From c3c8579441e88cb67210ccae4be081c17be542da Mon Sep 17 00:00:00 2001 From: co63oc Date: Thu, 18 May 2023 16:14:38 +0800 Subject: [PATCH] Add einsum tests (#53722) --- .../fluid/tests/unittests/test_einsum_op.py | 64 +++++++++++++++++-- 1 file changed, 60 insertions(+), 4 deletions(-) diff --git a/python/paddle/fluid/tests/unittests/test_einsum_op.py b/python/paddle/fluid/tests/unittests/test_einsum_op.py index 2d6f7efca2a..b69bdcf0751 100644 --- a/python/paddle/fluid/tests/unittests/test_einsum_op.py +++ b/python/paddle/fluid/tests/unittests/test_einsum_op.py @@ -15,15 +15,18 @@ import unittest import numpy as np -from eager_op_test import OpTest +from eager_op_test import OpTest, convert_float_to_uint16 import paddle +from paddle.fluid import core def einsum_wrapper(a, b): if not isinstance(a, list): a = [a] - return paddle._C_ops.einsum(a, b) + ret = paddle._C_ops.einsum(a, b) + # ret include list: [Tensor(Not initialized)], skip the list + return ret[0] class TestEinsumBinary(OpTest): @@ -33,10 +36,14 @@ class TestEinsumBinary(OpTest): self.python_api = einsum_wrapper self.python_out_sig = ['Out'] self.disable = False + self.init_dtype() self.set_mandatory() self.init_input() np.random.seed(123) out = np.einsum(self.equation, *self.inputs) + # bfloat16 change inputs + if self.dtype == np.uint16: + self.inputs = self.bf16_inputs self.operands = [] for idx, inp in enumerate(self.inputs): self.operands.append(("x" + str(idx), inp)) @@ -53,16 +60,28 @@ class TestEinsumBinary(OpTest): for i in range(len(self.operands)) ], } + if self.dtype == np.uint16: + self.place = core.CUDAPlace(0) + self.outputs["Out"] = convert_float_to_uint16(self.outputs["Out"]) + + def init_dtype(self): + self.dtype = np.float64 def init_input(self): self.inputs = [] + self.bf16_inputs = [] for t, s in zip(self.types, self.shapes): - self.inputs.append(np.random.random(s).astype(t)) + input_data = np.random.random(s).astype(t) + self.inputs.append(input_data) + if self.dtype == np.uint16: + self.bf16_inputs.append(convert_float_to_uint16(input_data)) def set_mandatory(self): self.shapes = [(10, 10, 20), (20, 6)] - self.types = [np.float64, np.float64] + self.types = [self.dtype, self.dtype] self.equation = "mij,jk->ki" + if self.dtype == np.uint16: + self.types = [self.np_dtype, self.np_dtype] def test_check_output(self): if not self.disable: @@ -213,5 +232,42 @@ class TestEinsumWithDiagonal8(TestEinsumBinary): self.equation = "ijki,jkjk->" +class TestEinsumFP16Op(TestEinsumBinary): + def init_dtype(self): + self.dtype = np.float16 + + +@unittest.skipIf( + not core.is_compiled_with_cuda() + or not core.is_bfloat16_supported(core.CUDAPlace(0)), + "core is not compiled with CUDA or not support bfloat16", +) +class TestEinsumBF16Op(TestEinsumBinary): + def init_dtype(self): + self.dtype = np.uint16 + self.np_dtype = np.float32 + + # If it is a complex calculation, the difference value is large + def set_mandatory(self): + self.shapes = [(10, 3, 10)] + self.types = [self.np_dtype] + self.equation = "iji->j" + + def test_check_output(self): + if not self.disable: + self.check_output_with_place( + self.place, no_check_set=["InnerCache", "XShape"] + ) + + def test_grad(self): + if not self.disable: + self.check_grad_with_place( + self.place, + [op[0] for op in self.operands], + ["Out"], + numeric_grad_delta=0.05, + ) + + if __name__ == "__main__": unittest.main() -- GitLab