. If we # we need to symlink Paddle directory into GOPATH. If we
# don't do it and we have code that depends on Paddle, go # don't do it and we have code that depends on Paddle, go
...@@ -163,3 +170,7 @@ if(WITH_GOLANG) ...@@ -163,3 +170,7 @@ if(WITH_GOLANG)
endif() endif()
endif(WITH_GOLANG) endif(WITH_GOLANG)
if(WITH_GRPC)
add_definitions(-DPADDLE_WITH_GRPC)
endif(WITH_GRPC)
if (NOT WITH_ANAKIN)
return()
endif()
set(ANAKIN_INSTALL_DIR "${THIRD_PARTY_PATH}/install/anakin" CACHE PATH
"Anakin install path." FORCE)
set(ANAKIN_INCLUDE "${ANAKIN_INSTALL_DIR}" CACHE STRING "root of Anakin header files")
set(ANAKIN_LIBRARY "${ANAKIN_INSTALL_DIR}" CACHE STRING "path of Anakin library")
set(ANAKIN_COMPILE_EXTRA_FLAGS -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp)
set(ANAKIN_LIBRARY_URL "https://github.com/pangge/Anakin/releases/download/3.0/anakin_release_simple.tar.gz")
# A helper function used in Anakin, currently, to use it, one need to recursively include
# nearly all the header files.
function(fetch_include_recursively root_dir)
if (IS_DIRECTORY ${root_dir})
include_directories(${root_dir})
endif()
file(GLOB ALL_SUB RELATIVE ${root_dir} ${root_dir}/*)
foreach(sub ${ALL_SUB})
if (IS_DIRECTORY ${root_dir}/${sub})
fetch_include_recursively(${root_dir}/${sub})
endif()
endforeach()
endfunction()
# download library
message(STATUS "Download Anakin library from ${ANAKIN_LIBRARY_URL}")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_INSTALL_DIR}")
execute_process(COMMAND bash -c "rm -rf ${ANAKIN_INSTALL_DIR}/*")
execute_process(COMMAND bash -c "cd ${ANAKIN_INSTALL_DIR}; wget -q ${ANAKIN_LIBRARY_URL}")
execute_process(COMMAND bash -c "mkdir -p ${ANAKIN_INSTALL_DIR}")
execute_process(COMMAND bash -c "cd ${ANAKIN_INSTALL_DIR}; tar xzf anakin_release_simple.tar.gz")
if (WITH_ANAKIN)
message(STATUS "Anakin for inference is enabled")
message(STATUS "Anakin is set INCLUDE:${ANAKIN_INCLUDE} LIBRARY:${ANAKIN_LIBRARY}")
fetch_include_recursively(${ANAKIN_INCLUDE})
link_directories(${ANAKIN_LIBRARY})
endif()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
SET(BRPC_SOURCES_DIR ${THIRD_PARTY_PATH}/brpc)
SET(BRPC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/brpc)
SET(BRPC_INCLUDE_DIR "${BRPC_INSTALL_DIR}/include" CACHE PATH "brpc include directory." FORCE)
SET(BRPC_LIBRARIES "${BRPC_INSTALL_DIR}/lib/libbrpc.a" CACHE FILEPATH "brpc library." FORCE)
INCLUDE_DIRECTORIES(${BRPC_INCLUDE_DIR})
# Reference https://stackoverflow.com/questions/45414507/pass-a-list-of-prefix-paths-to-externalproject-add-in-cmake-args
set(prefix_path "${THIRD_PARTY_PATH}/install/gflags|${THIRD_PARTY_PATH}/install/leveldb|${THIRD_PARTY_PATH}/install/snappy|${THIRD_PARTY_PATH}/install/gtest|${THIRD_PARTY_PATH}/install/protobuf")
# If minimal .a is need, you can set WITH_DEBUG_SYMBOLS=OFF
ExternalProject_Add(
extern_brpc
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/brpc/brpc"
GIT_TAG "6d153dd7ff00f960ae6895c9c5fff0ce9f07aff2"
PREFIX ${BRPC_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${BRPC_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${BRPC_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
-DCMAKE_PREFIX_PATH=${prefix_path}
-DBRPC_WITH_GLOG=ON
${EXTERNAL_OPTIONAL_ARGS}
LIST_SEPARATOR |
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${BRPC_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR:PATH=${BRPC_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=${THIRD_PARTY_BUILD_TYPE}
)
ADD_DEPENDENCIES(extern_brpc protobuf leveldb gflags glog gtest snappy)
ADD_LIBRARY(brpc STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET brpc PROPERTY IMPORTED_LOCATION ${BRPC_LIBRARIES})
ADD_DEPENDENCIES(brpc extern_brpc)
LIST(APPEND external_project_dependencies brpc)
...@@ -33,10 +33,19 @@ ELSE() ...@@ -33,10 +33,19 @@ ELSE()
SET(BUILD_CMD make HAS_SYSTEM_PROTOBUF=false -s -j ${NUM_OF_PROCESSOR} static grpc_cpp_plugin) SET(BUILD_CMD make HAS_SYSTEM_PROTOBUF=false -s -j ${NUM_OF_PROCESSOR} static grpc_cpp_plugin)
ENDIF() ENDIF()
# FIXME(wuyi): do not build zlib cares protobuf twice, find a way to build grpc with them
ExternalProject_Add( ExternalProject_Add(
extern_grpc extern_grpc
DEPENDS protobuf zlib DEPENDS protobuf zlib
URL "http://paddlepaddledeps.bj.bcebos.com/grpc.tar.xz" # NOTE(wuyi):
# this package is generated by following steps:
# 1. git clone -b v1.8.x https://github.com/grpc/grpc.git
# 2. submodule update --init
# 3. keep only zlib, cares, protobuf, boringssl under "third_party",
# checkout and clean other dirs under third_party
# 4. remove .git, and package the directory.
URL "http://paddlepaddledeps.bj.bcebos.com/grpc-v1.8.x.tar.gz"
URL_MD5 "c9c58ee7d0e8929a63155af6a2ecdbd0"
PREFIX ${GRPC_SOURCES_DIR} PREFIX ${GRPC_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CONFIGURE_COMMAND "" CONFIGURE_COMMAND ""
...@@ -49,7 +58,6 @@ ExternalProject_Add( ...@@ -49,7 +58,6 @@ ExternalProject_Add(
INSTALL_COMMAND make prefix=${GRPC_INSTALL_DIR} install INSTALL_COMMAND make prefix=${GRPC_INSTALL_DIR} install
) )
# FIXME(typhoonzero): hack to get static lib path, try a better way like merge them.
ADD_LIBRARY(grpc++_unsecure STATIC IMPORTED GLOBAL) ADD_LIBRARY(grpc++_unsecure STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET grpc++_unsecure PROPERTY IMPORTED_LOCATION SET_PROPERTY(TARGET grpc++_unsecure PROPERTY IMPORTED_LOCATION
"${GRPC_INSTALL_DIR}/lib/libgrpc++_unsecure.a") "${GRPC_INSTALL_DIR}/lib/libgrpc++_unsecure.a")
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
SET(LEVELDB_SOURCES_DIR ${THIRD_PARTY_PATH}/leveldb)
SET(LEVELDB_INSTALL_DIR ${THIRD_PARTY_PATH}/install/leveldb)
SET(LEVELDB_INCLUDE_DIR "${LEVELDB_INSTALL_DIR}/include" CACHE PATH "leveldb include directory." FORCE)
SET(LEVELDB_LIBRARIES "${LEVELDB_INSTALL_DIR}/lib/libleveldb.a" CACHE FILEPATH "leveldb library." FORCE)
INCLUDE_DIRECTORIES(${LEVELDB_INCLUDE_DIR})
ExternalProject_Add(
extern_leveldb
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${LEVELDB_SOURCES_DIR}
URL "https://github.com/google/leveldb/archive/v1.18.tar.gz"
URL_MD5 "73770de34a2a5ab34498d2e05b2b7fa0"
CONFIGURE_COMMAND ""
BUILD_COMMAND CXXFLAGS=-fPIC make -j ${NUM_OF_PROCESSOR} libleveldb.a
INSTALL_COMMAND mkdir -p ${LEVELDB_INSTALL_DIR}/lib/
&& cp ${LEVELDB_SOURCES_DIR}/src/extern_leveldb/libleveldb.a ${LEVELDB_LIBRARIES}
&& cp -r ${LEVELDB_SOURCES_DIR}/src/extern_leveldb/include ${LEVELDB_INSTALL_DIR}/
BUILD_IN_SOURCE 1
)
ADD_DEPENDENCIES(extern_leveldb snappy)
ADD_LIBRARY(leveldb STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET leveldb PROPERTY IMPORTED_LOCATION ${LEVELDB_LIBRARIES})
ADD_DEPENDENCIES(leveldb extern_leveldb)
LIST(APPEND external_project_dependencies leveldb)
...@@ -29,6 +29,8 @@ IF(NOT ${CBLAS_FOUND}) ...@@ -29,6 +29,8 @@ IF(NOT ${CBLAS_FOUND})
"${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}" "${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}"
CACHE FILEPATH "openblas library." FORCE) CACHE FILEPATH "openblas library." FORCE)
ADD_DEFINITIONS(-DPADDLE_USE_OPENBLAS)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -Wno-unused-but-set-variable -Wno-unused-variable") SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -Wno-unused-but-set-variable -Wno-unused-variable")
SET(OPENBLAS_COMMIT "v0.2.20") SET(OPENBLAS_COMMIT "v0.2.20")
......
...@@ -610,3 +610,21 @@ function(grpc_library TARGET_NAME) ...@@ -610,3 +610,21 @@ function(grpc_library TARGET_NAME)
COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
cc_library("${TARGET_NAME}" SRCS "${grpc_library_SRCS}" DEPS "${TARGET_NAME}_grpc" "${TARGET_NAME}_proto" "${grpc_library_DEPS}") cc_library("${TARGET_NAME}" SRCS "${grpc_library_SRCS}" DEPS "${TARGET_NAME}_grpc" "${TARGET_NAME}_proto" "${grpc_library_DEPS}")
endfunction() endfunction()
function(brpc_library TARGET_NAME)
set(oneValueArgs PROTO)
set(multiValueArgs SRCS DEPS)
set(options "")
cmake_parse_arguments(brpc_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
message(STATUS "generating brpc ${brpc_library_PROTO}")
get_filename_component(ABS_PROTO ${brpc_library_PROTO} ABSOLUTE)
get_filename_component(PROTO_WE ${brpc_library_PROTO} NAME_WE)
get_filename_component(PROTO_PATH ${ABS_PROTO} PATH)
protobuf_generate_cpp(brpc_proto_srcs brpc_proto_hdrs "${ABS_PROTO}")
cc_library("${TARGET_NAME}_proto" SRCS "${brpc_proto_srcs}")
cc_library("${TARGET_NAME}" SRCS "${brpc_library_SRCS}" DEPS "${TARGET_NAME}_proto" "${brpc_library_DEPS}")
endfunction()
#!/bin/bash #!/bin/bash
python gen_doc.py layers --submodules control_flow device io nn ops tensor > layers.rst python gen_doc.py layers --submodules control_flow device io nn ops tensor detection learning_rate_scheduler > layers.rst
for module in data_feeder clip metrics executor initializer io nets optimizer param_attr profiler regularizer for module in data_feeder clip metrics executor initializer io nets optimizer param_attr profiler regularizer
do do
......
...@@ -594,7 +594,6 @@ roi_pool ...@@ -594,7 +594,6 @@ roi_pool
.. autofunction:: paddle.fluid.layers.roi_pool .. autofunction:: paddle.fluid.layers.roi_pool
:noindex: :noindex:
ops ops
=== ===
...@@ -991,27 +990,93 @@ zeros ...@@ -991,27 +990,93 @@ zeros
.. autofunction:: paddle.fluid.layers.zeros .. autofunction:: paddle.fluid.layers.zeros
:noindex: :noindex:
topk detection
---- =========
.. autofunction:: paddle.fluid.layers.topk multi_box_head
--------------
.. autofunction:: paddle.fluid.layers.multi_box_head
:noindex: :noindex:
dice_loss bipartite_match
---- ---------------
.. autofunction:: paddle.fluid.layers.bipartite_match
:noindex:
target_assign
-------------
.. autofunction:: paddle.fluid.layers.target_assign
:noindex:
detection_output
----------------
.. autofunction:: paddle.fluid.layers.dice_loss .. autofunction:: paddle.fluid.layers.detection_output
:noindex: :noindex:
resize_bilinear ssd_loss
____ --------
.. autofunction:: paddle.fluid.layers.resize_bilinear .. autofunction:: paddle.fluid.layers.ssd_loss
:noindex: :noindex:
gather detection_map
____ -------------
.. autofunction:: paddle.fluid.layers.detection_map
:noindex:
iou_similarity
--------------
.. autofunction:: paddle.fluid.layers.iou_similarity
:noindex:
box_coder
---------
.. autofunction:: paddle.fluid.layers.box_coder
:noindex:
learning_rate_scheduler
=======================
exponential_decay
-----------------
.. autofunction:: paddle.fluid.layers.exponential_decay
:noindex:
natural_exp_decay
-----------------
.. autofunction:: paddle.fluid.layers.natural_exp_decay
:noindex:
inverse_time_decay
------------------
.. autofunction:: paddle.fluid.layers.inverse_time_decay
:noindex:
polynomial_decay
----------------
.. autofunction:: paddle.fluid.layers.polynomial_decay
:noindex:
piecewise_decay
---------------
.. autofunction:: paddle.fluid.layers.piecewise_decay
:noindex:
noam_decay
----------
.. autofunction:: paddle.fluid.layers.gather .. autofunction:: paddle.fluid.layers.noam_decay
:noindex: :noindex:
...@@ -47,28 +47,6 @@ DecayedAdagrad ...@@ -47,28 +47,6 @@ DecayedAdagrad
:members: :members:
:noindex: :noindex:
Adadelta
-----------------
.. autoclass:: paddle.fluid.optimizer.Adadelta
:members:
:noindex:
RMSProp
-----------------
.. autoclass:: paddle.fluid.optimizer.RMSProp
:members:
:noindex:
ModelAverage
-----------------
.. autoclass:: paddle.fluid.optimizer.ModelAverage
:members:
:noindex:
SGDOptimizer SGDOptimizer
------------ ------------
...@@ -111,19 +89,17 @@ DecayedAdagradOptimizer ...@@ -111,19 +89,17 @@ DecayedAdagradOptimizer
:members: :members:
:noindex: :noindex:
Adadelta
--------
AdadeltaOptimizer .. autoclass:: paddle.fluid.optimizer.Adadelta
-----------------
.. autoclass:: paddle.fluid.optimizer.AdadeltaOptimizer
:members: :members:
:noindex: :noindex:
ModelAverage
------------
RMSPropOptimizer .. autoclass:: paddle.fluid.optimizer.ModelAverage
-----------------
.. autoclass:: paddle.fluid.optimizer.RMSPropOptimizer
:members: :members:
:noindex: :noindex:
...@@ -133,3 +109,4 @@ Optimizer ...@@ -133,3 +109,4 @@ Optimizer
.. autoclass:: paddle.fluid.optimizer.Optimizer .. autoclass:: paddle.fluid.optimizer.Optimizer
:members: :members:
:noindex: :noindex:
# API注释撰写标准 # API注释撰写标准
- [API注释模块](#API注释模块) - [API注释撰写标准](#api)
- [格式及示例](#格式及示例) - [API注释模块](#api)
- [完整示例](#完整示例) - [格式及示例](#)
- [完整示例](#)
## API注释模块 ## API注释模块
...@@ -217,4 +218,4 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接 ...@@ -217,4 +218,4 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接
## 完整示例 ## 完整示例
fc 的完整注释见[示例](src/fc.py) fc 的完整注释见[示例](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/dev/src/fc.py)
# API Doc Standard # API Doc Standard
- [API Doc Structure](#API Doc Structure) - [API Doc Standard](#api-doc-standard)
- [Format and Examples](#Format and Examples) - [API Doc Structure](#api-doc-structure)
- [Complete Example](#Complete Example) - [Format and Examples](#format-and-examples)
- [Complete Example](#complete-example)
## API Doc Structure ## API Doc Structure
...@@ -223,4 +224,4 @@ Format and examples of each part of API documantation are as follows: (take fc f ...@@ -223,4 +224,4 @@ Format and examples of each part of API documantation are as follows: (take fc f
## Complete Example ## Complete Example
Complete Example of fc please see [here](src/fc.py) Complete Example of fc please see [here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/dev/src/fc.py)
# How to use RecordIO in Fluid
If you want to use RecordIO as your training data format, you need to convert to your training data
to RecordIO files and reading them in the process of training, PaddlePaddle Fluid provides some
interface to deal with the RecordIO files.
## Generate RecordIO File
Before start training with RecordIO files, you need to convert your training data
to RecordIO format by `fluid.recordio_writer.convert_reader_to_recordio_file`, the sample codes
as follows:
```python
reader = paddle.batch(mnist.train(), batch_size=1)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=[784]),
fluid.layers.data(
name='label', shape=[1], dtype='int64'),
],
place=fluid.CPUPlace())
fluid.recordio_writer.convert_reader_to_recordio_file('./mnist.recordio', reader, feeder)
```
The above code snippet would generate a RecordIO `./mnist.recordio` on your host.
**NOTE**: we recommend users to set `batch_size=1` when generating the recordio files so that users can
adjust it flexibly while reading it.
## Use the RecordIO file in a Local Training Job
PaddlePaddle Fluid provides an interface `fluid.layers.io.open_recordio_file` to load your RecordIO file
and then you can use them as a Layer in your network configuration, the sample codes as follows:
```python
data_file = fluid.layers.io.open_recordio_file(
filename="./mnist.recordio",
shapes=[(-1, 784),(-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int32"])
data_file = fluid.layers.io.batch(data_file, batch_size=4)
img, label = fluid.layers.io.read_file(data_file)
hidden = fluid.layers.fc(input=img, size=100, act='tanh')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
fluid.optimizer.Adam(learning_rate=1e-3).minimize(avg_loss)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
avg_loss_np = []
# train a pass
batch_id = 0
while True:
tmp, = exe.run(fetch_list=[avg_loss])
avg_loss_np.append(tmp)
print(batch_id)
batch_id += 1
```
## Use the RecordIO files in Distributed Training
1. generate multiple RecordIO files
For a distributed training job, you may have multiple trainer nodes,
and one or more RecordIO files for one trainer node, you can use the interface
`fluid.recordio_writer.convert_reader_to_recordio_files` to convert your training data
into multiple RecordIO files, the sample codes as follows:
```python
reader = paddle.batch(mnist.train(), batch_size=1)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=[784]),
fluid.layers.data(
name='label', shape=[1], dtype='int64'),
],
place=fluid.CPUPlace())
fluid.recordio_writer.convert_reader_to_recordio_files(
filename_suffix='./mnist.recordio', batch_per_file=100, reader, feeder)
```
The above codes would generate multiple RecordIO files on your host like:
```bash
.
\_mnist-00000.recordio
|-mnist-00001.recordio
|-mnist-00002.recordio
|-mnist-00003.recordio
|-mnist-00004.recordio
```
2. open multiple RecordIO files by `fluid.layers.io.open_files`
For a distributed training job, the distributed operator system will schedule trainer process on multiple nodes,
each trainer process reads parts of the whole training data, we usually take the following approach to make the training
data allocated by each trainer process as uniform as possiable:
```python
def gen_train_list(file_pattern, trainers, trainer_id):
file_list = glob.glob(file_pattern)
ret_list = []
for idx, f in enumerate(file_list):
if (idx + trainers) % trainers == trainer_id:
ret_list.append(f)
return ret_list
trainers = int(os.getenv("TRAINERS"))
trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
data_file = fluid.layers.io.open_files(
filenames=gen_train_list("./mnist-[0-9]*.recordio", 2, 0),
thread_num=1,
shapes=[(-1, 784),(-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int32"])
img, label = fluid.layers.io.read_file(data_files)
...
```
../../../../../benchmark/cluster/README.md
\ No newline at end of file
../../../../../../benchmark/cluster/vgg16/README.md
\ No newline at end of file
## 堆内存分析和优化
计算机程序都可能有内存泄漏的风险。**内存泄漏**一般是由于程序在堆(heap)上分配了内存而没有释放,随着程序的运行占用的内存越来越大,一方面会影响程序的稳定性,可能让运行速度越来越慢,或者造成oom,甚至会影响运行程序的机器的稳定性,造成宕机。
目前有很多内存泄漏分析工具,比较经典的有[valgrind](http://valgrind.org/docs/manual/quick-start.html#quick-start.intro), [gperftools](https://gperftools.github.io/gperftools/)
因为Fluid是用Python驱动C++ core来运行,valgrind直接分析非常困难,需要自己编译debug版本的、带valgrind支持的专用Python版本,而且输出的信息中大部分是Python自己的符号和调用信息,分析起来很困难,另外使用valgrind会让程序运行速度变得非常慢,所以不建议使用。
本教程主要介绍[gperftools](https://gperftools.github.io/gperftools/)的使用。
gperftool主要支持以下四个功能:
- thread-caching malloc
- heap-checking using tcmalloc
- heap-profiling using tcmalloc
- CPU profiler
Paddle也提供了基于gperftool的[CPU性能分析教程](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/optimization/cpu_profiling_cn.md)
对于堆内存的分析,主要用到thread-caching malloc和heap-profiling using tcmalloc。
## 使用流程
#### 环境
本教程基于paddle提供的Docker开发环境paddlepaddle/paddle:latest-dev,基于Ubuntu 16.04.4 LTS环境。
#### 使用流程
- 安装google-perftools
```
apt-get install libunwind-dev
apt-get install google-perftools
```
- 安装pprof
```
go get -u github.com/google/pprof
```
- 设置运行环境
```
export PPROF_PATH=/root/gopath/bin/pprof
export PPROF_BINARY_PATH=/root/gopath/bin/pprof
export LD_PRELOAD=/usr/lib/libtcmalloc.so.4
```
- 使用heap profile来运行python程序。本质上是周期性的对堆的分配情况做一次快照。
```
# HEAPPROFILE 设置生成的堆分析文件的目录和文件前缀
# HEAP_PROFILE_ALLOCATION_INTERVAL 设置每分配多少存储dump一次dump,默认1GB
env HEAPPROFILE="./perf_log/test.log" HEAP_PROFILE_ALLOCATION_INTERVAL=209715200 python trainer.py
```
随着程序的运行,会在perf_log这个文件夹下生成很多文件,如下:
```
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0001.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0002.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0003.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0004.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0005.heap
-rw-r--r-- 1 root root 1.0M Jun 1 15:00 test.log.0006.heap
```
- 使用pprof对heap文件进行分析。分析有两种模式:
- 完整模式。会对当前heap做一个分析,显示目前分配内存一些调用路径。
```
pprof --pdf python test.log.0012.heap
```
上述命令会生成一个profile00x.pdf的文件,可以直接打开,例如:[memory_cpu_allocator](https://github.com/jacquesqiao/Paddle/blob/bd2ea0e1f84bb6522a66d44a072598153634cade/doc/fluid/howto/optimization/memory_cpu_allocator.pdf)。从下图可以看出,在CPU版本fluid的运行过程中,分配存储最多的模块式CPUAllocator. 而别的模块相对而言分配内存较少,所以被忽略了,这对于分配内存泄漏是很不方便的,因为泄漏是一个缓慢的过程,在这种图中是无法看到的。
![result](https://user-images.githubusercontent.com/3048612/40964027-a54033e4-68dc-11e8-836a-144910c4bb8c.png)
- Diff模式。可以对两个时刻的heap做diff,把一些内存分配没有发生变化的模块去掉,而把增量部分显示出来。
```
pprof --pdf --base test.log.0010.heap python test.log.1045.heap
```
生成的结果为:[`memory_leak_protobuf`](https://github.com/jacquesqiao/Paddle/blob/bd2ea0e1f84bb6522a66d44a072598153634cade/doc/fluid/howto/optimization/memory_leak_protobuf.pdf)
从图中可以看出:ProgramDesc这个结构,在两个版本之间增长了200MB+,所以这里有很大的内存泄漏的可能性,最终结果也确实证明是这里造成了泄漏。
![result](https://user-images.githubusercontent.com/3048612/40964057-b434d5e4-68dc-11e8-894b-8ab62bcf26c2.png)
![result](https://user-images.githubusercontent.com/3048612/40964063-b7dbee44-68dc-11e8-9719-da279f86477f.png)
...@@ -63,16 +63,16 @@ Android的Docker开发镜像向用户提供两个可配置的参数: ...@@ -63,16 +63,16 @@ Android的Docker开发镜像向用户提供两个可配置的参数:
- 编译`armeabi-v7a``Android API 21`的PaddlePaddle库 - 编译`armeabi-v7a``Android API 21`的PaddlePaddle库
```bash ```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev $ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev ./paddle/scripts/paddle_build.sh build_android
``` ```
- 编译`arm64-v8a``Android API 21`的PaddlePaddle库 - 编译`arm64-v8a``Android API 21`的PaddlePaddle库
```bash ```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev $ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev ./paddle/scripts/paddle_build.sh build_android
``` ```
执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI``ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a``ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。 执行上述`docker run`命令时,容器执行[paddle/scripts/paddle_build.sh build_android](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/paddle_build.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI``ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a``ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。
## 基于Linux交叉编译环境的编译方式 ## 基于Linux交叉编译环境的编译方式
本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。 本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。
......
...@@ -36,7 +36,7 @@ $ docker pull docker.paddlepaddlehub.com/paddle:latest-dev-android ...@@ -36,7 +36,7 @@ $ docker pull docker.paddlepaddlehub.com/paddle:latest-dev-android
We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below: We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below:
```bash ```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" paddle:dev-android $ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" paddle:dev-android ./paddle/scripts/paddle_build.sh build_android
``` ```
The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`: The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`:
...@@ -70,7 +70,7 @@ The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`: ...@@ -70,7 +70,7 @@ The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`:
The ARM-64 architecture (`arm64-v8a`) requires at least level 21 of Android API. The ARM-64 architecture (`arm64-v8a`) requires at least level 21 of Android API.
The default entry-point of the Docker image, [`paddle/scripts/docker/build_android.sh`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh) generates the [Android cross-compiling standalone toolchain](https://developer.android.com/ndk/guides/standalone_toolchain.html) based on the argument: `ANDROID_ABI` or `ANDROID_API`. For information about other configuration arguments, please continue reading. The build command, [`paddle/scripts/paddle_build.sh build_android`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/paddle_build.sh) generates the [Android cross-compiling standalone toolchain](https://developer.android.com/ndk/guides/standalone_toolchain.html) based on the argument: `ANDROID_ABI` or `ANDROID_API`. For information about other configuration arguments, please continue reading.
The above command generates and outputs the inference library in `$PWD/install_android` and puts third-party libraries in `$PWD/install_android/third_party`. The above command generates and outputs the inference library in `$PWD/install_android` and puts third-party libraries in `$PWD/install_android/third_party`.
......
# Automatic Differentiation with the Tape
## Automatic Differentiation
A key challenge in the field of deep learning is to automatically derive the backward pass from the forward pass described algorithmically by researchers. Such a derivation, or a transformation of the forward pass program, has been long studied before the recent prosperity of deep learning in the field known as [automatic differentiation](https://arxiv.org/pdf/1502.05767.pdf).
## The Tape
Given the forward pass program (usually in Python in practices), there are two strategies to derive the backward pass:
1. from the forward pass program itself, or
1. from the execution trace of the forward pass program, which is often known as the *tape*.
This article surveys systems that follow the latter strategy.
## Dynamic Network
When we train a deep learning model, the tape changes every iteration as the input data change, so we have to re-derive the backward pass every iteration. This is known as *dynamic network*.
Deep learning systems that utilize the idea of dynamic network gained their popularities in recent years. This article surveys two representative systems: [PyTorch](https://pytorch.org/) and [DyNet](https://dynet.readthedocs.io/en/latest/).
## An Overview
Both frameworks record a ‘tape’ of the computation and interpreting (or run-time compiling) a transformation of the tape played back in reverse. This tape is a different kind of entity than the original program.[[link]](http://www.bcl.hamilton.ie/~barak/papers/toplas-reverse.pdf)
Consider the following code feedforward model.
```python
x = Variable(randn(20, 1)))
label = Variable(randint(1))
W_1, W_2 = Variable(randn(20, 20)), Variable(randn(10, 20))
h = matmul(W_1, x)
pred = matmul(W_2, x)
loss = softmax(pred, label)
loss.backward()
```
### 1) Dynet uses List to encode the Tape
During the forward execution, a list of operators, in this case `matmul`, `matmul` and `softmax`, are recorded in the tape, along with the necessary information needed to do the backward such as pointers to the inputs and outputs. Then the tape is played in reverse order at `loss.backward()`.
<details>
<summary></summary>
digraph g {
graph [
rankdir = "LR"
];
node [
fontsize = "16"
shape = "ellipse"
];
edge [];
"node0" [
label = "<f0> type: matmul | <f1> input: W_1, x | <f2> output: h"
shape = "record"
];
"node1" [
label = "<f0> type: matmul | <f1> input: W_2, h | <f2> output: pred"
shape = "record"
];
"node2" [
label = "<f0> type: softmax | <f1> input: pred, label | <f2> output: loss"
shape = "record"
];
"node0":f0 -> "node1":f0 [];
"node1":f0 -> "node2":f0 [];
}
</details>
![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22ellipse%22%20];%20edge%20[];%20%22node0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_1,%20x%20|%20%3Cf2%3E%20output:%20h%22%20shape%20=%20%22record%22%20];%20%22node1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_2,%20h%20|%20%3Cf2%3E%20output:%20pred%22%20shape%20=%20%22record%22%20];%20%22node2%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20%3Cf1%3E%20input:%20pred,%20label%20|%20%3Cf2%3E%20output:%20loss%22%20shape%20=%20%22record%22%20];%20%22node0%22:f0%20-%3E%20%22node1%22:f0%20[%20id%20=%200%20];%20%22node1%22:f0%20-%3E%20%22node2%22:f0%20[%20id%20=%201%20];%20})
### 2) Pytorch uses Node Graph to encode the Tape
The graph is composed of `Variable`s and `Function`s. During the forward execution, a `Variable` records its creator function, e.g. `h.creator = matmul`. And a Function records its inputs' previous/dependent functions `prev_func` through `creator`, e.g. `matmul.prev_func = matmul1`. At `loss.backward()`, a topological sort is performed on all `prev_func`s. Then the grad op is performed by the sorted order.
<details>
<summary></summary>
digraph g {
graph [
rankdir = "LR"
];
subgraph function {
node [
fontsize = "16"
style = filled
shape = "record"
];
"matmul0" [ label = "<f0> type: matmul | prev_func: None" ];
"matmul1" [ label = "<f0> type: matmul | prev_func: matmul" ];
"softmax" [ label = "<f0> type: softmax | prev_func: matmul" ];
}
subgraph variable {
node [
fontsize = "16"
shape = "Mrecord"
style = filled
fillcolor = white
];
"x" [ label = "<f0> x | <f1> creator: None" ];
"label" [ label = "<f0> label | <f1> creator: None" ];
"W_1" [ label = "<f0> W_1 | <f1> creator: None" ];
"W_2" [ label = "<f0> W_2 | <f1> creator: None" ];
"h" [ label = "<f0> h | <f1> creator: None" ];
"pred" [ label = "<f0> pred | <f1> creator: matmul" ];
"loss" [ label = "<f0> loss | <f1> creator: softmax" ];
}
subgraph data_flow {
"x":f0 -> "matmul0":f0;
"W_1":f0 -> "matmul0":f0;
"matmul0":f0 -> "h":f0;
"h":f0 -> "matmul1":f0;
"W_2":f0 -> "matmul1":f0;
"matmul1":f0 -> "pred":f0;
"pred":f0 -> "softmax":f0;
"label":f0 -> "softmax":f0;
"softmax":f0 -> "loss":f0;
}
subgraph prev_func {
edge [color="red", arrowsize="0.6", penwidth="1", constraint=false];
"matmul1":f1 -> "matmul0":f0;
"softmax":f1 -> "matmul1":f0;
label = "prev_func";
}
}
</details>
![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20subgraph%20function%20{%20node%20[%20fontsize%20=%20%2216%22%20style%20=%20filled%20shape%20=%20%22record%22%20];%20%22matmul0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20None%22%20];%20%22matmul1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20matmul%22%20];%20%22softmax%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20prev_func:%20matmul%22%20];%20}%20subgraph%20variable%20{%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22Mrecord%22%20style%20=%20filled%20fillcolor%20=%20white%20];%20%22x%22%20[%20label%20=%20%22%3Cf0%3E%20x%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22label%22%20[%20label%20=%20%22%3Cf0%3E%20label%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_1%22%20[%20label%20=%20%22%3Cf0%3E%20W_1%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_2%22%20[%20label%20=%20%22%3Cf0%3E%20W_2%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22h%22%20[%20label%20=%20%22%3Cf0%3E%20h%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22pred%22%20[%20label%20=%20%22%3Cf0%3E%20pred%20|%20%3Cf1%3E%20creator:%20matmul%22%20];%20%22loss%22%20[%20label%20=%20%22%3Cf0%3E%20loss%20|%20%3Cf1%3E%20creator:%20softmax%22%20];%20}%20subgraph%20data_flow%20{%20%22x%22:f0%20-%3E%20%22matmul0%22:f0;%20%22W_1%22:f0%20-%3E%20%22matmul0%22:f0;%20%22matmul0%22:f0%20-%3E%20%22h%22:f0;%20%22h%22:f0%20-%3E%20%22matmul1%22:f0;%20%22W_2%22:f0%20-%3E%20%22matmul1%22:f0;%20%22matmul1%22:f0%20-%3E%20%22pred%22:f0;%20%22pred%22:f0%20-%3E%20%22softmax%22:f0;%20%22label%22:f0%20-%3E%20%22softmax%22:f0;%20%22softmax%22:f0%20-%3E%20%22loss%22:f0;%20}%20subgraph%20prev_func%20{%20edge%20[color=%22red%22,%20arrowsize=%220.6%22,%20penwidth=%221%22,%20constraint=false];%20%22matmul1%22:f1%20-%3E%20%22matmul0%22:f0;%20%22softmax%22:f1%20-%3E%20%22matmul1%22:f0;%20label%20=%20%22prev_func%22;%20}%20})
Chainer and Autograd uses the similar techniques to record the forward pass. For details please refer to the appendix.
## Design choices
### 1) Dynet's List vs Pytorch's Node Graph
What's good about List:
1. It avoids a topological sort. One only needs to traverse the list of operators in reverse and calling the corresponding backward operator.
1. It promises effient data parallelism implementations. One could count the time of usage of a certain variable during the construction list. Then in the play back, one knows the calculation of a variable has completed. This enables communication and computation overlapping.
What's good about Node Graph:
1. More flexibility. PyTorch users can mix and match independent graphs however they like, in whatever threads they like (without explicit synchronization). An added benefit of structuring graphs this way is that when a portion of the graph becomes dead, it is automatically freed. [[2]](https://openreview.net/pdf?id=BJJsrmfCZ) Consider the following example, Pytorch only does backward on SmallNet while Dynet does both BigNet and SmallNet.
```python
result = BigNet(data)
loss = SmallNet(data)
loss.backward()
```
### 2) Dynet's Lazy evaluation vs Pytorch's Immediate evaluation
Dynet builds the list in a symbolic matter. Consider the following example
```python
for epoch in range(num_epochs):
for in_words, out_label in training_data:
dy.renew_cg()
W = dy.parameter(W_p)
b = dy.parameter(b_p)
score_sym = dy.softmax(W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
loss_val = loss_sym.value()
loss_sym.backward()
```
The computation of `lookup`, `concat`, `matmul` and `softmax` didn't happen until the call of `loss_sym.value()`. This defered execution is useful because it allows some graph-like optimization possible, e.g. kernel fusion.
Pytorch chooses immediate evaluation. It avoids ever materializing a "forward graph"/"tape" (no need to explicitly call `dy.renew_cg()` to reset the list), recording only what is necessary to differentiate the computation, i.e. `creator` and `prev_func`.
## What can fluid learn from them?
Please refer to `paddle/contrib/dynamic/`.
# Appendix
### Overview
| Framework | Has Tape | Core in C++ | First Release Date |
|-----------|----------|-------------|--------------------|
| Autograd | No | No | Mar 5, 2015 |
| Chainer | No | No | Jun 5, 2015 |
| Pytorch | No | Yes | Aug 31, 2016 |
| Dynet | Yes | Yes | Oct 12, 2016 |
### Source Code
#### Autograd
[Backward code](https://github.com/HIPS/autograd/blob/442205dfefe407beffb33550846434baa90c4de7/autograd/core.py#L8-L40). In the forward pass, a graph of VJPNode is constructed.
```python
# User API
def make_grad(fun, x):
start_node = VJPNode.new_root()
end_value, end_node = trace(start_node, fun, x)
return backward_pass(g, end_node), end_value
# trace the forward pass by creating VJPNodes
def trace(start_node, fun, x):
with trace_stack.new_trace() as t:
start_box = new_box(x, t, start_node)
end_box = fun(start_box)
return end_box._value, end_box._node
def backward_pass(g, end_node):
outgrads = {end_node : (g, False)}
for node in toposort(end_node):
outgrad = outgrads.pop(node)
ingrads = node.vjp(outgrad[0])
for parent, ingrad in zip(node.parents, ingrads):
outgrads[parent] = add_outgrads(outgrads.get(parent), ingrad)
return outgrad[0]
# Every VJPNode corresponds to a op_grad
class VJPNode(Node):
__slots__ = ['parents', 'vjp']
def __init__(self, value, fun, args, kwargs, parent_argnums, parents):
self.parents = parents
vjpmaker = primitive_vjps[fun]
self.vjp = vjpmaker(parent_argnums, value, args, kwargs)
```
#### Chainer
Example Code
```python
# (1) Function Set definition, creates FunctionNode
model = FunctionSet(
l1=F.Linear(784, 100),
l2=F.Linear(100, 100),
l3=F.Linear(100, 10)).to_gpu()
# (2) Optimizer Setup
opt = optimizers.SGD()
opt.setup(model)
# (3) Forward computation
def forward(x, t):
h1 = F.relu(model.l1(x))
h2 = F.relu(model.l2(h1))
y = model.l3(h2)
return F.softmax_cross_entropy(y, t)
# (4) Training loop
for epoch in xrange(n_epoch):
for i in xrange(0, N, b_size):
x = Variable(to_gpu(...))
t = Variable(to_gpu(...))
opt.zero_grads()
loss = forward(x, t)
loss.backward()
opt.update()
```
In `forward(x, t)`, a graph of [`VariableNode`](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L110) and [`FunctionNode`](https://github.com/chainer/chainer/blob/a69103a4aa59d5b318f39b01dbcb858d465b89cf/chainer/function_node.py#L19) is constructed. Every output's `VariableNode.creator` is pointed to the `FunctionNode`.
```python
class FunctionNode(object):
...
def apply(self, inputs):
outputs = self.forward(inputs)
ret = tuple([variable.Variable(y, requires_grad=requires_grad)
for y in outputs])
# Topological ordering
self.rank = max([x.rank for x in inputs]) if input_vars else 0
# Add backward edges
for y in ret:
y.creator_node = self
self.inputs = tuple([x.node for x in input_vars])
self.outputs = tuple([y.node for y in ret])
return ret
```
`loss.backward()` will calculate the accumulated gradient of all variables. All the backward of `FunctionNode`s will be called based on the topological order.
```python
class VariableNode(object):
...
def backward(self, retain_grad, loss_scale):
if self.creator_node is None:
return
cand_funcs = []
seen_set = set()
grads = {}
# Initialize error by 1, if this is a loss variable
if self.data.size == 1 and self._grad_var is None:
self.grad = numpy.ones_like(self.data)
grads[self._node] = self._grad_var
def add_cand(cand):
if cand not in seen_set:
# Negate since heapq is min-heap. This is a global variable
heapq.heappush(cand_funcs, (-cand.rank, len(seen_set), cand))
seen_set.add(cand)
add_cand(self.creator_node)
while cand_funcs:
_, _, func = heapq.heappop(cand_funcs)
gxs = func.backward_accumulate(func.inputs, func.outputs, func.outputs.grad)
for x, gx in enumerate(gxs):
if x in grads:
grads[x] += gx
else:
grads[x] = gx
if x.creator_node is not None:
add_cand(x.creator_node)
```
#### PyTorch
Example Code
```python
x = Variable(torch.ones(5, 5))
y = Variable(torch.ones(5, 5) * 4)
z = x ** 2 + x * 2 + x * y + y
z.backward(torch.ones(5, 5))
```
The trace is done by `Variable.creator` and `Function.previous_functions`.
```python
class Variable(object):
def __init__(self, tensor, creator=None, requires_grad=True):
if creator is None:
creator = Leaf(self, requires_grad)
self.data = tensor
self.creator = creator
self._grad = None
def backward(self, gradient=None):
if gradient is None:
if self.data.numel() != 1:
raise RuntimeError('backward should be called only on a scalar (i.e. 1-element tensor) or with gradient w.r.t. the variable')
gradient = self.data.new(1).fill_(1)
self._execution_engine.run_backward(self, gradient)
class Function(obejct):
# ...
def _do_forward(self, *input):
unpacked_input = tuple(arg.data for arg in input)
raw_output = self.forward(*unpacked_input)
# mark output.creator = self for backward trace
output = tuple(Variable(tensor, self) for tensor in raw_output)
self.previous_functions = [(arg.creator, id(arg)) for arg in input]
self.output_ids = {id(var): i for i, var in enumerate(output)}
return output
def _do_backward(self, grad_output):
return self.backwaerd(grad_output)
```
The [backward](https://github.com/pytorch/pytorch/blob/v0.1.1/torch/autograd/engine.py) is similar to Autograd.
#### DyNet
Example code
```python
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
for epoch in range(num_epochs):
for in_words, out_label in training_data:
dy.renew_cg() # init tape
W = dy.parameter(W_p)
b = dy.parameter(b_p)
score_sym = dy.softmax(W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
loss_val = loss_sym.value()
loss_sym.backward()
```
[forward](https://github.com/clab/dynet/blob/740a9626a13a2732544de142e256ad0d0a166658/dynet/exec.cc#L84-L158), [backward](https://github.com/clab/dynet/blob/740a9626a13a2732544de142e256ad0d0a166658/dynet/exec.cc#L166-L284). The trace is done by creating a tape of expressions in every iteration. Backward is done by traverse the tape in the reverse order.
```c++
void SimpleExecutionEngine::backward(VariableIndex from_where, bool full) {
...
for (int i = num_nodes - 1; i >= 0; --i) {
// each node corresponds to an op
node->backward(xs, node_fx, node_dEdfx, ai, node_dEdxai);
}
...
}
```
...@@ -101,7 +101,7 @@ value_printer ...@@ -101,7 +101,7 @@ value_printer
:noindex: :noindex:
Detection Detection
===== ==========
detection_map detection_map
------------- -------------
......
...@@ -11,7 +11,7 @@ Data layer ...@@ -11,7 +11,7 @@ Data layer
data data
---- ----
.. autoclass:: paddle.v2.layer.data .. autofunction:: paddle.v2.layer.data
:noindex: :noindex:
Fully Connected Layers Fully Connected Layers
...@@ -21,12 +21,12 @@ Fully Connected Layers ...@@ -21,12 +21,12 @@ Fully Connected Layers
fc fc
-- --
.. autoclass:: paddle.v2.layer.fc .. autofunction:: paddle.v2.layer.fc
:noindex: :noindex:
selective_fc selective_fc
------------ ------------
.. autoclass:: paddle.v2.layer.selective_fc .. autofunction:: paddle.v2.layer.selective_fc
:noindex: :noindex:
Conv Layers Conv Layers
...@@ -34,34 +34,34 @@ Conv Layers ...@@ -34,34 +34,34 @@ Conv Layers
conv_operator conv_operator
------------- -------------
.. autoclass:: paddle.v2.layer.conv_operator .. autofunction:: paddle.v2.layer.conv_operator
:noindex: :noindex:
conv_projection conv_projection
--------------- ---------------
.. autoclass:: paddle.v2.layer.conv_projection .. autofunction:: paddle.v2.layer.conv_projection
:noindex: :noindex:
conv_shift conv_shift
---------- ----------
.. autoclass:: paddle.v2.layer.conv_shift .. autofunction:: paddle.v2.layer.conv_shift
:noindex: :noindex:
img_conv img_conv
-------- --------
.. autoclass:: paddle.v2.layer.img_conv .. autofunction:: paddle.v2.layer.img_conv
:noindex: :noindex:
.. _api_v2.layer_context_projection: .. _api_v2.layer_context_projection:
context_projection context_projection
------------------ ------------------
.. autoclass:: paddle.v2.layer.context_projection .. autofunction:: paddle.v2.layer.context_projection
:noindex: :noindex:
row_conv row_conv
-------- --------
.. autoclass:: paddle.v2.layer.row_conv .. autofunction:: paddle.v2.layer.row_conv
:noindex: :noindex:
Image Pooling Layer Image Pooling Layer
...@@ -69,27 +69,27 @@ Image Pooling Layer ...@@ -69,27 +69,27 @@ Image Pooling Layer
img_pool img_pool
-------- --------
.. autoclass:: paddle.v2.layer.img_pool .. autofunction:: paddle.v2.layer.img_pool
:noindex: :noindex:
spp spp
--- ---
.. autoclass:: paddle.v2.layer.spp .. autofunction:: paddle.v2.layer.spp
:noindex: :noindex:
maxout maxout
------ ------
.. autoclass:: paddle.v2.layer.maxout .. autofunction:: paddle.v2.layer.maxout
:noindex: :noindex:
roi_pool roi_pool
-------- --------
.. autoclass:: paddle.v2.layer.roi_pool .. autofunction:: paddle.v2.layer.roi_pool
:noindex: :noindex:
pad pad
---- ----
.. autoclass:: paddle.v2.layer.pad .. autofunction:: paddle.v2.layer.pad
:noindex: :noindex:
Norm Layer Norm Layer
...@@ -97,27 +97,27 @@ Norm Layer ...@@ -97,27 +97,27 @@ Norm Layer
img_cmrnorm img_cmrnorm
----------- -----------
.. autoclass:: paddle.v2.layer.img_cmrnorm .. autofunction:: paddle.v2.layer.img_cmrnorm
:noindex: :noindex:
batch_norm batch_norm
---------- ----------
.. autoclass:: paddle.v2.layer.batch_norm .. autofunction:: paddle.v2.layer.batch_norm
:noindex: :noindex:
sum_to_one_norm sum_to_one_norm
--------------- ---------------
.. autoclass:: paddle.v2.layer.sum_to_one_norm .. autofunction:: paddle.v2.layer.sum_to_one_norm
:noindex: :noindex:
cross_channel_norm cross_channel_norm
------------------ ------------------
.. autoclass:: paddle.v2.layer.cross_channel_norm .. autofunction:: paddle.v2.layer.cross_channel_norm
:noindex: :noindex:
row_l2_norm row_l2_norm
----------- -----------
.. autoclass:: paddle.v2.layer.row_l2_norm .. autofunction:: paddle.v2.layer.row_l2_norm
:noindex: :noindex:
Recurrent Layers Recurrent Layers
...@@ -125,22 +125,22 @@ Recurrent Layers ...@@ -125,22 +125,22 @@ Recurrent Layers
recurrent recurrent
--------- ---------
.. autoclass:: paddle.v2.layer.recurrent .. autofunction:: paddle.v2.layer.recurrent
:noindex: :noindex:
lstmemory lstmemory
--------- ---------
.. autoclass:: paddle.v2.layer.lstmemory .. autofunction:: paddle.v2.layer.lstmemory
:noindex: :noindex:
grumemory grumemory
--------- ---------
.. autoclass:: paddle.v2.layer.grumemory .. autofunction:: paddle.v2.layer.grumemory
:noindex: :noindex:
gated_unit gated_unit
----------- -----------
.. autoclass:: paddle.v2.layer.gated_unit .. autofunction:: paddle.v2.layer.gated_unit
:noindex: :noindex:
Recurrent Layer Group Recurrent Layer Group
...@@ -148,32 +148,32 @@ Recurrent Layer Group ...@@ -148,32 +148,32 @@ Recurrent Layer Group
memory memory
------ ------
.. autoclass:: paddle.v2.layer.memory .. autofunction:: paddle.v2.layer.memory
:noindex: :noindex:
recurrent_group recurrent_group
--------------- ---------------
.. autoclass:: paddle.v2.layer.recurrent_group .. autofunction:: paddle.v2.layer.recurrent_group
:noindex: :noindex:
lstm_step lstm_step
--------- ---------
.. autoclass:: paddle.v2.layer.lstm_step .. autofunction:: paddle.v2.layer.lstm_step
:noindex: :noindex:
gru_step gru_step
-------- --------
.. autoclass:: paddle.v2.layer.gru_step .. autofunction:: paddle.v2.layer.gru_step
:noindex: :noindex:
beam_search beam_search
------------ ------------
.. autoclass:: paddle.v2.layer.beam_search .. autofunction:: paddle.v2.layer.beam_search
:noindex: :noindex:
get_output get_output
---------- ----------
.. autoclass:: paddle.v2.layer.get_output .. autofunction:: paddle.v2.layer.get_output
:noindex: :noindex:
Mixed Layer Mixed Layer
...@@ -183,54 +183,54 @@ Mixed Layer ...@@ -183,54 +183,54 @@ Mixed Layer
mixed mixed
----- -----
.. autoclass:: paddle.v2.layer.mixed .. autofunction:: paddle.v2.layer.mixed
:noindex: :noindex:
.. _api_v2.layer_embedding: .. _api_v2.layer_embedding:
embedding embedding
--------- ---------
.. autoclass:: paddle.v2.layer.embedding .. autofunction:: paddle.v2.layer.embedding
:noindex: :noindex:
scaling_projection scaling_projection
------------------ ------------------
.. autoclass:: paddle.v2.layer.scaling_projection .. autofunction:: paddle.v2.layer.scaling_projection
:noindex: :noindex:
dotmul_projection dotmul_projection
----------------- -----------------
.. autoclass:: paddle.v2.layer.dotmul_projection .. autofunction:: paddle.v2.layer.dotmul_projection
:noindex: :noindex:
dotmul_operator dotmul_operator
--------------- ---------------
.. autoclass:: paddle.v2.layer.dotmul_operator .. autofunction:: paddle.v2.layer.dotmul_operator
:noindex: :noindex:
full_matrix_projection full_matrix_projection
---------------------- ----------------------
.. autoclass:: paddle.v2.layer.full_matrix_projection .. autofunction:: paddle.v2.layer.full_matrix_projection
:noindex: :noindex:
identity_projection identity_projection
------------------- -------------------
.. autoclass:: paddle.v2.layer.identity_projection .. autofunction:: paddle.v2.layer.identity_projection
:noindex: :noindex:
slice_projection slice_projection
------------------- -------------------
.. autoclass:: paddle.v2.layer.slice_projection .. autofunction:: paddle.v2.layer.slice_projection
:noindex: :noindex:
table_projection table_projection
---------------- ----------------
.. autoclass:: paddle.v2.layer.table_projection .. autofunction:: paddle.v2.layer.table_projection
:noindex: :noindex:
trans_full_matrix_projection trans_full_matrix_projection
---------------------------- ----------------------------
.. autoclass:: paddle.v2.layer.trans_full_matrix_projection .. autofunction:: paddle.v2.layer.trans_full_matrix_projection
:noindex: :noindex:
Aggregate Layers Aggregate Layers
...@@ -245,51 +245,46 @@ AggregateLevel ...@@ -245,51 +245,46 @@ AggregateLevel
pooling pooling
------- -------
.. autoclass:: paddle.v2.layer.pooling .. autofunction:: paddle.v2.layer.pooling
:noindex: :noindex:
.. _api_v2.layer_last_seq: .. _api_v2.layer_last_seq:
last_seq last_seq
-------- --------
.. autoclass:: paddle.v2.layer.last_seq .. autofunction:: paddle.v2.layer.last_seq
:noindex: :noindex:
.. _api_v2.layer_first_seq: .. _api_v2.layer_first_seq:
first_seq first_seq
--------- ---------
.. autoclass:: paddle.v2.layer.first_seq .. autofunction:: paddle.v2.layer.first_seq
:noindex: :noindex:
sub_seq sub_seq
--------- ---------
.. autoclass:: paddle.v2.layer.sub_seq .. autofunction:: paddle.v2.layer.sub_seq
:noindex: :noindex:
concat concat
------ ------
.. autoclass:: paddle.v2.layer.concat .. autofunction:: paddle.v2.layer.concat
:noindex: :noindex:
seq_concat seq_concat
---------- ----------
.. autoclass:: paddle.v2.layer.seq_concat .. autofunction:: paddle.v2.layer.seq_concat
:noindex: :noindex:
seq_slice seq_slice
--------- ---------
.. autoclass:: paddle.v2.layer.seq_slice .. autofunction:: paddle.v2.layer.seq_slice
:noindex:
kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
:noindex: :noindex:
sub_nested_seq sub_nested_seq
-------------- --------------
.. autoclass:: paddle.v2.layer.sub_nested_seq .. autofunction:: paddle.v2.layer.sub_nested_seq
:noindex: :noindex:
Reshaping Layers Reshaping Layers
...@@ -297,7 +292,7 @@ Reshaping Layers ...@@ -297,7 +292,7 @@ Reshaping Layers
block_expand block_expand
------------ ------------
.. autoclass:: paddle.v2.layer.block_expand .. autofunction:: paddle.v2.layer.block_expand
:noindex: :noindex:
.. _api_v2.layer_expand: .. _api_v2.layer_expand:
...@@ -309,22 +304,22 @@ ExpandLevel ...@@ -309,22 +304,22 @@ ExpandLevel
expand expand
------ ------
.. autoclass:: paddle.v2.layer.expand .. autofunction:: paddle.v2.layer.expand
:noindex: :noindex:
repeat repeat
------ ------
.. autoclass:: paddle.v2.layer.repeat .. autofunction:: paddle.v2.layer.repeat
:noindex: :noindex:
rotate rotate
------ ------
.. autoclass:: paddle.v2.layer.rotate .. autofunction:: paddle.v2.layer.rotate
:noindex: :noindex:
seq_reshape seq_reshape
----------- -----------
.. autoclass:: paddle.v2.layer.seq_reshape .. autofunction:: paddle.v2.layer.seq_reshape
:noindex: :noindex:
Math Layers Math Layers
...@@ -332,94 +327,94 @@ Math Layers ...@@ -332,94 +327,94 @@ Math Layers
addto addto
----- -----
.. autoclass:: paddle.v2.layer.addto .. autofunction:: paddle.v2.layer.addto
:noindex: :noindex:
linear_comb linear_comb
----------- -----------
.. autoclass:: paddle.v2.layer.linear_comb .. autofunction:: paddle.v2.layer.linear_comb
:noindex: :noindex:
interpolation interpolation
------------- -------------
.. autoclass:: paddle.v2.layer.interpolation .. autofunction:: paddle.v2.layer.interpolation
:noindex: :noindex:
bilinear_interp bilinear_interp
--------------- ---------------
.. autoclass:: paddle.v2.layer.bilinear_interp .. autofunction:: paddle.v2.layer.bilinear_interp
:noindex: :noindex:
dropout dropout
-------- --------
.. autoclass:: paddle.v2.layer.dropout .. autofunction:: paddle.v2.layer.dropout
:noindex: :noindex:
dot_prod dot_prod
--------- ---------
.. autoclass:: paddle.v2.layer.dot_prod .. autofunction:: paddle.v2.layer.dot_prod
:noindex: :noindex:
out_prod out_prod
-------- --------
.. autoclass:: paddle.v2.layer.out_prod .. autofunction:: paddle.v2.layer.out_prod
:noindex: :noindex:
power power
----- -----
.. autoclass:: paddle.v2.layer.power .. autofunction:: paddle.v2.layer.power
:noindex: :noindex:
scaling scaling
------- -------
.. autoclass:: paddle.v2.layer.scaling .. autofunction:: paddle.v2.layer.scaling
:noindex: :noindex:
clip clip
---- ----
.. autoclass:: paddle.v2.layer.clip .. autofunction:: paddle.v2.layer.clip
:noindex: :noindex:
resize resize
------ ------
.. autoclass:: paddle.v2.layer.resize .. autofunction:: paddle.v2.layer.resize
:noindex: :noindex:
slope_intercept slope_intercept
--------------- ---------------
.. autoclass:: paddle.v2.layer.slope_intercept .. autofunction:: paddle.v2.layer.slope_intercept
:noindex: :noindex:
tensor tensor
------ ------
.. autoclass:: paddle.v2.layer.tensor .. autofunction:: paddle.v2.layer.tensor
:noindex: :noindex:
.. _api_v2.layer_cos_sim: .. _api_v2.layer_cos_sim:
cos_sim cos_sim
------- -------
.. autoclass:: paddle.v2.layer.cos_sim .. autofunction:: paddle.v2.layer.cos_sim
:noindex: :noindex:
l2_distance l2_distance
----------- -----------
.. autoclass:: paddle.v2.layer.l2_distance .. autofunction:: paddle.v2.layer.l2_distance
:noindex: :noindex:
trans trans
----- -----
.. autoclass:: paddle.v2.layer.trans .. autofunction:: paddle.v2.layer.trans
:noindex: :noindex:
scale_shift scale_shift
----------- -----------
.. autoclass:: paddle.v2.layer.scale_shift .. autofunction:: paddle.v2.layer.scale_shift
:noindex: :noindex:
factorization_machine factorization_machine
--------------------- ---------------------
.. autoclass:: paddle.v2.layer.factorization_machine .. autofunction:: paddle.v2.layer.factorization_machine
:noindex: :noindex:
Sampling Layers Sampling Layers
...@@ -427,17 +422,17 @@ Sampling Layers ...@@ -427,17 +422,17 @@ Sampling Layers
maxid maxid
----- -----
.. autoclass:: paddle.v2.layer.max_id .. autofunction:: paddle.v2.layer.max_id
:noindex: :noindex:
sampling_id sampling_id
----------- -----------
.. autoclass:: paddle.v2.layer.sampling_id .. autofunction:: paddle.v2.layer.sampling_id
:noindex: :noindex:
multiplex multiplex
--------- ---------
.. autoclass:: paddle.v2.layer.multiplex .. autofunction:: paddle.v2.layer.multiplex
:noindex: :noindex:
.. _api_v2.layer_costs: .. _api_v2.layer_costs:
...@@ -447,97 +442,97 @@ Cost Layers ...@@ -447,97 +442,97 @@ Cost Layers
cross_entropy_cost cross_entropy_cost
------------------ ------------------
.. autoclass:: paddle.v2.layer.cross_entropy_cost .. autofunction:: paddle.v2.layer.cross_entropy_cost
:noindex: :noindex:
cross_entropy_with_selfnorm_cost cross_entropy_with_selfnorm_cost
-------------------------------- --------------------------------
.. autoclass:: paddle.v2.layer.cross_entropy_with_selfnorm_cost .. autofunction:: paddle.v2.layer.cross_entropy_with_selfnorm_cost
:noindex: :noindex:
multi_binary_label_cross_entropy_cost multi_binary_label_cross_entropy_cost
------------------------------------- -------------------------------------
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost .. autofunction:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex: :noindex:
classification_cost classification_cost
------------------- -------------------
.. autoclass:: paddle.v2.layer.classification_cost .. autofunction:: paddle.v2.layer.classification_cost
:noindex: :noindex:
huber_regression_cost huber_regression_cost
------------------------- -------------------------
.. autoclass:: paddle.v2.layer.huber_regression_cost .. autofunction:: paddle.v2.layer.huber_regression_cost
:noindex: :noindex:
huber_classification_cost huber_classification_cost
------------------------- -------------------------
.. autoclass:: paddle.v2.layer.huber_classification_cost .. autofunction:: paddle.v2.layer.huber_classification_cost
:noindex: :noindex:
lambda_cost lambda_cost
----------- -----------
.. autoclass:: paddle.v2.layer.lambda_cost .. autofunction:: paddle.v2.layer.lambda_cost
:noindex: :noindex:
square_error_cost square_error_cost
----------------- -----------------
.. autoclass:: paddle.v2.layer.square_error_cost .. autofunction:: paddle.v2.layer.square_error_cost
:noindex: :noindex:
rank_cost rank_cost
--------- ---------
.. autoclass:: paddle.v2.layer.rank_cost .. autofunction:: paddle.v2.layer.rank_cost
:noindex: :noindex:
sum_cost sum_cost
--------- ---------
.. autoclass:: paddle.v2.layer.sum_cost .. autofunction:: paddle.v2.layer.sum_cost
:noindex: :noindex:
crf crf
--- ---
.. autoclass:: paddle.v2.layer.crf .. autofunction:: paddle.v2.layer.crf
:noindex: :noindex:
crf_decoding crf_decoding
------------ ------------
.. autoclass:: paddle.v2.layer.crf_decoding .. autofunction:: paddle.v2.layer.crf_decoding
:noindex: :noindex:
ctc ctc
--- ---
.. autoclass:: paddle.v2.layer.ctc .. autofunction:: paddle.v2.layer.ctc
:noindex: :noindex:
warp_ctc warp_ctc
-------- --------
.. autoclass:: paddle.v2.layer.warp_ctc .. autofunction:: paddle.v2.layer.warp_ctc
:noindex: :noindex:
nce nce
--- ---
.. autoclass:: paddle.v2.layer.nce .. autofunction:: paddle.v2.layer.nce
:noindex: :noindex:
hsigmoid hsigmoid
--------- ---------
.. autoclass:: paddle.v2.layer.hsigmoid .. autofunction:: paddle.v2.layer.hsigmoid
:noindex: :noindex:
smooth_l1_cost smooth_l1_cost
-------------- --------------
.. autoclass:: paddle.v2.layer.smooth_l1_cost .. autofunction:: paddle.v2.layer.smooth_l1_cost
:noindex: :noindex:
multibox_loss multibox_loss
-------------- --------------
.. autoclass:: paddle.v2.layer.multibox_loss .. autofunction:: paddle.v2.layer.multibox_loss
:noindex: :noindex:
detection_output detection_output
---------------- ----------------
.. autoclass:: paddle.v2.layer.detection_output .. autofunction:: paddle.v2.layer.detection_output
:noindex: :noindex:
Check Layer Check Layer
...@@ -545,7 +540,7 @@ Check Layer ...@@ -545,7 +540,7 @@ Check Layer
eos eos
--- ---
.. autoclass:: paddle.v2.layer.eos .. autofunction:: paddle.v2.layer.eos
:noindex: :noindex:
Activation Activation
...@@ -553,5 +548,5 @@ Activation ...@@ -553,5 +548,5 @@ Activation
prelu prelu
-------- --------
.. autoclass:: paddle.v2.layer.prelu .. autofunction:: paddle.v2.layer.prelu
:noindex: :noindex:
...@@ -8,4 +8,3 @@ API ...@@ -8,4 +8,3 @@ API
model_configs.rst model_configs.rst
data.rst data.rst
run_logic.rst run_logic.rst
fluid/index.rst
...@@ -23,7 +23,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 ...@@ -23,7 +23,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安
在 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`__ 找到 paddle_manylinux_devel 在 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`__ 找到 paddle_manylinux_devel
镜像的编译以及使用方法。或者参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。 镜像的编译以及使用方法。或者参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。
如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 `编译依赖`_ 之后才能开始编译的步骤。 如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 :ref:`编译依赖 <_compile_deps>` 之后才能开始编译的步骤。
编译PaddlePaddle,需要执行: 编译PaddlePaddle,需要执行:
...@@ -106,7 +106,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 ...@@ -106,7 +106,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安
- 学习 Docker 有多难? - 学习 Docker 有多难?
理解 Docker 并不难,大概花十分钟看一下[这篇文章](https://zhuanlan.zhihu.com/p/19902938)。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。 理解 Docker 并不难,大概花十分钟看一下 `如何使用Docker <https://zhuanlan.zhihu.com/p/19902938>`_ 。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。
- 我可以用 IDE 吗? - 我可以用 IDE 吗?
...@@ -123,7 +123,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 ...@@ -123,7 +123,7 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安
- 可以并行编译吗? - 可以并行编译吗?
是的。我们的 Docker image 运行一个 [Bash 脚本](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh)。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。 是的。我们的 Docker image 运行一个 `Paddle编译Bash脚本 <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh>`_ 。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。
- Docker 需要 sudo - Docker 需要 sudo
...@@ -131,11 +131,11 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安 ...@@ -131,11 +131,11 @@ PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安
- 在 Windows/MacOS 上编译很慢 - 在 Windows/MacOS 上编译很慢
Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考[这个issue](https://github.com/PaddlePaddle/Paddle/issues/627) Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考 `如何为Windows/Mac计算机上的Docker增加内存和虚拟机 <https://github.com/PaddlePaddle/Paddle/issues/627>`_
- 磁盘不够 - 磁盘不够
本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考[这篇文章](https://zaiste.net/posts/removing_docker_containers/)来清理这些内容。 本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考 `如何删除Docker Container <https://zaiste.net/posts/removing_docker_containers/>`_ 来清理这些内容。
.. _compile_deps: .. _compile_deps:
...@@ -195,7 +195,7 @@ BLAS ...@@ -195,7 +195,7 @@ BLAS
PaddlePaddle支持 `MKL <https://software.intel.com/en-us/intel-mkl>`_ 和 PaddlePaddle支持 `MKL <https://software.intel.com/en-us/intel-mkl>`_ 和
`OpenBlAS <http://www.openblas.net/>`_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集, `OpenBlAS <http://www.openblas.net/>`_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集,
还会下载MKL-DNN数学库,详细参考 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_ 。 还会下载MKL-DNN数学库,详细参考 `mkldnn设计文档 <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_ 。
如果关闭MKL,则会使用OpenBLAS作为BLAS库。 如果关闭MKL,则会使用OpenBLAS作为BLAS库。
......
...@@ -26,6 +26,8 @@ you can also find how to build and use paddle_manylinux_devel Docker image from ...@@ -26,6 +26,8 @@ you can also find how to build and use paddle_manylinux_devel Docker image from
`here <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`__ `here <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`__
Or you can build your own image from source as the optional step below: Or you can build your own image from source as the optional step below:
If you don't wish to use docker,you need to install several compile dependencies manually as :ref:`Compile Dependencies <_compile_deps>` shows to start compilation.
.. code-block:: bash .. code-block:: bash
# 1. clone the source code # 1. clone the source code
...@@ -108,7 +110,7 @@ Frequently Asked Questions ...@@ -108,7 +110,7 @@ Frequently Asked Questions
- How difficult is it to learn Docker? - How difficult is it to learn Docker?
It takes you ten minutes to read [an introductory article](https://docs.docker.com/get-started) and saves you more than one hour to install all required build tools, configure them, especially when new versions of PaddlePaddle require some new tools. Not even to mention the time saved when other people trying to reproduce the issue you have. It takes you ten minutes to read `an introductory article <https://docs.docker.com/get-started>`_ and saves you more than one hour to install all required build tools, configure them, especially when new versions of PaddlePaddle require some new tools. Not even to mention the time saved when other people trying to reproduce the issue you have.
- Can I use my favorite IDE? - Can I use my favorite IDE?
...@@ -125,7 +127,7 @@ Frequently Asked Questions ...@@ -125,7 +127,7 @@ Frequently Asked Questions
- Does Docker do parallel building? - Does Docker do parallel building?
Our building Docker image runs a [Bash script](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh), which calls `make -j$(nproc)` to starts as many processes as the number of your CPU cores. Our building Docker image runs a `Bash script <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh>`_ , which calls `make -j$(nproc)` to starts as many processes as the number of your CPU cores.
- Docker requires sudo - Docker requires sudo
...@@ -133,11 +135,11 @@ Frequently Asked Questions ...@@ -133,11 +135,11 @@ Frequently Asked Questions
- Docker on Windows/MacOS builds slowly - Docker on Windows/MacOS builds slowly
On Windows and MacOS, Docker containers run in a Linux VM. You might want to give this VM some more memory and CPUs so to make the building efficient. Please refer to [this issue](https://github.com/PaddlePaddle/Paddle/issues/627) for details. On Windows and MacOS, Docker containers run in a Linux VM. You might want to give this VM some more memory and CPUs so to make the building efficient. Please refer to `this issue <https://github.com/PaddlePaddle/Paddle/issues/627>`_ for details.
- Not enough disk space - Not enough disk space
Examples in this article use option `--rm` with the `docker run` command. This option ensures that stopped containers do not exist on hard disks. We can use `docker ps -a` to list all containers, including stopped. Sometimes `docker build` generates some intermediate dangling images, which also take disk space. To clean them, please refer to [this article](https://zaiste.net/posts/removing_docker_containers/). Examples in this article use option `--rm` with the `docker run` command. This option ensures that stopped containers do not exist on hard disks. We can use `docker ps -a` to list all containers, including stopped. Sometimes `docker build` generates some intermediate dangling images, which also take disk space. To clean them, please refer to `this article <https://zaiste.net/posts/removing_docker_containers/>`_ .
.. _compile_deps: .. _compile_deps:
......
...@@ -60,6 +60,7 @@ paddlepaddle-gpu==0.11.0 使用CUDA 7.5和cuDNN 5编译的0.11.0版 ...@@ -60,6 +60,7 @@ paddlepaddle-gpu==0.11.0 使用CUDA 7.5和cuDNN 5编译的0.11.0版
"cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`_" "cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__" "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__" "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda9.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
.. _pip_dependency: .. _pip_dependency:
......
...@@ -63,6 +63,7 @@ If the links below shows up the login form, just click "Log in as guest" to star ...@@ -63,6 +63,7 @@ If the links below shows up the login form, just click "Log in as guest" to star
"cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`__" "cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__" "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__" "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda9.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
.. _pip_dependency: .. _pip_dependency:
......
...@@ -14,3 +14,4 @@ ...@@ -14,3 +14,4 @@
# #
add_subdirectory(inference) add_subdirectory(inference)
add_subdirectory(tape)
...@@ -17,6 +17,9 @@ if(APPLE) ...@@ -17,6 +17,9 @@ if(APPLE)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=pessimizing-move") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=pessimizing-move")
endif(APPLE) endif(APPLE)
set(inference_deps paddle_inference_api paddle_fluid_api)
function(inference_api_test TARGET_NAME) function(inference_api_test TARGET_NAME)
if (WITH_TESTING) if (WITH_TESTING)
set(options "") set(options "")
...@@ -27,7 +30,7 @@ function(inference_api_test TARGET_NAME) ...@@ -27,7 +30,7 @@ function(inference_api_test TARGET_NAME)
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests) set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
cc_test(${TARGET_NAME} cc_test(${TARGET_NAME}
SRCS ${TARGET_NAME}.cc SRCS ${TARGET_NAME}.cc
DEPS paddle_fluid paddle_inference_api DEPS "${inference_deps}"
ARGS --dirname=${PYTHON_TESTS_DIR}/book/) ARGS --dirname=${PYTHON_TESTS_DIR}/book/)
if(inference_test_ARGS) if(inference_test_ARGS)
set_tests_properties(${TARGET_NAME} set_tests_properties(${TARGET_NAME}
...@@ -47,6 +50,19 @@ cc_test(test_paddle_inference_api ...@@ -47,6 +50,19 @@ cc_test(test_paddle_inference_api
inference_api_test(test_paddle_inference_api_impl inference_api_test(test_paddle_inference_api_impl
ARGS test_word2vec test_image_classification) ARGS test_word2vec test_image_classification)
if (WITH_ANAKIN AND WITH_TESTING) # only needed in CI
# Due to Anakin do not have official library releases and the versions of protobuf and cuda do not match Paddle's,
# so anakin library will not be merged to our official inference library. To use anakin prediction API, one need to
# compile the libinference_anakin_api.a and compile with anakin.so.
nv_library(inference_anakin_api SHARED SRCS paddle_inference_api.cc paddle_inference_api_anakin_engine.cc)
target_compile_options(inference_anakin_api BEFORE PUBLIC ${ANAKIN_COMPILE_EXTRA_FLAGS})
target_link_libraries(inference_anakin_api anakin anakin_saber_common)
cc_test(inference_anakin_test SRCS paddle_inference_api_anakin_engine_tester.cc
ARGS --model=${ANAKIN_INSTALL_DIR}/mobilenet_v2.anakin.bin
DEPS inference_anakin_api)
target_compile_options(inference_anakin_test BEFORE PUBLIC ${ANAKIN_COMPILE_EXTRA_FLAGS})
endif()
if(WITH_TESTING) if(WITH_TESTING)
add_subdirectory(demo) add_subdirectory(demo)
endif() endif()
...@@ -19,8 +19,8 @@ limitations under the License. */ ...@@ -19,8 +19,8 @@ limitations under the License. */
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <memory> #include <memory>
#include <thread>
#include "paddle/contrib/inference/paddle_inference_api.h" #include "paddle/contrib/inference/paddle_inference_api.h"
namespace paddle { namespace paddle {
namespace demo { namespace demo {
...@@ -54,18 +54,75 @@ void Main(bool use_gpu) { ...@@ -54,18 +54,75 @@ void Main(bool use_gpu) {
CHECK(predictor->Run(slots, &outputs)); CHECK(predictor->Run(slots, &outputs));
//# 4. Get output. //# 4. Get output.
ASSERT_EQ(outputs.size(), 1); ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "output buffer size: " << outputs.front().data.length; LOG(INFO) << "output buffer size: " << outputs.front().data.length;
const size_t num_elements = outputs.front().data.length / sizeof(float); const size_t num_elements = outputs.front().data.length / sizeof(float);
// The outputs' buffers are in CPU memory. // The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) { for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data)[i]; LOG(INFO) << static_cast<float*>(outputs.front().data.data)[i];
} }
// TODO(Superjomn): this is should be free automatically
free(outputs[0].data.data);
}
}
void MainThreads(int num_threads, bool use_gpu) {
// Multi-threads only support on CPU
// 0. Create PaddlePredictor with a config.
NativeConfig config;
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
config.use_gpu = use_gpu;
config.fraction_of_gpu_memory = 0.15;
config.device = 0;
auto main_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
std::vector<std::thread> threads;
for (int tid = 0; tid < num_threads; ++tid) {
threads.emplace_back([&, tid]() {
// 1. clone a predictor which shares the same parameters
auto predictor = main_predictor->Clone();
constexpr int num_batches = 3;
for (int batch_id = 0; batch_id < num_batches; ++batch_id) {
// 2. Dummy Input Data
int64_t data[4] = {1, 2, 3, 4};
PaddleBuf buf{.data = data, .length = sizeof(data)};
PaddleTensor tensor{.name = "",
.shape = std::vector<int>({4, 1}),
.data = buf,
.dtype = PaddleDType::INT64};
std::vector<PaddleTensor> inputs(4, tensor);
std::vector<PaddleTensor> outputs;
// 3. Run
CHECK(predictor->Run(inputs, &outputs));
// 4. Get output.
ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "TID: " << tid << ", "
<< "output buffer size: " << outputs.front().data.length;
const size_t num_elements = outputs.front().data.length / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data)[i];
}
free(outputs[0].data.data);
}
});
}
for (int i = 0; i < num_threads; ++i) {
threads[i].join();
} }
} }
TEST(demo, word2vec_cpu) { Main(false /*use_gpu*/); } TEST(demo, word2vec_cpu) { Main(false /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_cpu_1) { MainThreads(1, false /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_cpu_4) { MainThreads(4, false /*use_gpu*/); }
#ifdef PADDLE_WITH_CUDA
TEST(demo, word2vec_gpu) { Main(true /*use_gpu*/); } TEST(demo, word2vec_gpu) { Main(true /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_gpu_1) { MainThreads(1, true /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_gpu_4) { MainThreads(4, true /*use_gpu*/); }
#endif
} // namespace demo } // namespace demo
} // namespace paddle } // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
/* /*
* This file contains the definition of a simple Inference API for Paddle. * This file contains the definition of a simple Inference API for Paddle.
...@@ -47,8 +47,8 @@ struct PaddleTensor { ...@@ -47,8 +47,8 @@ struct PaddleTensor {
enum class PaddleEngineKind { enum class PaddleEngineKind {
kNative = 0, // Use the native Fluid facility. kNative = 0, // Use the native Fluid facility.
kAnakin, // Use Anakin for inference.
// TODO(Superjomn) support following engines latter. // TODO(Superjomn) support following engines latter.
// kAnakin, // Use Anakin for inference.
// kTensorRT, // Use TensorRT for inference. // kTensorRT, // Use TensorRT for inference.
// kAutoMixedAnakin, // Automatically mix Fluid with Anakin. // kAutoMixedAnakin, // Automatically mix Fluid with Anakin.
// kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT. // kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT.
...@@ -63,6 +63,7 @@ class PaddlePredictor { ...@@ -63,6 +63,7 @@ class PaddlePredictor {
struct Config; struct Config;
PaddlePredictor() = default; PaddlePredictor() = default;
PaddlePredictor(const PaddlePredictor&) = delete; PaddlePredictor(const PaddlePredictor&) = delete;
PaddlePredictor& operator=(const PaddlePredictor&) = delete;
// Predict an record. // Predict an record.
// The caller should be responsible for allocating and releasing the memory of // The caller should be responsible for allocating and releasing the memory of
...@@ -76,7 +77,7 @@ class PaddlePredictor { ...@@ -76,7 +77,7 @@ class PaddlePredictor {
virtual std::unique_ptr<PaddlePredictor> Clone() = 0; virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
// Destroy the Predictor. // Destroy the Predictor.
virtual ~PaddlePredictor() {} virtual ~PaddlePredictor() = default;
// The common configs for all the predictors. // The common configs for all the predictors.
struct Config { struct Config {
...@@ -95,6 +96,13 @@ struct NativeConfig : public PaddlePredictor::Config { ...@@ -95,6 +96,13 @@ struct NativeConfig : public PaddlePredictor::Config {
std::string param_file; std::string param_file;
}; };
// Configurations for Anakin engine.
struct AnakinConfig : public PaddlePredictor::Config {
int device;
std::string model_file;
int max_batch_size{-1};
};
// A factory to help create different predictors. // A factory to help create different predictors.
// //
// FOR EXTENSION DEVELOPER: // FOR EXTENSION DEVELOPER:
...@@ -105,5 +113,4 @@ struct NativeConfig : public PaddlePredictor::Config { ...@@ -105,5 +113,4 @@ struct NativeConfig : public PaddlePredictor::Config {
// Similarly, each engine kind should map to a unique predictor implementation. // Similarly, each engine kind should map to a unique predictor implementation.
template <typename ConfigT, PaddleEngineKind engine = PaddleEngineKind::kNative> template <typename ConfigT, PaddleEngineKind engine = PaddleEngineKind::kNative>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config); std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
} // namespace paddle } // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/contrib/inference/paddle_inference_api_anakin_engine.h"
#include <cuda.h>
namespace paddle {
PaddleInferenceAnakinPredictor::PaddleInferenceAnakinPredictor(
const AnakinConfig &config) {
CHECK(Init(config));
}
bool PaddleInferenceAnakinPredictor::Init(const AnakinConfig &config) {
if (!(graph_.load(config.model_file))) {
return false;
}
graph_.ResetBatchSize("input_0", config.max_batch_size);
// optimization for graph
if (!(graph_.Optimize())) {
return false;
}
// construct executer
executor_.init(graph_);
return true;
}
bool PaddleInferenceAnakinPredictor::Run(
const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data) {
for (const auto &input : inputs) {
if (input.dtype != PaddleDType::FLOAT32) {
LOG(ERROR) << "Only support float type inputs. " << input.name
<< "'s type is not float";
return false;
}
auto d_tensor_in_p = executor_.get_in(input.name);
float *d_data_p = d_tensor_in_p->mutable_data();
if (cudaMemcpy(d_data_p,
static_cast<float *>(input.data.data),
d_tensor_in_p->valid_size() * sizeof(float),
cudaMemcpyHostToDevice) != 0) {
LOG(ERROR) << "copy data from CPU to GPU error";
return false;
}
}
executor_.prediction();
if (output_data->empty()) {
LOG(ERROR) << "At least one output should be set with tensors' names.";
return false;
}
for (auto &output : *output_data) {
auto *tensor = executor_.get_out(output.name);
output.shape = tensor->shape();
// Copy data from GPU -> CPU
if (cudaMemcpy(output.data.data,
tensor->mutable_data(),
tensor->valid_size() * sizeof(float),
cudaMemcpyDeviceToHost) != 0) {
LOG(ERROR) << "copy data from GPU to CPU error";
return false;
}
}
return true;
}
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
&PaddleInferenceAnakinPredictor::get_executer() {
return executor_;
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
std::unique_ptr<PaddlePredictor> PaddleInferenceAnakinPredictor::Clone() {
VLOG(3) << "Anakin Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(new PaddleInferenceAnakinPredictor());
// construct executer from other graph
auto anakin_predictor_p =
dynamic_cast<PaddleInferenceAnakinPredictor *>(cls.get());
if (!anakin_predictor_p) {
LOG(ERROR) << "fail to call Init";
return nullptr;
}
anakin_predictor_p->get_executer().init(graph_);
return std::move(cls);
}
// A factory to help create difference predictor.
template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(
const AnakinConfig &config) {
VLOG(3) << "Anakin Predictor create.";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor(config));
return x;
};
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file contains the implementation of inference API with Anakin engine
* embeded, this API can only support Anakin models.
*/
#pragma once
#include "paddle/contrib/inference/paddle_inference_api.h"
// from anakin
#include "framework/core/net/net.h"
#include "saber/saber_types.h"
namespace paddle {
class PaddleInferenceAnakinPredictor : public PaddlePredictor {
public:
PaddleInferenceAnakinPredictor() {}
PaddleInferenceAnakinPredictor(const AnakinConfig& config);
// NOTE Unlike the native engine, the buffers of anakin engine's output_data
// should be allocated first.
bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data) override;
std::unique_ptr<PaddlePredictor> Clone() override;
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>&
get_executer();
~PaddleInferenceAnakinPredictor() override{};
private:
bool Init(const AnakinConfig& config);
anakin::graph::Graph<anakin::NV,
anakin::saber::AK_FLOAT,
anakin::Precision::FP32>
graph_;
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
executor_;
AnakinConfig config_;
};
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/contrib/inference/paddle_inference_api.h"
DEFINE_string(model, "", "Directory of the inference model.");
namespace paddle {
AnakinConfig GetConfig() {
AnakinConfig config;
config.model_file = FLAGS_model;
config.device = 0;
config.max_batch_size = 1;
return config;
}
TEST(inference, anakin) {
AnakinConfig config = GetConfig();
auto predictor =
CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(config);
float data[1 * 3 * 224 * 224] = {1.0f};
PaddleBuf buf{.data = data, .length = sizeof(data)};
PaddleTensor tensor{.name = "input_0",
.shape = std::vector<int>({1, 3, 224, 224}),
.data = buf,
.dtype = PaddleDType::FLOAT32};
// For simplicity, we set all the slots with the same data.
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
float data_out[1000];
PaddleBuf buf_out{.data = data_out, .length = sizeof(data)};
PaddleTensor tensor_out{.name = "prob_out",
.shape = std::vector<int>({1000, 1}),
.data = buf_out,
.dtype = PaddleDType::FLOAT32};
std::vector<PaddleTensor> outputs(1, tensor_out);
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
float* data_o = static_cast<float*>(outputs[0].data.data);
for (size_t j = 0; j < 1000; ++j) {
LOG(INFO) << "output[" << j << "]: " << data_o[j];
}
}
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <sys/time.h> #include <sys/time.h>
#include <algorithm> #include <algorithm>
...@@ -54,7 +54,8 @@ std::string num2str(T a) { ...@@ -54,7 +54,8 @@ std::string num2str(T a) {
} }
} // namespace } // namespace
bool NativePaddlePredictor::Init() { bool NativePaddlePredictor::Init(
std::shared_ptr<framework::Scope> parent_scope) {
VLOG(3) << "Predictor::init()"; VLOG(3) << "Predictor::init()";
if (config_.use_gpu) { if (config_.use_gpu) {
...@@ -62,9 +63,15 @@ bool NativePaddlePredictor::Init() { ...@@ -62,9 +63,15 @@ bool NativePaddlePredictor::Init() {
} else { } else {
place_ = paddle::platform::CPUPlace(); place_ = paddle::platform::CPUPlace();
} }
if (parent_scope) {
scope_ = parent_scope;
sub_scope_ = &(parent_scope->NewScope());
} else {
paddle::framework::InitDevices(false); paddle::framework::InitDevices(false);
executor_.reset(new paddle::framework::Executor(place_));
scope_.reset(new paddle::framework::Scope()); scope_.reset(new paddle::framework::Scope());
}
executor_.reset(new paddle::framework::Executor(place_));
// Initialize the inference program // Initialize the inference program
if (!config_.model_dir.empty()) { if (!config_.model_dir.empty()) {
...@@ -83,13 +90,8 @@ bool NativePaddlePredictor::Init() { ...@@ -83,13 +90,8 @@ bool NativePaddlePredictor::Init() {
return false; return false;
} }
ctx_ = executor_->Prepare(*inference_program_, 0); ctx_ = executor_->Prepare(*inference_program_, 0);
executor_->CreateVariables(
// Create temporary variables first, so that the first batch do not need to *inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0);
// create variables in the runtime. This is the logics of the old inference
// API.
// TODO(Superjomn) this should be modified when `Clone` is valid for
// multi-thread application.
executor_->CreateVariables(*inference_program_, scope_.get(), 0);
// Get the feed_target_names and fetch_target_names // Get the feed_target_names and fetch_target_names
feed_target_names_ = inference_program_->GetFeedTargetNames(); feed_target_names_ = inference_program_->GetFeedTargetNames();
...@@ -97,6 +99,13 @@ bool NativePaddlePredictor::Init() { ...@@ -97,6 +99,13 @@ bool NativePaddlePredictor::Init() {
return true; return true;
} }
NativePaddlePredictor::~NativePaddlePredictor() {
if (sub_scope_) {
PADDLE_ENFORCE_NOT_NULL(scope_, "Should have parent scope!");
scope_->DeleteScope(sub_scope_);
}
};
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs, bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data) { std::vector<PaddleTensor> *output_data) {
VLOG(3) << "Predictor::predict"; VLOG(3) << "Predictor::predict";
...@@ -121,8 +130,9 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs, ...@@ -121,8 +130,9 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
} }
// Run the inference program // Run the inference program
// if share variables, we need not create variables // if share variables, we need not create variables
executor_->RunPreparedContext(ctx_.get(), executor_->RunPreparedContext(
scope_.get(), ctx_.get(),
sub_scope_ != nullptr ? sub_scope_ : scope_.get(),
&feed_targets, &feed_targets,
&fetch_targets, &fetch_targets,
false /* don't create variable eatch time */); false /* don't create variable eatch time */);
...@@ -138,7 +148,7 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() { ...@@ -138,7 +148,7 @@ std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
VLOG(3) << "Predictor::clone"; VLOG(3) << "Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_)); std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));
if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init()) { if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
LOG(ERROR) << "fail to call Init"; LOG(ERROR) << "fail to call Init";
return nullptr; return nullptr;
} }
...@@ -266,7 +276,7 @@ CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>( ...@@ -266,7 +276,7 @@ CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
} }
std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config)); std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init()) { if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
return nullptr; return nullptr;
} }
return std::move(predictor); return std::move(predictor);
......
...@@ -34,14 +34,15 @@ class NativePaddlePredictor : public PaddlePredictor { ...@@ -34,14 +34,15 @@ class NativePaddlePredictor : public PaddlePredictor {
explicit NativePaddlePredictor(const NativeConfig &config) explicit NativePaddlePredictor(const NativeConfig &config)
: config_(config) {} : config_(config) {}
bool Init(); // will only create sub scope if have global scope
bool Init(std::shared_ptr<framework::Scope> parent_scope);
bool Run(const std::vector<PaddleTensor> &inputs, bool Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data) override; std::vector<PaddleTensor> *output_data) override;
std::unique_ptr<PaddlePredictor> Clone() override; std::unique_ptr<PaddlePredictor> Clone() override;
~NativePaddlePredictor() override{}; ~NativePaddlePredictor() override;
private: private:
bool SetFeed(const std::vector<PaddleTensor> &input_datas, bool SetFeed(const std::vector<PaddleTensor> &input_datas,
...@@ -52,11 +53,13 @@ class NativePaddlePredictor : public PaddlePredictor { ...@@ -52,11 +53,13 @@ class NativePaddlePredictor : public PaddlePredictor {
NativeConfig config_; NativeConfig config_;
platform::Place place_; platform::Place place_;
std::unique_ptr<framework::Executor> executor_; std::unique_ptr<framework::Executor> executor_;
std::unique_ptr<framework::Scope> scope_; std::shared_ptr<framework::Scope> scope_;
std::unique_ptr<framework::ExecutorPrepareContext> ctx_; std::unique_ptr<framework::ExecutorPrepareContext> ctx_;
std::unique_ptr<framework::ProgramDesc> inference_program_; std::unique_ptr<framework::ProgramDesc> inference_program_;
std::vector<std::string> feed_target_names_; std::vector<std::string> feed_target_names_;
std::vector<std::string> fetch_target_names_; std::vector<std::string> fetch_target_names_;
// Do not use unique_ptr, use parent scope to delete
framework::Scope *sub_scope_{nullptr};
}; };
} // namespace paddle } // namespace paddle
...@@ -15,6 +15,8 @@ limitations under the License. */ ...@@ -15,6 +15,8 @@ limitations under the License. */
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <thread>
#include "gflags/gflags.h" #include "gflags/gflags.h"
#include "paddle/contrib/inference/paddle_inference_api_impl.h" #include "paddle/contrib/inference/paddle_inference_api_impl.h"
#include "paddle/fluid/inference/tests/test_helper.h" #include "paddle/fluid/inference/tests/test_helper.h"
...@@ -45,14 +47,19 @@ NativeConfig GetConfig() { ...@@ -45,14 +47,19 @@ NativeConfig GetConfig() {
config.model_dir = FLAGS_dirname + "word2vec.inference.model"; config.model_dir = FLAGS_dirname + "word2vec.inference.model";
LOG(INFO) << "dirname " << config.model_dir; LOG(INFO) << "dirname " << config.model_dir;
config.fraction_of_gpu_memory = 0.15; config.fraction_of_gpu_memory = 0.15;
#ifdef PADDLE_WITH_CUDA
config.use_gpu = true; config.use_gpu = true;
#else
config.use_gpu = false;
#endif
config.device = 0; config.device = 0;
return config; return config;
} }
TEST(paddle_inference_api_impl, word2vec) { void MainWord2Vec(bool use_gpu) {
NativeConfig config = GetConfig(); NativeConfig config = GetConfig();
auto predictor = CreatePaddlePredictor<NativeConfig>(config); auto predictor = CreatePaddlePredictor<NativeConfig>(config);
config.use_gpu = use_gpu;
framework::LoDTensor first_word, second_word, third_word, fourth_word; framework::LoDTensor first_word, second_word, third_word, fourth_word;
framework::LoD lod{{0, 1}}; framework::LoD lod{{0, 1}};
...@@ -100,11 +107,11 @@ TEST(paddle_inference_api_impl, word2vec) { ...@@ -100,11 +107,11 @@ TEST(paddle_inference_api_impl, word2vec) {
free(outputs[0].data.data); free(outputs[0].data.data);
} }
TEST(paddle_inference_api_impl, image_classification) { void MainImageClassification(bool use_gpu) {
int batch_size = 2; int batch_size = 2;
bool use_mkldnn = false;
bool repeat = false; bool repeat = false;
NativeConfig config = GetConfig(); NativeConfig config = GetConfig();
config.use_gpu = use_gpu;
config.model_dir = config.model_dir =
FLAGS_dirname + "image_classification_resnet.inference.model"; FLAGS_dirname + "image_classification_resnet.inference.model";
...@@ -126,12 +133,8 @@ TEST(paddle_inference_api_impl, image_classification) { ...@@ -126,12 +133,8 @@ TEST(paddle_inference_api_impl, image_classification) {
std::vector<framework::LoDTensor*> cpu_fetchs1; std::vector<framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1); cpu_fetchs1.push_back(&output1);
TestInference<platform::CPUPlace, false, true>(config.model_dir, TestInference<platform::CPUPlace, false, true>(
cpu_feeds, config.model_dir, cpu_feeds, cpu_fetchs1, repeat, is_combined);
cpu_fetchs1,
repeat,
is_combined,
use_mkldnn);
auto predictor = CreatePaddlePredictor(config); auto predictor = CreatePaddlePredictor(config);
std::vector<PaddleTensor> paddle_tensor_feeds; std::vector<PaddleTensor> paddle_tensor_feeds;
...@@ -149,4 +152,143 @@ TEST(paddle_inference_api_impl, image_classification) { ...@@ -149,4 +152,143 @@ TEST(paddle_inference_api_impl, image_classification) {
free(data); free(data);
} }
void MainThreadsWord2Vec(bool use_gpu) {
NativeConfig config = GetConfig();
config.use_gpu = use_gpu;
auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);
// prepare inputs data and reference results
constexpr int num_jobs = 3;
std::vector<std::vector<framework::LoDTensor>> jobs(num_jobs);
std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
std::vector<framework::LoDTensor> refs(num_jobs);
for (size_t i = 0; i < jobs.size(); ++i) {
// each job has 4 words
jobs[i].resize(4);
for (size_t j = 0; j < 4; ++j) {
framework::LoD lod{{0, 1}};
int64_t dict_size = 2073; // The size of dictionary
SetupLoDTensor(&jobs[i][j], lod, static_cast<int64_t>(0), dict_size - 1);
paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i][j]));
}
// get reference result of each job
std::vector<paddle::framework::LoDTensor*> ref_feeds;
std::vector<paddle::framework::LoDTensor*> ref_fetches(1, &refs[i]);
for (auto& word : jobs[i]) {
ref_feeds.push_back(&word);
}
TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
}
// create threads and each thread run 1 job
std::vector<std::thread> threads;
for (int tid = 0; tid < num_jobs; ++tid) {
threads.emplace_back([&, tid]() {
auto predictor = main_predictor->Clone();
auto& local_inputs = paddle_tensor_feeds[tid];
std::vector<PaddleTensor> local_outputs;
ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));
// check outputs range
ASSERT_EQ(local_outputs.size(), 1UL);
const size_t len = local_outputs[0].data.length;
float* data = static_cast<float*>(local_outputs[0].data.data);
for (size_t j = 0; j < len / sizeof(float); ++j) {
ASSERT_LT(data[j], 1.0);
ASSERT_GT(data[j], -1.0);
}
// check outputs correctness
float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), static_cast<int64_t>(len / sizeof(float)));
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}
free(data);
});
}
for (int i = 0; i < num_jobs; ++i) {
threads[i].join();
}
}
void MainThreadsImageClassification(bool use_gpu) {
constexpr int num_jobs = 4; // each job run 1 batch
constexpr int batch_size = 1;
NativeConfig config = GetConfig();
config.use_gpu = use_gpu;
config.model_dir =
FLAGS_dirname + "image_classification_resnet.inference.model";
auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);
std::vector<framework::LoDTensor> jobs(num_jobs);
std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
std::vector<framework::LoDTensor> refs(num_jobs);
for (size_t i = 0; i < jobs.size(); ++i) {
// prepare inputs
std::vector<std::vector<int64_t>> feed_target_shapes =
GetFeedTargetShapes(config.model_dir, /*is_combined*/ false);
feed_target_shapes[0][0] = batch_size;
framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
SetupTensor<float>(&jobs[i], input_dims, 0.f, 1.f);
paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i]));
// get reference result of each job
std::vector<framework::LoDTensor*> ref_feeds(1, &jobs[i]);
std::vector<framework::LoDTensor*> ref_fetches(1, &refs[i]);
TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
}
// create threads and each thread run 1 job
std::vector<std::thread> threads;
for (int tid = 0; tid < num_jobs; ++tid) {
threads.emplace_back([&, tid]() {
auto predictor = main_predictor->Clone();
auto& local_inputs = paddle_tensor_feeds[tid];
std::vector<PaddleTensor> local_outputs;
ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));
// check outputs correctness
ASSERT_EQ(local_outputs.size(), 1UL);
const size_t len = local_outputs[0].data.length;
float* data = static_cast<float*>(local_outputs[0].data.data);
float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), len / sizeof(float));
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}
free(data);
});
}
for (int i = 0; i < num_jobs; ++i) {
threads[i].join();
}
}
TEST(inference_api_native, word2vec_cpu) { MainWord2Vec(false /*use_gpu*/); }
TEST(inference_api_native, word2vec_cpu_threads) {
MainThreadsWord2Vec(false /*use_gpu*/);
}
TEST(inference_api_native, image_classification_cpu) {
MainThreadsImageClassification(false /*use_gpu*/);
}
TEST(inference_api_native, image_classification_cpu_threads) {
MainThreadsImageClassification(false /*use_gpu*/);
}
#ifdef PADDLE_WITH_CUDA
TEST(inference_api_native, word2vec_gpu) { MainWord2Vec(true /*use_gpu*/); }
TEST(inference_api_native, word2vec_gpu_threads) {
MainThreadsWord2Vec(true /*use_gpu*/);
}
TEST(inference_api_native, image_classification_gpu) {
MainThreadsImageClassification(true /*use_gpu*/);
}
TEST(inference_api_native, image_classification_gpu_threads) {
MainThreadsImageClassification(true /*use_gpu*/);
}
#endif
} // namespace paddle } // namespace paddle
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
if(APPLE)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=pessimizing-move")
endif(APPLE)
cc_library(tape_variable SRCS variable.cc DEPS ${FLUID_CORE_MODULES} device_context framework_proto proto_desc operator)
cc_library(tape SRCS tape.cc DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB} tape_variable)
cc_test(test_tape
SRCS test_tape.cc
DEPS tape tape_variable)
# Dynamic Graph on Fluid
PaddlePaddle Fluid is targeting the autodiff without tape, which, however, is very
challenging and we are still way from there. DyNet and PyTorch provide a good design
idea, the *tape*, that significantly eases the challenge. Also, DyNet provides
a C++ API that is as convenient as Python but with higher efficiency and could
conveniently integrate with industrial/production systems. This package, `tape`,
combines the good of
1. tape from PyTorch and DyNet
2. C++ API and core from DyNet
3. rich set of operators from PaddlePaddle
## Overview
We can implement Dynet-like Tape(See this [survey](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/survey/dynamic_graph.md))
by wrapping Paddle Fluid's `Operator` and `Variable`.
The user API is straight forward since
1. it is imperative. And it uses host language's control flow logic.
1. it avoids extra concepts such as `Scope` and `Executor`.
All of these benefits come at the cost of just adding one line `reset_global_tape`
at every iteration.
## Code Structure
In short, the `Tape` contains a vector of `OpHandle`s. And an `OpHandle` contains its
`type`, the pointers to the `Variable`s, and necessary attributes.
```c++
class Variable {
public:
VriableHandle Grad(); // returns its gradient variable
private:
framework::VarDesc desc_; // compile time infershape, necessary for lazy execution
framework::Variable var_; // run time variable, holds data memory
};
using VariableHandle = shared_ptr<Variable>;
struct OpHandle {
string type_;
map<string, vector<VariableHandle>> inputs_;
map<string, vector<VariableHandle>> outputs_;
AttributeMap attrs_;
};
class Tape {
public:
void AddOp(OpHandle); // add op
void Forward(); // execute the tape_
void Backward(); // execute the backward of the tape_
private:
vector<OpHandle> tape_;
};
```
We uses `Function` to indicate layers. It takes care of parameter
initialization and `AddOp` to the Tape when it is called.
```c++
class Linear {
public:
Linear(int in_dim, int out_dim, const std::string &act)
: w_(new Variable("LinearWeight")),
b_(new Variable("LinearBias")),
act_(act) {
Tape init_tape;
std::string initializer = "fill_constant";
framework::AttributeMap attrs;
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{in_dim, out_dim};
attrs["value"] = 1.0f;
init_tape.AddOp(initializer, {}, {{"Out", {w_}}}, attrs);
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{out_dim};
attrs["value"] = 1.0f;
init_tape.AddOp(initializer, {}, {{"Out", {b_}}}, attrs);
init_tape.Forward();
}
VariableHandle operator()(VariableHandle input) {
VariableHandle pre_bias(new Variable("linear"));
get_global_tape().AddOp("mul",
{{"X", {input}}, {"Y", {w_}}},
{{"Out", {pre_bias}}},
{{"x_num_col_dims", 1}, {"y_num_col_dims", 1}});
VariableHandle pre_act(new Variable("linear"));
get_global_tape().AddOp("elementwise_add",
{{"X", {pre_bias}}, {"Y", {b_}}},
{{"Out", {pre_act}}},
{{"axis", 1}});
VariableHandle post_act(new Variable("linear"));
get_global_tape().AddOp(act_,
{{"X", {pre_act}}},
{{"Out", {post_act}}},
{});
return post_act;
}
std::vector<VariableHandle> Params() { return {w_, b_}; }
private:
VariableHandle w_;
VariableHandle b_;
std::string act_;
};
```
## User API
```c++
// Model function
paddle::tape::Linear linear1(3, 3, "relu"); // init weight and bias
paddle::tape::Linear linear2(3, 3, "relu"); // init weight and bias
paddle::tape::Mean mean;
// Optimizer
paddle::tape::SGD sgd(0.001);
// Data Feeder
paddle::tape::Fill data_feeder(...);
VariableHandle input(new paddle::tape::Variable("input"));
VariableHandle label(new paddle::tape::Variable("label"));
for (int i = 0; i < 2; ++i) {
reset_global_tape();
data_feeder(input, label);
auto loss = softmax(linear2(linear1(input)), label); // compile time InferShape & InferVarType
LOG(INFO) << loss.value(); // Run forward up to loss
// Run backward, store gradient of w at w->Grad()
get_global_tape.Backward(loss);
// Update w
sgd(linear1.Params());
sgd(linear2.Params());
}
```
<details>
<summary></summary>
digraph G {
subgraph cluster_0 {
node [shape=record,style=filled];
style=filled;
color=lightgrey;
linear1 [label="{type: mul | {input | {<before_mul1>X: before_mul1 |<weight1> Y: weight1}} | {output |<before_bias1> Out: before_bias1}}"];
elementwise_add1 [label="{type: elementwise_add | {input | {<before_bias1>X: before_bias1 |<bias1> Y: bias1}} | {output |<before_act1> Out: before_act1}}"];
relu1 [label="{type: relu | {input | {<before_act1>X: before_act1 }} | {output |<after_act1> Out: after_act1}}"];
linear1 -> elementwise_add1->relu1;
label = "forward tape";
}
linear1:before_mul1->before_mul1
linear1:weight1->weight1
linear1:before_bias1->before_bias1
elementwise_add1:bias1->bias1
elementwise_add1:before_bias1->before_bias1
elementwise_add1:before_act1->before_act1
relu1:before_act1->before_act1
relu1:after_act1->after_act1
subgraph cluster_1 {
node [shape=record,style=filled];
style=filled;
color=lightgrey;
linear1_grad [label="{type: mul_grad | {input | {<before_mul1>X: before_mul1 |<weight1> Y: weight1|<before_bias1_grad> Out_grad: before_bias1_grad}} | {output |{<before_mul1_grad>X_grad: before_mul1_grad |<weight1_grad> Y_grad: weight1_grad}}}"];
elementwise_add1_grad [label="{type: elementwise_add_grad | {input | <before_act1_grad> Out_grad: before_act1_grad} | {output |{<before_bias1_grad>X_grad: before_bias1_grad |<bias1_grad> Y_grad: bias1_grad}}}"];
relu1_grad [label="{type: relu_grad | {input |<after_act1_grad> Out_grad: after_act1_grad} | {ouput | {<before_act1_grad>X_grad: before_act1_grad }}}"];
linear1_grad -> elementwise_add1_grad ->relu1_grad [dir=back];
label = "backward tape";
}
relu1_grad:after_act1_grad->after_act1_grad
relu1_grad:before_act1_grad->before_act1_grad
elementwise_add1_grad:before_act1_grad->before_act1_grad
elementwise_add1_grad:before_bias1_grad->before_bias1_grad
elementwise_add1_grad:bias1_grad->bias1_grad
linear1_grad:before_mul1->before_mul1
linear1_grad:weight1->weight1
linear1_grad:before_bias1_grad->before_bias1_grad
linear1_grad:before_mul1_grad->before_mul1_grad
linear1_grad:weight1_grad->weight1_grad
subgraph cluster_2 {
node [shape=record];
label = "Linear1";
weight1
bias1
}
weight1 -> weight1_grad [ label="Grad()", style="dashed" ];
bias1 -> bias1_grad [ label="Grad()", style="dashed"];
}
</details>
![Image](https://github.com/tonyyang-svail/Paddle/blob/cpp_tap/paddle/contrib/tape/computation_graph.png)
## Code Reuse
We want to stay close to Paddle Fluid as much as possible.
### Reuse All Operators
As all Ops are registered at `OpInfoMap`, the effort of adding a new `Function`
is about 10 lines of code, similar to expose an operator to Python.
### Reuse Compile Time InferShape and InferVarType
Note that all the symbolic information is stored at `tape::Varaible::desc_`, instead
of `ProgramDesc.block.vars`, we create a temporary `BlockDesc` to do `InferShape` and
`InferVarType` every time we `AddOp` to the tape.
### Reuse Operator::Run
We use smart pointer, instead of `Scope`, to manage memory. So we create a temporary
`Scope` for every `Operator::Run()`.
## Possible Feature
### Release Memory on Backward
We can release memory aggressively. During backward, we can delete the OpHandle once
we have finished its backward. Since all the variable is managed by smart pointer, the
memory is automatically released when its `ref_count` goes to 0.
### Kernel Fusion
As a symbolic representation of the Tape is constructed first before the actual
execution, it would be possible to perform graph optimization. One use case is kernel
fusion.
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/contrib/tape/tape.h"
#include "paddle/contrib/tape/variable.h"
#include "paddle/fluid/framework/type_defs.h"
namespace paddle {
namespace tape {
class Function {};
class Fill {
public:
Fill(const std::string &initializer, const framework::AttributeMap &attrs)
: initializer_(initializer), attrs_(attrs) {}
void operator()(VariableHandle var) {
get_global_tape().AddOp(initializer_, {}, {{"Out", {var}}}, attrs_);
}
private:
const std::string initializer_;
const framework::AttributeMap attrs_;
};
class Mean {
public:
VariableHandle operator()(VariableHandle var) {
VariableHandle out(new Variable("mean"));
get_global_tape().AddOp("mean", {{"X", {var}}}, {{"Out", {out}}}, {});
return out;
}
};
class Linear {
public:
Linear(int in_dim, int out_dim, const std::string &act)
: w_(new Variable("LinearWeight")),
b_(new Variable("LinearBias")),
act_(act) {
Tape init_tape;
std::string initializer = "fill_constant";
framework::AttributeMap attrs;
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{in_dim, out_dim};
attrs["value"] = 1.0f;
init_tape.AddOp(initializer, {}, {{"Out", {w_}}}, attrs);
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{out_dim};
attrs["value"] = 1.0f;
init_tape.AddOp(initializer, {}, {{"Out", {b_}}}, attrs);
init_tape.Forward();
}
VariableHandle operator()(VariableHandle input) {
VariableHandle pre_bias(new Variable("linear"));
get_global_tape().AddOp("mul",
{{"X", {input}}, {"Y", {w_}}},
{{"Out", {pre_bias}}},
{{"x_num_col_dims", 1}, {"y_num_col_dims", 1}});
VariableHandle pre_act(new Variable("linear"));
get_global_tape().AddOp("elementwise_add",
{{"X", {pre_bias}}, {"Y", {b_}}},
{{"Out", {pre_act}}},
{{"axis", 1}});
VariableHandle post_act(new Variable("linear"));
get_global_tape().AddOp(
act_, {{"X", {pre_act}}}, {{"Out", {post_act}}}, {});
return post_act;
}
std::vector<VariableHandle> Params() { return {w_, b_}; }
private:
VariableHandle w_;
VariableHandle b_;
std::string act_;
};
class SGD {
public:
SGD(float learning_rate) : learning_rate_(new Variable("sgd")) {
Tape init_tape;
std::string initializer = "fill_constant";
framework::AttributeMap attrs;
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{1};
attrs["value"] = learning_rate;
init_tape.AddOp(initializer, {}, {{"Out", {learning_rate_}}}, attrs);
init_tape.Forward();
}
void operator()(VariableHandle input) {
PADDLE_ENFORCE(get_global_tape().HasBeenBackwarded(),
"optimization must happen after the backward");
Tape temp_tape;
temp_tape.AddOp("sgd",
{{"Param", {input}},
{"LearningRate", {learning_rate_}},
{"Grad", {input->Grad()}}},
{{"ParamOut", {input}}},
{});
temp_tape.Forward();
}
private:
VariableHandle learning_rate_;
};
}
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/contrib/tape/tape.h"
#include <list>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/dim.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace tape {
// borrowed from
// https://stackoverflow.com/questions/874134/find-if-string-ends-with-another-string-in-c
inline bool ends_with(std::string const &value, std::string const &ending) {
if (ending.size() > value.size()) return false;
return std::equal(ending.rbegin(), ending.rend(), value.rbegin());
}
std::ostream &operator<<(std::ostream &os, const framework::VarDesc &var_desc) {
os << var_desc.Name();
os << "[" << var_desc.GetType() << "]";
os << "[" << var_desc.GetDataType() << "]";
os << "{";
for (auto &i : var_desc.GetShape()) {
os << i << ",";
}
os << "}";
return os;
}
std::string to_string(const std::string &type,
const VariableHandleMap &in_vars,
const VariableHandleMap &out_vars,
const framework::AttributeMap &attrs) {
std::stringstream ss;
ss << type << " ";
for (auto &param_name : in_vars) {
for (auto &var : param_name.second) {
ss << param_name.first << ":(" << var->Desc() << ") ";
}
}
for (auto &param_name : out_vars) {
for (auto &var : param_name.second) {
ss << param_name.first << ":(" << var->Desc() << ") ";
}
}
return ss.str();
}
framework::OpDesc CreateOpDesc(const std::string &type,
const VariableHandleMap &in_vars,
const VariableHandleMap &out_vars,
const framework::AttributeMap &attrs) {
framework::VariableNameMap inputs;
for (auto &param_name : in_vars) {
for (auto &var : param_name.second) {
inputs[param_name.first].emplace_back(var->Name());
}
}
framework::VariableNameMap outputs;
for (auto &param_name : out_vars) {
for (auto &var : param_name.second) {
outputs[param_name.first].emplace_back(var->Name());
}
}
return framework::OpDesc(type, inputs, outputs, attrs);
}
void InferShapeAndVarType(const std::string &type,
const VariableHandleMap &in_vars,
VariableHandleMap *out_vars,
const framework::AttributeMap &attrs) {
framework::OpDesc op_desc = CreateOpDesc(type, in_vars, *out_vars, attrs);
// Create a temporary block for compile-time
framework::ProgramDesc program_desc;
framework::BlockDesc *block_desc = program_desc.MutableBlock(0);
PADDLE_ENFORCE(block_desc);
for (auto &param_name : in_vars) {
for (auto &var : param_name.second) {
*block_desc->Var(var->Name())->Proto() = *var->MutableDesc()->Proto();
}
}
for (auto &param_name : *out_vars) {
for (auto &var : param_name.second) {
*block_desc->Var(var->Name())->Proto() = *var->MutableDesc()->Proto();
}
}
LOG(INFO) << "- " << to_string(type, in_vars, *out_vars, attrs);
op_desc.InferShape(*block_desc);
op_desc.InferVarType(block_desc);
for (auto &param_name : *out_vars) {
for (auto &var : param_name.second) {
*var->MutableDesc()->Proto() = *block_desc->Var(var->Name())->Proto();
}
}
LOG(INFO) << "+ " << to_string(type, in_vars, *out_vars, attrs);
}
void Tape::AddOp(const std::string &type,
const VariableHandleMap &in_vars,
VariableHandleMap out_vars,
const framework::AttributeMap &attrs) {
InferShapeAndVarType(type, in_vars, &out_vars, attrs);
tape_.emplace_back(type, in_vars, out_vars, attrs);
}
// Temporary Scope for Operator::Run()
class ScopeWrapper : public framework::Scope {
public:
ScopeWrapper(const VariableHandleMap &in_vars,
const VariableHandleMap &out_vars) {
for (auto &v : in_vars) {
for (auto &vv : v.second) {
if (!vars_.count(vv->Name())) {
vars_[vv->Name()].reset(vv->Var());
}
}
}
for (auto &v : out_vars) {
for (auto &vv : v.second) {
if (!vars_.count(vv->Name())) {
vars_[vv->Name()].reset(vv->Var());
}
}
}
}
~ScopeWrapper() {
for (auto &pair : vars_) {
pair.second.release();
}
}
};
void Tape::Forward() {
LOG(INFO) << "Starting forward -------------------------";
PADDLE_ENFORCE(!has_been_backwarded_);
while (current_position_ < tape_.size()) {
OpHandle &op = tape_[current_position_];
// Create Output Tensor, this is only necessary for OpWithKernel
for (auto &param2var : op.outputs_) {
for (auto &var : param2var.second) {
var->InitializeVariable();
}
}
framework::OpDesc op_desc =
CreateOpDesc(op.type_, op.inputs_, op.outputs_, op.attrs_);
ScopeWrapper scope(op.inputs_, op.outputs_);
framework::OpRegistry::CreateOp(op_desc)->Run(scope, platform::CPUPlace());
current_position_++;
}
LOG(INFO) << "Finishing forward -------------------------";
}
void Tape::Backward(VariableHandle target) {
PADDLE_ENFORCE(!has_been_backwarded_);
Forward();
// TODO(tonyyang-svail): check output of last op is target
backward_tape_.reset(new Tape());
framework::AttributeMap attrs;
// FIXME(tonyyang-svail): Need to infer_data_type
attrs["dtype"] = framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{1};
attrs["value"] = 1.0f;
backward_tape_->AddOp(
"fill_constant", {}, {{"Out", {target->Grad()}}}, attrs);
for (auto it = tape_.rbegin(); it != tape_.rend(); ++it) {
framework::OpDesc op_desc =
CreateOpDesc(it->type_, it->inputs_, it->outputs_, it->attrs_);
std::unordered_map<std::string, std::string> grad_to_var;
std::vector<std::unique_ptr<framework::OpDesc>> grad_op_descs =
framework::OpInfoMap::Instance()
.Get(op_desc.Type())
.GradOpMaker()(op_desc, {}, &grad_to_var, {});
for (auto &op_desc : grad_op_descs) {
std::unordered_map<std::string, VariableHandle> name2var;
for (auto &param2vars : it->inputs_) {
for (auto &a : param2vars.second) {
name2var[a->Name()] = a;
}
}
for (auto &param2vars : it->outputs_) {
for (auto &a : param2vars.second) {
name2var[a->Name()] = a;
}
}
VariableHandleMap in_vars;
VariableHandleMap out_vars;
std::map<const framework::VariableNameMap *, VariableHandleMap *>
loop_over{{&op_desc->Inputs(), &in_vars},
{&op_desc->Outputs(), &out_vars}};
for (auto &each : loop_over) {
auto &vmp = *each.first;
auto &vhm = *each.second;
for (auto &p2a : vmp) {
for (auto &argu : p2a.second) {
if (name2var.count(argu)) {
vhm[p2a.first].push_back(name2var[argu]);
} else {
PADDLE_ENFORCE(ends_with(argu, framework::kGradVarSuffix),
argu.c_str());
std::string name = argu.substr(
0, argu.size() - std::strlen(framework::kGradVarSuffix));
PADDLE_ENFORCE(name2var.count(name), name.c_str());
vhm[p2a.first].push_back(name2var[name]->Grad());
}
}
}
}
backward_tape_->AddOp(
op_desc->Type(), in_vars, out_vars, op_desc->GetAttrMap());
}
// TODO(tonyyang-svail): how to fill empty grad?
// TODO(tonyyang-svail): Sum var grad is necessary
}
backward_tape_->Forward();
has_been_backwarded_ = true;
}
Tape &get_global_tape() {
static Tape T;
return T;
}
void reset_global_tape() { get_global_tape() = Tape(); }
}
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/contrib/tape/variable.h"
namespace paddle {
namespace tape {
using VariableHandleMap = std::map<std::string, std::vector<VariableHandle>>;
struct OpHandle {
OpHandle(const std::string &type,
const VariableHandleMap &in_vars,
const VariableHandleMap &out_vars,
const framework::AttributeMap &attrs)
: type_(type), inputs_(in_vars), outputs_(out_vars), attrs_(attrs) {}
std::string type_;
VariableHandleMap inputs_;
VariableHandleMap outputs_;
framework::AttributeMap attrs_;
};
class Tape {
public:
void AddOp(const std::string &type,
const VariableHandleMap &in_vars,
VariableHandleMap out_vars,
const framework::AttributeMap &attrs);
void Forward();
void Backward(VariableHandle target);
bool HasBeenBackwarded() { return has_been_backwarded_; }
private:
bool has_been_backwarded_ = false;
size_t current_position_ = 0;
std::vector<OpHandle> tape_;
std::shared_ptr<Tape> backward_tape_;
};
Tape &get_global_tape();
void reset_global_tape();
}
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gtest/gtest.h"
#include "paddle/contrib/tape/function.h"
using namespace paddle::tape;
TEST(Tape, TestMLP) {
LOG(INFO) << "TestMLP";
Linear linear1(3, 3, "relu");
Linear linear2(3, 3, "relu");
Mean mean;
SGD sgd(0.001);
std::string initializer = "fill_constant";
paddle::framework::AttributeMap attrs;
attrs["dtype"] = paddle::framework::proto::VarType::Type::VarType_Type_FP32;
attrs["shape"] = std::vector<int>{3, 3};
attrs["value"] = 1.0f;
Fill filler(initializer, attrs);
for (int i = 0; i < 2; ++i) {
reset_global_tape();
VariableHandle input(new Variable("input"));
filler(input);
auto loss = mean(linear2(linear1(input)));
get_global_tape().Backward(loss);
for (auto w : linear1.Params()) {
sgd(w);
}
for (auto w : linear2.Params()) {
sgd(w);
}
}
}
int main(int argc, char** argv) {
std::vector<paddle::platform::Place> places;
places.emplace_back(paddle::platform::CPUPlace());
paddle::platform::DeviceContextPool::Init(places);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/contrib/tape/variable.h"
namespace paddle {
namespace tape {
void Variable::InitializeVariable() {
LOG(INFO) << "Initialzing " << desc_.Name() << " as " << desc_.GetType();
framework::proto::VarType::Type var_type = desc_.GetType();
if (var_type == framework::proto::VarType::LOD_TENSOR) {
var_.GetMutable<framework::LoDTensor>();
} else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
var_.GetMutable<framework::SelectedRows>();
} else {
PADDLE_THROW("Variable type %d is not in [LOD_TENSOR, SELECTED_ROWS]",
var_type);
}
}
}
}
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/framework/operator.h" // framework::kGradVarSuffix
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/variable.h"
namespace paddle {
namespace tape {
class Variable;
using VariableHandle = std::shared_ptr<Variable>;
/*
* Combination of
* framework::VarDesc desc_;
* framework::Variable var_;
*/
class Variable {
public:
Variable(const std::string pre_fix)
: desc_(pre_fix + std::to_string(count())) {}
Variable(const std::string pre_fix, bool is_grad)
: desc_(pre_fix + (is_grad ? framework::kGradVarSuffix
: std::to_string(count()))) {}
~Variable() { LOG(INFO) << "Deleting " << Name(); }
// Instantiate LoDTensor/SelectedRow
void InitializeVariable();
VariableHandle Grad() {
if (grad_.expired()) {
VariableHandle new_grad(new Variable(desc_.Name(), true));
grad_ = new_grad;
return new_grad;
} else {
return VariableHandle(grad_);
}
}
// Stochastic Gradient Descent with Momentum
// VariableHandle Momentum ();
// void init(const std::string& initializer,
// const framework::AttributeMap& attrs);
// void value() {};
const framework::VarDesc& Desc() const { return desc_; }
framework::VarDesc* MutableDesc() { return &desc_; }
// TODO(tonyyang-svail): No need to expose name
std::string Name() const { return desc_.Name(); }
framework::Variable* Var() { return &var_; }
private:
int count() {
static int counter = 0;
return counter++;
}
framework::VarDesc desc_;
framework::Variable var_;
std::weak_ptr<Variable> grad_;
};
}
}
...@@ -83,11 +83,16 @@ cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor) ...@@ -83,11 +83,16 @@ cc_library(lod_rank_table SRCS lod_rank_table.cc DEPS lod_tensor)
cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glog) cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glog)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope if(WITH_DISTRIBUTE)
framework_proto glog lod_rank_table feed_fetch_method) cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method sendrecvop_grpc cares grpc++_unsecure grpc_unsecure gpr)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
set_source_files_properties(executor.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
else()
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method)
endif()
cc_library(parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor) cc_library(parallel_executor SRCS parallel_executor.cc DEPS ssa_graph_builder_factory threaded_ssa_graph_executor scope_buffered_ssa_graph_executor)
cc_library(prune SRCS prune.cc DEPS framework_proto) cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context) cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)
......
...@@ -169,17 +169,13 @@ void BlockDesc::Flush() { ...@@ -169,17 +169,13 @@ void BlockDesc::Flush() {
} }
if (need_update_) { if (need_update_) {
auto &op_field = *this->desc_->mutable_ops(); this->desc_->mutable_ops()->Clear();
this->ClearPBOps();
op_field.Reserve(static_cast<int>(ops_.size()));
for (auto &op_desc : ops_) { for (auto &op_desc : ops_) {
op_field.AddAllocated(op_desc->Proto()); this->desc_->mutable_ops()->Add()->CopyFrom(*op_desc->Proto());
} }
auto &var_field = *this->desc_->mutable_vars(); this->desc_->mutable_vars()->Clear();
this->ClearPBVars();
var_field.Reserve(static_cast<int>(vars_.size()));
for (auto &var_desc : vars_) { for (auto &var_desc : vars_) {
var_field.AddAllocated(var_desc.second->Proto()); this->desc_->mutable_vars()->Add()->CopyFrom(*var_desc.second->Proto());
} }
need_update_ = false; need_update_ = false;
} }
...@@ -217,22 +213,6 @@ BlockDesc::BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, ...@@ -217,22 +213,6 @@ BlockDesc::BlockDesc(const BlockDesc &other, proto::BlockDesc *desc,
} }
} }
void BlockDesc::ClearPBOps() {
auto ops = this->desc_->mutable_ops();
while (!ops->empty()) {
// we do not own the OpDesc, so release the ownership.
ops->ReleaseLast();
}
}
void BlockDesc::ClearPBVars() {
auto vars = this->desc_->mutable_vars();
while (!vars->empty()) {
// we do not own the VarDesc, so release the ownership.
vars->ReleaseLast();
}
}
void BlockDesc::SetForwardBlockID(int32_t forward_block_id) { void BlockDesc::SetForwardBlockID(int32_t forward_block_id) {
PADDLE_ENFORCE(!desc_->has_forward_block_idx(), PADDLE_ENFORCE(!desc_->has_forward_block_idx(),
"Parent block ID has been set to %d. Cannot set to %d", "Parent block ID has been set to %d. Cannot set to %d",
......
...@@ -41,11 +41,6 @@ class BlockDesc { ...@@ -41,11 +41,6 @@ class BlockDesc {
BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, ProgramDesc *prog); BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, ProgramDesc *prog);
~BlockDesc() {
this->ClearPBVars();
this->ClearPBOps();
}
int32_t ID() const { return desc_->idx(); } int32_t ID() const { return desc_->idx(); }
int32_t Parent() const { return desc_->parent_idx(); } int32_t Parent() const { return desc_->parent_idx(); }
...@@ -113,10 +108,6 @@ class BlockDesc { ...@@ -113,10 +108,6 @@ class BlockDesc {
ProgramDesc *Program() const { return this->prog_; } ProgramDesc *Program() const { return this->prog_; }
private:
void ClearPBOps();
void ClearPBVars();
private: private:
ProgramDesc *prog_; // not_own ProgramDesc *prog_; // not_own
proto::BlockDesc *desc_; // not_own proto::BlockDesc *desc_; // not_own
......
...@@ -27,6 +27,7 @@ enum class DataLayout { ...@@ -27,6 +27,7 @@ enum class DataLayout {
kNHWC = 0, kNHWC = 0,
kNCHW = 1, kNCHW = 1,
kAnyLayout = 2, kAnyLayout = 2,
kMKLDNN = 3, // all layouts supported by MKLDNN internally
}; };
inline DataLayout StringToDataLayout(const std::string& str) { inline DataLayout StringToDataLayout(const std::string& str) {
...@@ -41,6 +42,8 @@ inline DataLayout StringToDataLayout(const std::string& str) { ...@@ -41,6 +42,8 @@ inline DataLayout StringToDataLayout(const std::string& str) {
return DataLayout::kNCHW; return DataLayout::kNCHW;
} else if (s == "ANYLAYOUT") { } else if (s == "ANYLAYOUT") {
return DataLayout::kAnyLayout; return DataLayout::kAnyLayout;
} else if (s == "MKLDNNLAYOUT") {
return DataLayout::kMKLDNN;
} else { } else {
PADDLE_THROW("Unknown storage order string: %s", s); PADDLE_THROW("Unknown storage order string: %s", s);
} }
...@@ -54,8 +57,10 @@ inline std::string DataLayoutToString(const DataLayout& data_layout) { ...@@ -54,8 +57,10 @@ inline std::string DataLayoutToString(const DataLayout& data_layout) {
return "NCHW"; return "NCHW";
case DataLayout::kAnyLayout: case DataLayout::kAnyLayout:
return "ANY_LAYOUT"; return "ANY_LAYOUT";
case DataLayout::kMKLDNN:
return "MKLDNNLAYOUT";
default: default:
PADDLE_THROW("unknown DataLayou %d", data_layout); PADDLE_THROW("unknown DataLayout %d", data_layout);
} }
} }
......
...@@ -16,6 +16,9 @@ ...@@ -16,6 +16,9 @@
#include <vector> #include <vector>
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -88,5 +91,85 @@ void TransDataLayout(const OpKernelType& kernel_type_for_var, ...@@ -88,5 +91,85 @@ void TransDataLayout(const OpKernelType& kernel_type_for_var,
out->set_layout(expected_kernel_type.data_layout_); out->set_layout(expected_kernel_type.data_layout_);
} }
#ifdef PADDLE_WITH_MKLDNN
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
void* GetDataFromTensor(const Tensor& tensor, mkldnn::memory::data_type type) {
switch (type) {
case mkldnn::memory::data_type::f32:
return platform::to_void_cast(tensor.data<float>());
case mkldnn::memory::data_type::s8:
return platform::to_void_cast(tensor.data<char>());
case mkldnn::memory::data_type::u8:
return platform::to_void_cast(tensor.data<unsigned char>());
case mkldnn::memory::data_type::s16:
return platform::to_void_cast(tensor.data<int16_t>());
case mkldnn::memory::data_type::s32:
return platform::to_void_cast(tensor.data<int32_t>());
default:
PADDLE_THROW("wrong mkldnn type provided");
}
}
#endif
void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
const OpKernelType& expected_kernel_type,
const Tensor& in, Tensor* out) {
auto in_layout = kernel_type_for_var.data_layout_;
auto out_layout = expected_kernel_type.data_layout_;
PADDLE_ENFORCE(
in_layout == DataLayout::kMKLDNN && out_layout != DataLayout::kMKLDNN,
"TransDataLayoutFromMKLDNN only supports transform from MKLDNN to "
"non-MKLDNN");
#ifdef PADDLE_WITH_MKLDNN
PADDLE_ENFORCE(in.format() != memory::format::format_undef &&
in.format() != memory::format::any,
"Input tensor should have specified memory format");
// Set default as NCHW in case not specified
out_layout =
out_layout == DataLayout::kAnyLayout ? DataLayout::kNCHW : out_layout;
auto& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = dynamic_cast<platform::MKLDNNDeviceContext*>(
pool.Get(expected_kernel_type.place_));
auto& cpu_engine = dev_ctx->GetEngine();
std::vector<int> in_tz = paddle::framework::vectorize2int(in.dims());
std::vector<int> out_tz = in_tz;
memory::data_type in_type = ToMKLDNNDataType(in.type());
PADDLE_ENFORCE(in_type != memory::data_type::data_undef,
"Input tensor type is not supported: ", in.type().name());
memory::data_type out_type = in_type;
memory::format in_format =
in_tz.size() == 2 ? memory::format::nc : in.format();
memory::format out_format =
out_tz.size() == 2 ? memory::format::nc : ToMKLDNNFormat(out_layout);
void* in_data = GetDataFromTensor(in, in_type);
// output tensor has the same dims as input. Reorder don't change dims
out->Resize(in.dims());
auto out_data = out->mutable_data(expected_kernel_type.place_, in.type());
auto in_memory = memory({{{in_tz}, in_type, in_format}, cpu_engine}, in_data);
auto out_memory =
memory({{{out_tz}, out_type, out_format}, cpu_engine}, out_data);
platform::Reorder(in_memory, out_memory);
out->set_layout(out_layout);
// reset format since the out tensor will be feed to non-MKLDNN OPkernel
out->set_format(memory::format::format_undef);
#endif
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#pragma once #pragma once
#include <map>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_kernel_type.h" #include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
...@@ -22,6 +23,50 @@ ...@@ -22,6 +23,50 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
#ifdef PADDLE_WITH_MKLDNN
using MKLDNNFormat = mkldnn::memory::format;
using MKLDNNDataType = mkldnn::memory::data_type;
inline MKLDNNFormat ToMKLDNNFormat(const DataLayout& layout) {
switch (layout) {
case DataLayout::kNHWC:
return MKLDNNFormat::nhwc;
case DataLayout::kNCHW:
return MKLDNNFormat::nchw;
default:
PADDLE_THROW("Fail to convert layout %s to MKLDNN format",
DataLayoutToString(layout));
}
}
inline DataLayout ToPaddleLayout(const MKLDNNFormat& format) {
switch (format) {
case MKLDNNFormat::nhwc:
return DataLayout::kNHWC;
case MKLDNNFormat::nchw:
return DataLayout::kNCHW;
default:
PADDLE_THROW("Fail to convert MKLDNN format to paddle layout");
}
}
inline MKLDNNDataType ToMKLDNNDataType(const std::type_index type) {
static const std::map<std::type_index, MKLDNNDataType> dict{
{std::type_index(typeid(float)), MKLDNNDataType::f32}, // NOLINT
{std::type_index(typeid(char)), MKLDNNDataType::s8}, // NOLINT
{std::type_index(typeid(unsigned char)), MKLDNNDataType::u8},
{std::type_index(typeid(int16_t)), MKLDNNDataType::s16},
{std::type_index(typeid(int32_t)), MKLDNNDataType::s32}};
auto iter = dict.find(type);
if (iter != dict.end()) return iter->second;
return MKLDNNDataType::data_undef;
}
#endif
void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
const OpKernelType& expected_kernel_type,
const Tensor& in, Tensor* out);
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to); std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to);
void TransDataLayout(const OpKernelType& kernel_type_for_var, void TransDataLayout(const OpKernelType& kernel_type_for_var,
......
...@@ -33,11 +33,34 @@ void DataTransform(const OpKernelType& expected_kernel_type, ...@@ -33,11 +33,34 @@ void DataTransform(const OpKernelType& expected_kernel_type,
Tensor in; Tensor in;
in.ShareDataWith(input_tensor); in.ShareDataWith(input_tensor);
Tensor out; Tensor out;
DataLayout lin = kernel_type_for_var.data_layout_;
DataLayout lout = expected_kernel_type.data_layout_;
// do layout transform // do layout transform
if (NeedTransformLayout(expected_kernel_type.data_layout_, if (NeedTransformLayout(lout, lin)) {
kernel_type_for_var.data_layout_)) { if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
PADDLE_ENFORCE(
!(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN),
"No layout transform needed between two MKLDNN OPKernels");
if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
#ifdef PADDLE_WITH_MKLDNN
// Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
// Just set layout/format. No real transform occur
out.ShareDataWith(input_tensor);
out.set_layout(DataLayout::kMKLDNN);
out.set_format(ToMKLDNNFormat(lin));
#endif
} else {
// Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
// Do transform via MKLDNN lib
TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
&out);
}
} else {
// Case3 - transfrom between Non-MKLDNN OPKernels
TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out); TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
}
transformed = true; transformed = true;
PassTensorData(&out, &in); PassTensorData(&out, &in);
} }
......
...@@ -28,6 +28,9 @@ struct DataTypeMap { ...@@ -28,6 +28,9 @@ struct DataTypeMap {
}; };
static DataTypeMap* InitDataTypeMap(); static DataTypeMap* InitDataTypeMap();
// C++11 removes the need for manual locking. Concurrent execution shall wait if
// a static local variable is already being initialized.
// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex
static DataTypeMap& gDataTypeMap() { static DataTypeMap& gDataTypeMap() {
static DataTypeMap* g_data_type_map_ = InitDataTypeMap(); static DataTypeMap* g_data_type_map_ = InitDataTypeMap();
return *g_data_type_map_; return *g_data_type_map_;
......
...@@ -7,26 +7,32 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place ...@@ -7,26 +7,32 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place
cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base) cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph) cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph)
cc_library(ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_builder)
cc_library(ssa_graph_checker SRCS ssa_graph_checker.cc DEPS ssa_graph_builder)
cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows) cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows)
if(WITH_GPU) if(WITH_GPU)
nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory nv_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda) dynload_cuda variable_visitor)
set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle)
nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda) nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda)
nv_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor dynload_cuda) nv_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor dynload_cuda)
else() else()
set(multi_devices_graph_builder_deps) cc_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
variable_visitor)
cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim) cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim)
cc_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor) cc_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor)
endif() endif()
cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor) cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor)
cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope)
cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle rpc_op_handle ${multi_devices_graph_builder_deps} reduce_op_handle broadcast_op_handle) scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle)
cc_library(ssa_graph_builder_factory SRCS ssa_graph_builder_factory.cc DEPS multi_devices_graph_builder ssa_graph_printer ssa_graph_checker)
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto) cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto)
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
...@@ -36,5 +42,6 @@ cc_test(broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_ha ...@@ -36,5 +42,6 @@ cc_test(broadcast_op_test SRCS broadcast_op_handle_test.cc DEPS var_handle op_ha
device_context broadcast_op_handle) device_context broadcast_op_handle)
cc_test(gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory cc_test(gather_op_test SRCS gather_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
device_context gather_op_handle) device_context gather_op_handle)
cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_executor.cc DEPS ssa_graph_executor)
#cc_test(reduce_op_handle_test SRCS reduce_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory #cc_test(reduce_op_handle_test SRCS reduce_op_handle_test.cc DEPS var_handle op_handle_base scope ddim memory
# device_context reduce_op_handle ) # device_context reduce_op_handle )
...@@ -11,46 +11,65 @@ ...@@ -11,46 +11,65 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#include <algorithm> #include <algorithm>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h" #include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
NCCLAllReduceOpHandle::NCCLAllReduceOpHandle(
const std::vector<Scope *> &local_scopes, #ifdef PADDLE_WITH_CUDA
AllReduceOpHandle::AllReduceOpHandle(const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const platform::NCCLContextMap &ctxs) const platform::NCCLContextMap *ctxs)
: local_scopes_(local_scopes), places_(places), nccl_ctxs_(ctxs) { : local_scopes_(local_scopes), places_(places), nccl_ctxs_(ctxs) {
if (nccl_ctxs_) {
for (auto &p : places_) { for (auto &p : places_) {
this->dev_ctxes_[p] = nccl_ctxs_.DevCtx(p); this->dev_ctxes_[p] = nccl_ctxs_->DevCtx(p);
}
} }
} }
#else
AllReduceOpHandle::AllReduceOpHandle(const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places)
: local_scopes_(local_scopes), places_(places) {}
#endif
void NCCLAllReduceOpHandle::RunImpl() { void AllReduceOpHandle::RunImpl() {
if (inputs_.size() == 1) { if (NoDummyInputSize() == 1) {
return; // No need to all reduce when GPU count = 1; return; // No need to all reduce when GPU count = 1;
} else { } else {
// Wait input done // Wait input done
WaitInputVarGenerated(); WaitInputVarGenerated();
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_; auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
int dtype = -1; PADDLE_ENFORCE_EQ(
size_t numel = 0; in_var_handles.size(), places_.size(),
"The NoDummyInputSize should be equal to the number of places.");
PADDLE_ENFORCE_EQ(
in_var_handles.size(), out_var_handles.size(),
"The NoDummyInputSize and NoDummyOutputSize should be equal.");
std::vector<const LoDTensor *> lod_tensors; std::vector<const LoDTensor *> lod_tensors;
for (size_t i = 0; i < local_scopes_.size(); ++i) { for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto *s = local_scopes_[i]; auto *s = local_scopes_[i];
auto &local_scope = *s->FindVar(kLocalExecScopeName)->Get<Scope *>(); auto &local_scope = *s->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto &lod_tensor =
auto &lod_tensor = local_scope.FindVar(var_name)->Get<LoDTensor>(); local_scope.FindVar(in_var_handles[i]->name_)->Get<LoDTensor>();
lod_tensors.emplace_back(&lod_tensor); lod_tensors.emplace_back(&lod_tensor);
PADDLE_ENFORCE_EQ(in_var_handles[i]->name_, out_var_handles[i]->name_,
"The name of input and output should be equal.");
} }
if (platform::is_gpu_place(lod_tensors[0]->place())) { if (platform::is_gpu_place(lod_tensors[0]->place())) {
#ifdef PADDLE_WITH_CUDA
PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
int dtype = -1;
size_t numel = 0;
std::vector<std::function<void()>> all_reduce_calls; std::vector<std::function<void()>> all_reduce_calls;
for (size_t i = 0; i < local_scopes_.size(); ++i) { for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto &p = places_[i]; auto &p = places_[i];
...@@ -66,7 +85,7 @@ void NCCLAllReduceOpHandle::RunImpl() { ...@@ -66,7 +85,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
} }
int dev_id = boost::get<platform::CUDAPlace>(p).device; int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &nccl_ctx = nccl_ctxs_.at(dev_id); auto &nccl_ctx = nccl_ctxs_->at(dev_id);
auto stream = nccl_ctx.stream(); auto stream = nccl_ctx.stream();
auto comm = nccl_ctx.comm_; auto comm = nccl_ctx.comm_;
all_reduce_calls.emplace_back([=] { all_reduce_calls.emplace_back([=] {
...@@ -81,22 +100,25 @@ void NCCLAllReduceOpHandle::RunImpl() { ...@@ -81,22 +100,25 @@ void NCCLAllReduceOpHandle::RunImpl() {
call(); call();
} }
}); });
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
} else { // Special handle CPU only Operator's gradient. Like CRF } else { // Special handle CPU only Operator's gradient. Like CRF
auto &trg = *this->local_scopes_[0] auto &trg = *this->local_scopes_[0]
->FindVar(kLocalExecScopeName) ->FindVar(kLocalExecScopeName)
->Get<Scope *>() ->Get<Scope *>()
->Var() ->FindVar(out_var_handles[0]->name_)
->GetMutable<framework::LoDTensor>(); ->GetMutable<framework::LoDTensor>();
// Reduce All Tensor to trg in CPU // Reduce All Tensor to trg in CPU
ReduceLoDTensor func(lod_tensors, &trg); ReduceLoDTensor func(lod_tensors, &trg);
VisitDataType(ToDataType(lod_tensors[0]->type()), func); VisitDataType(ToDataType(lod_tensors[0]->type()), func);
for (size_t i = 0; i < local_scopes_.size(); ++i) { for (size_t i = 1; i < local_scopes_.size(); ++i) {
auto &scope = auto &scope =
*local_scopes_[i]->FindVar(kLocalExecScopeName)->Get<Scope *>(); *local_scopes_[i]->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto &p = places_[i]; auto &p = places_[i];
auto *var = scope.FindVar(var_name); auto *var = scope.FindVar(out_var_handles[i]->name_);
auto *dev_ctx = dev_ctxes_[p]; auto *dev_ctx = dev_ctxes_[p];
RunAndRecordEvent(p, [&trg, var, dev_ctx, p] { RunAndRecordEvent(p, [&trg, var, dev_ctx, p] {
...@@ -109,7 +131,7 @@ void NCCLAllReduceOpHandle::RunImpl() { ...@@ -109,7 +131,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
} }
} }
std::string NCCLAllReduceOpHandle::Name() const { return "nccl_all_reduce"; } std::string AllReduceOpHandle::Name() const { return "all_reduce"; }
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -59,8 +59,8 @@ struct BroadcastOpHandle : public OpHandleBase { ...@@ -59,8 +59,8 @@ struct BroadcastOpHandle : public OpHandleBase {
void RunImpl() override; void RunImpl() override;
private: private:
const std::vector<Scope *> &local_scopes_; std::vector<Scope *> local_scopes_;
const std::vector<platform::Place> &places_; std::vector<platform::Place> places_;
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
const platform::NCCLContextMap *nccl_ctxs_; const platform::NCCLContextMap *nccl_ctxs_;
#endif #endif
......
...@@ -20,8 +20,9 @@ namespace details { ...@@ -20,8 +20,9 @@ namespace details {
struct ExecutionStrategy { struct ExecutionStrategy {
size_t num_threads_{0}; size_t num_threads_{0};
bool use_event_{true}; bool use_cuda_{true};
bool allow_op_delay_{false}; bool allow_op_delay_{false};
size_t num_iteration_per_drop_scope_{100};
}; };
} // namespace details } // namespace details
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册