diff --git a/paddle/fluid/framework/mixed_vector.h b/paddle/fluid/framework/mixed_vector.h index 21118c4fc9ccf99072dbda7dd1c4702232411ca4..6940250c3f9663bbb734d5a6eb78135aecbc3a3b 100644 --- a/paddle/fluid/framework/mixed_vector.h +++ b/paddle/fluid/framework/mixed_vector.h @@ -488,12 +488,6 @@ class CPUVector : public std::vector> { return os; } - size_t size() const noexcept { - size_t size = - static_cast(std::vector>::size()); - return size; - } - T &operator[](size_t id) { return this->at(id); } const T &operator[](size_t id) const { return this->at(id); } diff --git a/paddle/fluid/framework/selected_rows.cc b/paddle/fluid/framework/selected_rows.cc index 7262f8cc052ab55ba382f840f16c84018f8ef70e..f4f2b769d5e47d8fba8d08476df4cd8e54133551 100644 --- a/paddle/fluid/framework/selected_rows.cc +++ b/paddle/fluid/framework/selected_rows.cc @@ -140,6 +140,58 @@ bool SelectedRows::HasKey(int64_t key) const { : true; } +int64_t SelectedRows::AutoGrownIndex(int64_t key, bool auto_grown, + bool is_test) { + if (is_test) { + auto iter = id_to_index_.find(key); + if (iter == id_to_index_.end()) { + return -1; + } else { + return iter->second; + } + } + + rwlock_->RDLock(); + auto iter = id_to_index_.find(key); + if (iter == id_to_index_.end()) { + rwlock_->UNLock(); + if (!auto_grown) { + PADDLE_THROW("key %d not found", key); + } + rwlock_->WRLock(); + auto map_size = id_to_index_.size(); + auto vector_size = rows_.size(); + if (map_size != vector_size) { + rwlock_->UNLock(); + PADDLE_THROW( + "id_to_index_ size %d should have the same size with rows_ %d", + map_size, vector_size); + } + auto write_iter = id_to_index_.find(key); + if (write_iter == id_to_index_.end()) { + int row_num = rows_.size(); + if (row_num == value_->dims()[0]) { + rwlock_->UNLock(); + PADDLE_THROW("selected rows is full, then length exceed %d", row_num); + } + // key logic to put a key into id_to_index_ + rows_.push_back(key); + auto index = static_cast(rows_.size() - 1); + id_to_index_[key] = index; + rwlock_->UNLock(); + return index; + } else { + auto index = write_iter->second; + rwlock_->UNLock(); + return index; + } + } else { + auto index = iter->second; + rwlock_->UNLock(); + return index; + } +} + void SelectedRows::SyncIndex() { rwlock_->WRLock(); id_to_index_.clear(); diff --git a/paddle/fluid/framework/selected_rows.h b/paddle/fluid/framework/selected_rows.h index bc5726382f81c3a3058a5ac4120f741e788704ac..44384082dbaf7a8d654e8461da87009bde33a3d5 100644 --- a/paddle/fluid/framework/selected_rows.h +++ b/paddle/fluid/framework/selected_rows.h @@ -118,54 +118,17 @@ class SelectedRows { * * @return index of the key. */ - inline int64_t AutoGrownIndex(int64_t key, bool auto_grown, - bool is_test = false) { - if (is_test) { - auto iter = id_to_index_.find(key); - if (iter == id_to_index_.end()) { - return -1; - } else { - return iter->second; - } - } - rwlock_->RDLock(); + int64_t AutoGrownIndex(int64_t key, bool auto_grown, bool is_test = false); + + /* + * @brief Get the index of the key from id_to_index_ map. + */ + inline int64_t GetIndexFromId(int64_t key) { auto iter = id_to_index_.find(key); if (iter == id_to_index_.end()) { - rwlock_->UNLock(); - if (!auto_grown) { - PADDLE_THROW("key %d not found", key); - } - rwlock_->WRLock(); - auto map_size = id_to_index_.size(); - auto vector_size = rows_.size(); - if (map_size != vector_size) { - rwlock_->UNLock(); - PADDLE_THROW( - "id_to_index_ size %d should have the same size with rows_ %d", - map_size, vector_size); - } - auto write_iter = id_to_index_.find(key); - if (write_iter == id_to_index_.end()) { - int row_num = rows_.size(); - if (row_num == value_->dims()[0]) { - rwlock_->UNLock(); - PADDLE_THROW("selected rows is full, then length exceed %d", row_num); - } - // key logic to put a key into id_to_index_ - rows_.push_back(key); - auto index = static_cast(rows_.size() - 1); - id_to_index_[key] = index; - rwlock_->UNLock(); - return index; - } else { - auto index = write_iter->second; - rwlock_->UNLock(); - return index; - } + return -1; } else { - auto index = iter->second; - rwlock_->UNLock(); - return index; + return iter->second; } } @@ -185,7 +148,7 @@ class SelectedRows { // SelectedRows add a Tensor, will the duplicate rows be handled. Vector rows_; std::unordered_map - id_to_index_; // should not be used when ids has duplicate member + id_to_index_; // should not be used when rows_ has duplicate member std::unique_ptr value_{nullptr}; int64_t height_; // height indicates the underline tensor's height std::unique_ptr rwlock_{nullptr}; diff --git a/paddle/fluid/operators/hierarchical_sigmoid_op.cc b/paddle/fluid/operators/hierarchical_sigmoid_op.cc index f3329c4855589b551bc924518a46f4f196668af9..5b09958e73bdd5379b2c79721622d0c56d08bd0f 100644 --- a/paddle/fluid/operators/hierarchical_sigmoid_op.cc +++ b/paddle/fluid/operators/hierarchical_sigmoid_op.cc @@ -101,7 +101,7 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { "it should have shape like [N, L], L is the length of the Path") .AsDispensable(); AddInput( - "PCode", + "PathCode", "(LoDTensor, optional), The Code on each Node of the Path from root " "to current word" "it should have shape like [N, L], L is the length of the Path") diff --git a/paddle/fluid/operators/hierarchical_sigmoid_op.h b/paddle/fluid/operators/hierarchical_sigmoid_op.h index de219bacddc28d5d7ca654780751fb67a5934748..6cb011611d93361cbaf9bc14c1c89aee7f417ab0 100644 --- a/paddle/fluid/operators/hierarchical_sigmoid_op.h +++ b/paddle/fluid/operators/hierarchical_sigmoid_op.h @@ -19,9 +19,11 @@ limitations under the License. */ #include "paddle/fluid/framework/mixed_vector.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/clip_op.h" +#include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/matrix_bit_code.h" #include "paddle/fluid/platform/transform.h" + namespace paddle { namespace operators { @@ -30,31 +32,26 @@ template ; using platform::Transform; -std::vector cal_rows(const framework::LoDTensor& path) { - std::set tmp; - std::vector rows; - for (size_t i = 0; i < static_cast(path.dims()[0]); i++) { - for (size_t j = 0; j < static_cast(path.dims()[1]); j++) { - int64_t temp = - path.data()[i * static_cast(path.dims()[1]) + j]; - if (temp >= 0) { - tmp.insert(temp); - } +static std::vector PathToRows(const framework::LoDTensor& path) { + std::set rows; + for (int64_t i = 0; i < path.numel(); ++i) { + int64_t row = path.data()[i]; + if (row < 0) { + continue; } + rows.emplace(row); } - rows.assign(tmp.begin(), tmp.end()); - return rows; + return std::vector(rows.begin(), rows.end()); } - template class HierarchicalSigmoidOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto* in = ctx.Input("X"); - auto* w = ctx.Input("W"); + auto in = detail::Ref(ctx.Input("X")); + auto w = detail::Ref(ctx.Input("W")); auto* path = ctx.Input("PTable"); - auto* code = ctx.Input("PCode"); - auto* label = ctx.Input("Label"); + auto* code = ctx.Input("PathCode"); + auto label = detail::Ref(ctx.Input("Label")); auto* bias = ctx.Input("Bias"); auto* out = ctx.Output("Out"); auto* pre_out = ctx.Output("PreOut"); @@ -65,7 +62,7 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel { } int64_t code_length = path ? path->dims()[1] : math::FindLastSet(num_classes - 1); - int64_t batch_size = in->dims()[0]; + int64_t batch_size = in.dims()[0]; framework::LoDTensor sum; auto& dev_ctx = ctx.template device_context(); auto* pre_out_data = pre_out->mutable_data( @@ -81,10 +78,10 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel { std::unique_ptr> bit_code; if (!is_custom) { bit_code.reset(new math::MatrixBitCodeFunctor(num_classes, - label->data())); + label.data())); } else { - bit_code.reset(new math::MatrixBitCodeFunctor(path, code, - label->data())); + bit_code.reset(new math::MatrixBitCodeFunctor(*path, *code, + label.data())); } std::vector sum_dims({batch_size, 1UL}); @@ -95,7 +92,7 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel { if (bias) { bit_code->Add(*bias, pre_out); } - bit_code->Mul(pre_out, *w, *in); + bit_code->Mul(pre_out, w, in); // clip to [-40, 40] Transform trans; trans(ctx.template device_context(), pre_out_data, @@ -117,23 +114,23 @@ template class HierarchicalSigmoidGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto* in = ctx.Input("X"); - auto* w = ctx.Input("W"); + auto in = detail::Ref(ctx.Input("X")); + auto w = detail::Ref(ctx.Input("W")); auto* path = ctx.Input("PTable"); - auto* code = ctx.Input("PCode"); + auto* code = ctx.Input("PathCode"); auto* bias = ctx.Input("Bias"); auto* in_grad = ctx.Output(framework::GradVarName("X")); bool is_sparse = ctx.Attr("is_sparse"); auto& dev_ctx = ctx.template device_context(); math::SetConstant zero; - auto* label = ctx.Input("Label"); - auto* pre_out = ctx.Input("PreOut"); - auto* out_grad = - ctx.Input(framework::GradVarName("Out")); + auto label = detail::Ref(ctx.Input("Label")); + auto pre_out = detail::Ref(ctx.Input("PreOut")); + auto out_grad = detail::Ref( + ctx.Input(framework::GradVarName("Out"))); framework::LoDTensor pre_out_grad; - pre_out_grad.mutable_data(pre_out->dims(), ctx.GetPlace()); + pre_out_grad.mutable_data(pre_out.dims(), ctx.GetPlace()); in_grad->mutable_data(ctx.GetPlace()); zero(dev_ctx, in_grad, static_cast(0.0)); @@ -147,16 +144,16 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel { std::unique_ptr> bit_code; if (!is_custom) { bit_code.reset(new math::MatrixBitCodeFunctor(num_classes, - label->data())); + label.data())); } else { - bit_code.reset(new math::MatrixBitCodeFunctor(path, code, - label->data())); + bit_code.reset(new math::MatrixBitCodeFunctor(*path, *code, + label.data())); } auto& place = *ctx.template device_context().eigen_device(); - auto pre_out_mat = EigenMatrix::From(*pre_out); + auto pre_out_mat = EigenMatrix::From(pre_out); auto pre_out_grad_mat = EigenMatrix::From(pre_out_grad); - auto out_grad_mat = EigenMatrix::From(*out_grad); + auto out_grad_mat = EigenMatrix::From(out_grad); Eigen::array bcast{1, static_cast(pre_out_grad.dims()[1])}; @@ -181,17 +178,17 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel { ctx.Output(framework::GradVarName("W")); w_grad->mutable_data(ctx.GetPlace()); zero(dev_ctx, w_grad, static_cast(0.0)); - bit_code->MulGradWeight(pre_out_grad, w_grad, *in); + bit_code->MulGradWeight(pre_out_grad, w_grad, in); } else { - framework::Vector real_rows = cal_rows(*path); + framework::Vector real_rows = PathToRows(*path); auto* w_grad = ctx.Output(framework::GradVarName("W")); w_grad->set_rows(real_rows); // Build a map of id -> row_index to speed up finding the index of one id w_grad->SyncIndex(); - w_grad->set_height(w->dims()[0]); + w_grad->set_height(w.dims()[0]); auto* w_grad_value = w_grad->mutable_value(); - framework::DDim temp_dim(w->dims()); + framework::DDim temp_dim(w.dims()); set(temp_dim, 0, real_rows.size()); w_grad_value->mutable_data(temp_dim, ctx.GetPlace()); @@ -211,9 +208,9 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel { zero(dev_ctx, bias_grad_value, static_cast(0.0)); bit_code->AddGrad(pre_out_grad, bias_grad); } - bit_code->MulGradWeight(pre_out_grad, w_grad, *in); + bit_code->MulGradWeight(pre_out_grad, w_grad, in); } - bit_code->MulGradError(pre_out_grad, *w, in_grad); + bit_code->MulGradError(pre_out_grad, w, in_grad); } }; diff --git a/paddle/fluid/operators/math/matrix_bit_code.cc b/paddle/fluid/operators/math/matrix_bit_code.cc index 297e8d850b2b444289f3927db128f205d516f96a..71b9293eeded77553ca06a8574cca3941fa36b6a 100644 --- a/paddle/fluid/operators/math/matrix_bit_code.cc +++ b/paddle/fluid/operators/math/matrix_bit_code.cc @@ -19,12 +19,12 @@ namespace operators { namespace math { template -void MatrixBitCodeFunctor::Add(const framework::LoDTensor& vec, - framework::LoDTensor* tmat) { +void MatrixBitCodeFunctor::Add(const framework::Tensor& vec, + framework::Tensor* tmat) { size_t batch_size = tmat->dims()[0]; size_t width = tmat->dims()[1]; for (size_t i = 0; i < batch_size; ++i) { - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code->calc_index(j); @@ -34,12 +34,12 @@ void MatrixBitCodeFunctor::Add(const framework::LoDTensor& vec, } template -void MatrixBitCodeFunctor::AddGrad(const framework::LoDTensor& tmat, - framework::LoDTensor* vec) { +void MatrixBitCodeFunctor::AddGrad(const framework::Tensor& tmat, + framework::Tensor* vec) { size_t batch_size = tmat.dims()[0]; size_t width = tmat.dims()[1]; for (size_t i = 0; i < batch_size; ++i) { - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code->calc_index(j); @@ -49,17 +49,16 @@ void MatrixBitCodeFunctor::AddGrad(const framework::LoDTensor& tmat, } template -void MatrixBitCodeFunctor::AddGrad(const framework::LoDTensor& tmat, +void MatrixBitCodeFunctor::AddGrad(const framework::Tensor& tmat, framework::SelectedRows* vec) { size_t batch_size = tmat.dims()[0]; size_t width = tmat.dims()[1]; for (size_t i = 0; i < batch_size; ++i) { - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code->calc_index(j); - int64_t row_index = - vec->AutoGrownIndex(static_cast(index), false, true); + int64_t row_index = vec->GetIndexFromId(static_cast(index)); vec->mutable_value()->data()[row_index] += tmat.data()[i * width + j]; } @@ -67,13 +66,13 @@ void MatrixBitCodeFunctor::AddGrad(const framework::LoDTensor& tmat, } template -void MatrixBitCodeFunctor::Sum(const framework::LoDTensor& tmat, - framework::LoDTensor* sum, T scale_sum) { +void MatrixBitCodeFunctor::Sum(const framework::Tensor& tmat, + framework::Tensor* sum, T scale_sum) { size_t num_samples = tmat.dims()[0]; size_t o_width = tmat.dims()[1]; for (size_t i = 0; i < num_samples; ++i) { T sm = static_cast(0.0); - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { if (code->calc_bit(j)) { @@ -87,9 +86,9 @@ void MatrixBitCodeFunctor::Sum(const framework::LoDTensor& tmat, } template -void MatrixBitCodeFunctor::Mul(framework::LoDTensor* tmat, - const framework::LoDTensor& weight, - const framework::LoDTensor& input) { +void MatrixBitCodeFunctor::Mul(framework::Tensor* tmat, + const framework::Tensor& weight, + const framework::Tensor& input) { size_t num_samples = tmat->dims()[0]; size_t tmat_width = tmat->dims()[1]; size_t input_width = input.dims()[1]; @@ -98,7 +97,7 @@ void MatrixBitCodeFunctor::Mul(framework::LoDTensor* tmat, auto weight_value = weight.data(); auto input_value = input.data(); for (size_t i = 0; i < num_samples; ++i) { - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code->calc_index(j); @@ -113,9 +112,9 @@ void MatrixBitCodeFunctor::Mul(framework::LoDTensor* tmat, } template -void MatrixBitCodeFunctor::MulGradWeight(const framework::LoDTensor& tmat, - framework::LoDTensor* weight, - const framework::LoDTensor& input) { +void MatrixBitCodeFunctor::MulGradWeight(const framework::Tensor& tmat, + framework::Tensor* weight, + const framework::Tensor& input) { size_t num_samples = tmat.dims()[0]; size_t input_width = input.dims()[1]; size_t tmat_width = tmat.dims()[1]; @@ -124,7 +123,7 @@ void MatrixBitCodeFunctor::MulGradWeight(const framework::LoDTensor& tmat, auto weight_value = weight->data(); auto input_value = input.data(); for (size_t i = 0; i < num_samples; ++i) { - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code->calc_index(j); @@ -138,9 +137,9 @@ void MatrixBitCodeFunctor::MulGradWeight(const framework::LoDTensor& tmat, } template -void MatrixBitCodeFunctor::MulGradWeight(const framework::LoDTensor& tmat, +void MatrixBitCodeFunctor::MulGradWeight(const framework::Tensor& tmat, framework::SelectedRows* weight, - const framework::LoDTensor& input) { + const framework::Tensor& input) { size_t num_samples = tmat.dims()[0]; size_t input_width = input.dims()[1]; size_t tmat_width = tmat.dims()[1]; @@ -149,13 +148,12 @@ void MatrixBitCodeFunctor::MulGradWeight(const framework::LoDTensor& tmat, auto weight_value = weight->mutable_value()->data(); auto input_value = input.data(); for (size_t i = 0; i < num_samples; ++i) { - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code->calc_index(j); for (size_t k = 0; k < input_width; ++k) { - int64_t row_index = - weight->AutoGrownIndex(static_cast(index), false, true); + int64_t row_index = weight->GetIndexFromId(static_cast(index)); weight_value[row_index * weight_width + k] += tmat_value[i * tmat_width + j] * input_value[input_width * i + k]; } @@ -164,9 +162,9 @@ void MatrixBitCodeFunctor::MulGradWeight(const framework::LoDTensor& tmat, } template -void MatrixBitCodeFunctor::MulGradError(const framework::LoDTensor& tmat, - const framework::LoDTensor& weight, - framework::LoDTensor* input) { +void MatrixBitCodeFunctor::MulGradError(const framework::Tensor& tmat, + const framework::Tensor& weight, + framework::Tensor* input) { size_t num_samples = tmat.dims()[0]; size_t tmat_width = tmat.dims()[1]; size_t input_width = input->dims()[1]; @@ -176,7 +174,7 @@ void MatrixBitCodeFunctor::MulGradError(const framework::LoDTensor& tmat, auto input_value = input->data(); for (size_t i = 0; i < num_samples; ++i) { - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code->calc_index(j); @@ -191,11 +189,11 @@ void MatrixBitCodeFunctor::MulGradError(const framework::LoDTensor& tmat, } template -void MatrixBitCodeFunctor::Sub(framework::LoDTensor* tmat) { +void MatrixBitCodeFunctor::Sub(framework::Tensor* tmat) { size_t num_samples = tmat->dims()[0]; size_t o_width = tmat->dims()[1]; for (size_t i = 0; i < num_samples; ++i) { - auto code = code_table->get_code(i); + auto code = code_table_->get_code(i); int code_length = code->get_length(); for (int j = 0; j < code_length; ++j) { if (code->calc_bit(j)) { diff --git a/paddle/fluid/operators/math/matrix_bit_code.h b/paddle/fluid/operators/math/matrix_bit_code.h index 3add06cb635e18304907c789924cf841b8e8c86a..c30bb52641e865efe57659a551bc4b493634c6b9 100644 --- a/paddle/fluid/operators/math/matrix_bit_code.h +++ b/paddle/fluid/operators/math/matrix_bit_code.h @@ -132,13 +132,15 @@ class SimpleCode : public Code { size_t c_; }; -template +template class CustomCode : public Code { public: - CustomCode(const framework::LoDTensor* ptable, - const framework::LoDTensor* pcode, const int64_t* ids, - const int index) - : ptable_(ptable), pcode_(pcode), ids_(ids), index_(index) {} + CustomCode(const framework::Tensor& ptable, const framework::Tensor& pcode, + const int64_t* ids, int index) + : ids_(ids), index_(index) { + ptable_ = ptable.Slice(index, index + 1); + pcode_ = pcode.Slice(index, index + 1); + } /** * Here the id of root shoud be 1 rather than 0, thus the encoding of class c * is `c + num_classes` and all siblings can get the same weight indice using @@ -148,20 +150,13 @@ class CustomCode : public Code { * Binary classification path is the suffixes of encoding, thus leave out the * left most bit in calc_bit. */ - size_t calc_index(int bit) const { - return ptable_ - ->data()[index_ * static_cast(ptable_->dims()[1]) + bit]; - } - bool calc_bit(int bit) const { - return pcode_ - ->data()[index_ * static_cast(ptable_->dims()[1]) + bit]; - } + size_t calc_index(int bit) const { return ptable_.data()[bit]; } + bool calc_bit(int bit) const { return pcode_.data()[bit]; } int get_length() const { int length = 0; - for (int i = 0; i < static_cast(ptable_->dims()[1]); i++) { - if (ptable_->data()[index_ * static_cast(ptable_->dims()[1]) + - i] >= 0) { + for (int i = 0; i < static_cast(ptable_.dims()[1]); i++) { + if (ptable_.data()[i] >= 0) { length++; } else { return length; @@ -171,15 +166,15 @@ class CustomCode : public Code { } private: - const framework::LoDTensor* ptable_; - const framework::LoDTensor* pcode_; + framework::Tensor ptable_; + framework::Tensor pcode_; const int64_t* ids_; const int index_; }; class SimpleCodeTable : public CodeTable { public: - explicit SimpleCodeTable(size_t num_classes, const int64_t* ids) + SimpleCodeTable(size_t num_classes, const int64_t* ids) : num_classes_(num_classes), ids_(ids) {} std::unique_ptr get_code(int64_t code) const { std::unique_ptr coder(new SimpleCode(code, num_classes_, ids_)); @@ -193,97 +188,92 @@ class SimpleCodeTable : public CodeTable { const int64_t* ids_; }; -template +template class CustomCodeTable : public CodeTable { public: - explicit CustomCodeTable(const framework::LoDTensor* ptable, - const framework::LoDTensor* pcode, - const int64_t* ids) + CustomCodeTable(const framework::Tensor& ptable, + const framework::Tensor& pcode, const int64_t* ids) : ptable_(ptable), pcode_(pcode), ids_(ids) {} std::unique_ptr get_code(int64_t code) const { - std::unique_ptr coder(new CustomCode(ptable_, pcode_, ids_, code)); + std::unique_ptr coder(new CustomCode(ptable_, pcode_, ids_, code)); return coder; } - size_t size() const { return static_cast(ptable_->dims()[1]); } + size_t size() const { return static_cast(ptable_.dims()[1]); } int get_max_code_length() const { - return static_cast(ptable_->dims()[1]); + return static_cast(ptable_.dims()[1]); } private: - const framework::LoDTensor* ptable_; - const framework::LoDTensor* pcode_; + const framework::Tensor& ptable_; + const framework::Tensor& pcode_; const int64_t* ids_; }; template class MatrixBitCodeFunctor { public: - explicit MatrixBitCodeFunctor(size_t num_classes, const int64_t* ids) + MatrixBitCodeFunctor(size_t num_classes, const int64_t* ids) : num_classes_(num_classes), ids_(ids), - code_table(new SimpleCodeTable(num_classes, ids)) {} + code_table_(new SimpleCodeTable(num_classes, ids)) {} - explicit MatrixBitCodeFunctor(const framework::LoDTensor* ptable, - const framework::LoDTensor* pcode, - const int64_t* ids) - : num_classes_(static_cast(ptable->dims()[1])), + MatrixBitCodeFunctor(const framework::Tensor& ptable, + const framework::Tensor& pcode, const int64_t* ids) + : num_classes_(static_cast(ptable.dims()[1])), ids_(ids), - code_table(new CustomCodeTable(ptable, pcode, ids)) {} + code_table_(new CustomCodeTable(ptable, pcode, ids)) {} /* For j < code_length tmat(i, j) += vec(0, index(i, j)) */ - void Add(const framework::LoDTensor& vec, framework::LoDTensor* tmat); + void Add(const framework::Tensor& vec, framework::Tensor* tmat); /* For j < code_length vec(0, index(i, j)) += tmat(i, j) */ - void AddGrad(const framework::LoDTensor& tmat, framework::LoDTensor* vec); + void AddGrad(const framework::Tensor& tmat, framework::Tensor* vec); /* For selected rows For j < code_length vec(0, index(i, j)) += tmat(i, j) */ - void AddGrad(const framework::LoDTensor& tmat, framework::SelectedRows* vec); + void AddGrad(const framework::Tensor& tmat, framework::SelectedRows* vec); /* For j < code_length sum(i, 0) = \sum_j bit(i, j) * tmat(i, j) */ - void Sum(const framework::LoDTensor& tmat, framework::LoDTensor* sum, - T scale_sum); + void Sum(const framework::Tensor& tmat, framework::Tensor* sum, T scale_sum); /* For j < code_length tmat(i, j) -= bit(i, j) */ - void Sub(framework::LoDTensor* tmat); + void Sub(framework::Tensor* tmat); /* For j < code_length input.row(i) += tmat(i, j) * weight.row(index(i, j)) */ - void Mul(framework::LoDTensor* tmat, const framework::LoDTensor& weight, - const framework::LoDTensor& input); + void Mul(framework::Tensor* tmat, const framework::Tensor& weight, + const framework::Tensor& input); /* For index(i, j) >= 0: weight.row(index(i, j)) += tmat(i, j) * input.row(i) */ - void MulGradWeight(const framework::LoDTensor& tmat, - framework::LoDTensor* weight, - const framework::LoDTensor& input); + void MulGradWeight(const framework::Tensor& tmat, framework::Tensor* weight, + const framework::Tensor& input); /* For SelectedRows Weight, For index(i, j) >= 0: weight.row(index(i, j)) += tmat(i, j) * input.row(i) */ - void MulGradWeight(const framework::LoDTensor& tmat, + void MulGradWeight(const framework::Tensor& tmat, framework::SelectedRows* weight, - const framework::LoDTensor& input); + const framework::Tensor& input); /* For j < code_length input.row(i) += tmat(i, j) * weight.row(index(i, j)) */ - void MulGradError(const framework::LoDTensor& tmat, - const framework::LoDTensor& weight, - framework::LoDTensor* input); + void MulGradError(const framework::Tensor& tmat, + const framework::Tensor& weight, framework::Tensor* input); size_t num_classes_; const int64_t* ids_; - std::unique_ptr code_table; + std::unique_ptr code_table_; }; } // namespace math } // namespace operators diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 8e7cff8056d6a4eac7d6b14912715ce90bd797c3..fd02b445e75fea0d37b610c9abce0d090bfdedc4 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -4639,7 +4639,7 @@ def hsigmoid(input, "X": input, "W": weights, "PTable": ptable, - "PCode": pcode, + "PathCode": pcode, "Label": label } if helper.bias_attr: diff --git a/python/paddle/fluid/tests/unittests/test_hsigmoid_op.py b/python/paddle/fluid/tests/unittests/test_hsigmoid_op.py index 955fc51d57d43ede1c139e433fdaea22a65ed2e6..8152ce9b78cbb2468556115dfc7cfb936a0eeb1f 100644 --- a/python/paddle/fluid/tests/unittests/test_hsigmoid_op.py +++ b/python/paddle/fluid/tests/unittests/test_hsigmoid_op.py @@ -185,7 +185,7 @@ class TestHSigmoidOpSparse(OpTest): 'X': x, 'W': w, 'PTable': ptable, - 'PCode': pcode, + 'PathCode': pcode, 'Label': label, 'Bias': bias } @@ -285,7 +285,7 @@ class TestHSigmoidOpWithCostumTree(OpTest): 'X': x, 'W': w, 'PTable': ptable, - 'PCode': pcode, + 'PathCode': pcode, 'Label': label, 'Bias': bias } @@ -322,7 +322,7 @@ class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest): 'X': x, 'W': w, 'PTable': ptable, - 'PCode': pcode, + 'PathCode': pcode, 'Label': label, } pre_output, out = hsigmoidWithCustomTree(