diff --git a/paddle/fluid/framework/data_type.h b/paddle/fluid/framework/data_type.h index 4477a9cac09d8f060d6b8f2f7d5bf4dfd7b3f893..be263c9fc56b823e43636068455fec66fe588446 100644 --- a/paddle/fluid/framework/data_type.h +++ b/paddle/fluid/framework/data_type.h @@ -63,6 +63,11 @@ struct DataTypeTrait { _ForEachDataTypeHelper_(callback, int, INT32); \ _ForEachDataTypeHelper_(callback, int64_t, INT64); +// For the use of thrust, as index-type elements can be only integers. +#define _ForEachDataTypeTiny_(callback) \ + _ForEachDataTypeHelper_(callback, int, INT32); \ + _ForEachDataTypeHelper_(callback, int64_t, INT64); + #define DefineDataTypeTrait(cpp_type, proto_type) \ template <> \ struct DataTypeTrait { \ @@ -107,6 +112,20 @@ inline void VisitDataTypeSmall(proto::VarType::Type type, Visitor visitor) { #undef VisitDataTypeCallbackSmall } +template +inline void VisitDataTypeTiny(proto::VarType::Type type, Visitor visitor) { +#define VisitDataTypeCallbackTiny(cpp_type, proto_type) \ + do { \ + if (type == proto_type) { \ + visitor.template apply(); \ + return; \ + } \ + } while (0) + + _ForEachDataTypeTiny_(VisitDataTypeCallbackTiny); +#undef VisitDataTypeCallbackTiny +} + extern std::string DataTypeToString(const proto::VarType::Type type); extern size_t SizeOfType(proto::VarType::Type type); inline std::ostream& operator<<(std::ostream& out, diff --git a/paddle/fluid/operators/unique_op.cc b/paddle/fluid/operators/unique_op.cc index 745102dd28d3d578ec3674221645fc1e8bdfe43a..aed919e996161fd2800f67b1f51819fe233a4a63 100644 --- a/paddle/fluid/operators/unique_op.cc +++ b/paddle/fluid/operators/unique_op.cc @@ -87,9 +87,17 @@ class UniqueOp : public framework::OperatorWithKernel { protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { - return framework::OpKernelType( - OperatorWithKernel::IndicateVarDataType(ctx, "X"), - platform::CPUPlace()); + // Return CPUPlace when Attr("is_sorted") is false. Because it means + // that fluid.layers.unique is called, but there is no cuda kernel. + if (!ctx.Attr("is_sorted")) { + return framework::OpKernelType( + OperatorWithKernel::IndicateVarDataType(ctx, "X"), + platform::CPUPlace()); + } else { + // new version paddle.unique is called. + return framework::OpKernelType( + OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace()); + } } }; diff --git a/paddle/fluid/operators/unique_op.cu b/paddle/fluid/operators/unique_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..848df4c7aba8d8a45f6bc6dfaef4c1a6e3972e55 --- /dev/null +++ b/paddle/fluid/operators/unique_op.cu @@ -0,0 +1,472 @@ +/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ +#include +#include +#include +#include +#include +#include +#include +#include +#include "paddle/fluid/framework/tensor_util.h" // TensorToVector() +#include "paddle/fluid/operators/unique_op.h" // TransComute() + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +// Binary function 'less than' +template +struct LessThan { + int col; + const InT* in_trans_data; + + LessThan(int64_t _col, const InT* _in_trans_data) + : col(_col), in_trans_data(_in_trans_data) {} + + __device__ bool operator()(int64_t a, int64_t b) const { + for (int i = 0; i < col; ++i) { + InT lhs = in_trans_data[i + a * col]; + InT rhs = in_trans_data[i + b * col]; + if (lhs < rhs) { + return true; + } else if (lhs > rhs) { + return false; + } + } + return false; + } +}; + +// Binary function 'equal_to' +template +struct BinaryEqual { + int64_t col; + const InT* in_trans_data; + + BinaryEqual(int64_t _col, const InT* _in_trans_data) + : col(_col), in_trans_data(_in_trans_data) {} + + __device__ bool operator()(int64_t a, int64_t b) const { + for (int64_t i = 0; i < col; ++i) { + InT lhs = in_trans_data[i + a * col]; + InT rhs = in_trans_data[i + b * col]; + if (lhs != rhs) { + return false; + } + } + return true; + } +}; + +// Binary function 'not_equal_to' +template +struct BinaryNotEqual { + int64_t col; + const InT* in_trans_data; + + BinaryNotEqual(int64_t _col, const InT* _in_trans_data) + : col(_col), in_trans_data(_in_trans_data) {} + + __device__ bool operator()(int64_t a, int64_t b) const { + for (int64_t i = 0; i < col; ++i) { + InT lhs = in_trans_data[i + a * col]; + InT rhs = in_trans_data[i + b * col]; + if (lhs != rhs) { + return true; + } + } + return false; + } +}; + +// index_select() function for Tensor +template +void IndexSelect(const framework::ExecutionContext& context, + const Tensor& input, const Tensor& index, Tensor* output, + int dim) { + auto input_dim = input.dims(); + auto input_dim_size = input_dim.size(); + auto output_dim = output->dims(); + + auto slice_size = 1; + for (auto i = dim + 1; i < input_dim_size; i++) { + slice_size *= input_dim[i]; + } + + auto input_width = slice_size * input_dim[dim]; + auto output_width = slice_size * output_dim[dim]; + + auto outer_nums = 1; + for (auto i = 0; i < dim; i++) { + outer_nums *= input_dim[i]; + } + + auto index_size = index.dims()[0]; + + std::vector input_vec; + std::vector index_vec; + TensorToVector(input, context.device_context(), &input_vec); + TensorToVector(index, context.device_context(), &index_vec); + std::vector out_vec(output->numel()); + + for (int i = 0; i < index_size; i++) { + PADDLE_ENFORCE_GE( + index_vec[i], 0, + platform::errors::InvalidArgument( + "Variable value (index) of OP(index_select) " + "expected >= 0 and < %ld, but got %ld. Please check input " + "value.", + input_dim[dim], index_vec[i])); + PADDLE_ENFORCE_LT( + index_vec[i], input_dim[dim], + platform::errors::InvalidArgument( + "Variable value (index) of OP(index_select) " + "expected >= 0 and < %ld, but got %ld. Please check input " + "value.", + input_dim[dim], index_vec[i])); + } + + for (auto i = 0; i < outer_nums; i++) { + auto input_start_offset = i * input_width; + auto output_start_offset = i * output_width; + + for (auto j = 0; j < index_size; j++) { + IndexT index_value = index_vec[j]; + for (auto k = 0; k < slice_size; k++) { + out_vec[output_start_offset + j * slice_size + k] = + input_vec[input_start_offset + index_value * slice_size + k]; + } + } + } + output->mutable_data(context.GetPlace()); + framework::TensorFromVector(out_vec, context.device_context(), output); + output->Resize(output_dim); +} + +// The core logic of computing Unique for a flattend Tensor +template +static void UniqueFlattendCUDATensor(const framework::ExecutionContext& context, + const Tensor& in, Tensor* out, + bool return_index, bool return_inverse, + bool return_counts, equal_T equal, + not_equal_T not_equal, int64_t num_input) { + // 0. Prepration + Tensor in_hat; + framework::TensorCopy(in, context.GetPlace(), &in_hat); + auto in_data_hat = in_hat.mutable_data(context.GetPlace()); + + Tensor* sorted_indices = context.Output("Indices"); + sorted_indices->Resize(framework::make_ddim({num_input})); + auto sorted_indices_data = + sorted_indices->mutable_data(context.GetPlace()); + thrust::sequence(thrust::device, sorted_indices_data, + sorted_indices_data + num_input); + thrust::sort_by_key(thrust::device, in_data_hat, in_data_hat + num_input, + sorted_indices_data); + + // 1. Calculate op result: 'out': + Tensor range; + range.Resize(framework::make_ddim({num_input + 1})); + auto range_data_ptr = range.mutable_data(context.GetPlace()); + thrust::sequence(thrust::device, range_data_ptr, + range_data_ptr + num_input + 1); + framework::TensorCopy(in_hat, context.GetPlace(), out); + int num_out; + auto out_data = out->mutable_data(context.GetPlace()); + num_out = thrust::unique_by_key(thrust::device, out_data, + out_data + num_input, range_data_ptr, equal) + .first - + out_data; + out->Resize(framework::make_ddim({num_out})); + + // 3. Calculate inverse index: 'inverse' + if (return_inverse) { + Tensor* inverse = context.Output("Index"); + inverse->Resize(framework::make_ddim({num_input})); + auto inverse_data = inverse->mutable_data(context.GetPlace()); + Tensor inv_loc; + inv_loc.Resize(framework::make_ddim({num_input})); + auto inv_loc_data_ptr = inv_loc.mutable_data(context.GetPlace()); + thrust::adjacent_difference(thrust::device, in_data_hat, + in_data_hat + num_input, inv_loc_data_ptr, + not_equal); + thrust::device_ptr inv_loc_data_dev(inv_loc_data_ptr); + inv_loc_data_dev[0] = 0; // without device_ptr, segmentation fault + thrust::inclusive_scan(thrust::device, inv_loc_data_ptr, + inv_loc_data_ptr + num_input, inv_loc_data_ptr); + thrust::scatter(thrust::device, inv_loc_data_ptr, + inv_loc_data_ptr + num_input, sorted_indices_data, + inverse_data); + } + + // 2. Calculate sorted index: 'sorted_indices' + if (return_index) { + Tensor indices; + indices.Resize(framework::make_ddim({num_input})); + auto indices_data_ptr = indices.mutable_data(context.GetPlace()); + thrust::copy(thrust::device, in_data_hat, in_data_hat + num_input, + indices_data_ptr); + thrust::unique_by_key(thrust::device, indices_data_ptr, + indices_data_ptr + num_input, sorted_indices_data, + equal); + sorted_indices->Resize(framework::make_ddim({num_out})); + } + + // 4. Calculate 'counts' + if (return_counts) { + Tensor* counts = context.Output("Counts"); + counts->Resize(framework::make_ddim({num_out})); + auto count_data = counts->mutable_data(context.GetPlace()); + // init 'count_data' as 0 + thrust::fill(thrust::device, count_data, count_data + num_out, 0); + thrust::device_ptr range_data_ptr_dev(range_data_ptr); + range_data_ptr_dev[num_out] = num_input; + thrust::adjacent_difference(thrust::device, range_data_ptr + 1, + range_data_ptr + num_out + 1, count_data); + } +} + +// The logic of compute unique with axis required, it's a little different +// from above function +template +static void ComputeUniqueDims(const framework::ExecutionContext& context, + Tensor* sorted_indices, + IndexT* sorted_indices_data, Tensor* out, + bool return_index, bool return_inverse, + bool return_counts, equal_T equal, + not_equal_T not_equal, int64_t row) { + // 1. inverse indices: 'inverse' + Tensor* inverse = context.Output("Index"); + inverse->Resize(framework::make_ddim({row})); + auto inverse_data = inverse->mutable_data(context.GetPlace()); + Tensor inv_loc; + inv_loc.Resize(framework::make_ddim({row})); + auto inv_loc_data_ptr = inv_loc.mutable_data(context.GetPlace()); + thrust::adjacent_difference(thrust::device, sorted_indices_data, + sorted_indices_data + row, inv_loc_data_ptr, + not_equal); + thrust::device_ptr inv_loc_data_dev(inv_loc_data_ptr); + inv_loc_data_dev[0] = 0; + thrust::inclusive_scan(thrust::device, inv_loc_data_ptr, + inv_loc_data_ptr + row, inv_loc_data_ptr); + thrust::scatter(thrust::device, inv_loc_data_ptr, inv_loc_data_ptr + row, + sorted_indices_data, inverse_data); + + // 2. sorted indices + Tensor range; + range.Resize(framework::make_ddim({row + 1})); + auto range_data_ptr = range.mutable_data(context.GetPlace()); + thrust::sequence(thrust::device, range_data_ptr, range_data_ptr + row + 1); + int num_out; + num_out = + thrust::unique_by_key(thrust::device, sorted_indices_data, + sorted_indices_data + row, range_data_ptr, equal) + .first - + sorted_indices_data; + thrust::device_ptr range_data_ptr_dev(range_data_ptr); + range_data_ptr_dev[num_out] = row; + sorted_indices->Resize(framework::make_ddim({num_out})); + + // 3. counts: 'counts' + Tensor* counts = context.Output("Counts"); + counts->Resize(framework::make_ddim({num_out})); + auto count_data = counts->mutable_data(context.GetPlace()); + thrust::fill(thrust::device, count_data, count_data + row, 0); + thrust::adjacent_difference(thrust::device, range_data_ptr + 1, + range_data_ptr + row + 1, count_data); +} + +// Calculate unique when 'axis' is set +template +static void UniqueDimsCUDATensor(const framework::ExecutionContext& context, + const Tensor& in, Tensor* out, + bool return_index, bool return_inverse, + bool return_counts, int axis) { + // 1. Transpose & reshape + // Transpose tensor: eg. axis=1, [dim0, dim1, dim2] -> [dim1, dim0, dim2] + std::vector permute(in.dims().size()); + std::iota(permute.begin(), permute.end(), 0); + permute[axis] = 0; + permute[0] = axis; + std::vector in_trans_dims_vec(framework::vectorize(in.dims())); + in_trans_dims_vec[axis] = in.dims()[0]; + in_trans_dims_vec[0] = in.dims()[axis]; + framework::Tensor in_trans; + framework::DDim in_trans_dims = framework::make_ddim(in_trans_dims_vec); + in_trans.Resize(in_trans_dims); + in_trans.mutable_data(context.GetPlace()); + auto& dev_ctx = context.cuda_device_context(); + TransCompute(in.dims().size(), // num of dims + dev_ctx, // device + in, // original Tensor + &in_trans, // Tensor after reshape + permute); // index of axis + + // Reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2] + framework::DDim in_trans_flat_dims = + framework::flatten_to_2d(in_trans_dims, 1); + in_trans.Resize(in_trans_flat_dims); + + // now 'in_trans' is 2D + int64_t col = in_trans.dims()[1]; + int64_t row = in_trans.dims()[0]; + const InT* in_trans_data = in_trans.data(); + + Tensor* sorted_indices = context.Output("Indices"); + sorted_indices->Resize(framework::make_ddim({row})); + auto sorted_indices_data = + sorted_indices->mutable_data(context.GetPlace()); + + // 2. Calculate 'sorted_indices', 'inverse', 'counts' + // Init index and sort + thrust::sequence(thrust::device, sorted_indices_data, + sorted_indices_data + row); + thrust::sort(thrust::device, sorted_indices_data, sorted_indices_data + row, + LessThan(col, in_trans_data)); + ComputeUniqueDims( + context, sorted_indices, sorted_indices_data, out, return_index, + return_inverse, return_counts, BinaryEqual(col, in_trans_data), + BinaryNotEqual(col, in_trans_data), row); + + // 3. Select indices and reshape back to get 'out' + Tensor out_trans; + std::vector out_trans_dims_vec = in_trans_dims_vec; + out_trans_dims_vec[0] = sorted_indices->numel(); + out_trans.Resize(framework::make_ddim(out_trans_dims_vec)); + out_trans.mutable_data(context.GetPlace()); + + IndexSelect(context, in_trans, *sorted_indices, &out_trans, 0); + + std::swap(out_trans_dims_vec[0], out_trans_dims_vec[axis]); + out->Resize(framework::make_ddim(out_trans_dims_vec)); + out->mutable_data(context.GetPlace()); + std::vector out_trans_unbind = Unbind(out_trans); + math::ConcatFunctor concat_functor; + concat_functor(dev_ctx, out_trans_unbind, 0, &out_trans); + TransCompute(out_trans.dims().size(), dev_ctx, out_trans, + out, permute); +} + +// functor for processing a flattend Tensor +template +struct UniqueFlattendCUDAFunctor { + const framework::ExecutionContext& ctx_; + const Tensor& in_; + Tensor* out_; + const bool return_index_; + const bool return_inverse_; + const bool return_counts_; + + UniqueFlattendCUDAFunctor(const framework::ExecutionContext& context, + const Tensor& in, Tensor* out, bool return_index, + bool return_inverse, bool return_counts) + : ctx_(context), + in_(in), + out_(out), + return_index_(return_index), + return_inverse_(return_inverse), + return_counts_(return_counts) {} + + template + void apply() const { + UniqueFlattendCUDATensor( + ctx_, in_, out_, return_index_, return_inverse_, return_counts_, + thrust::equal_to(), thrust::not_equal_to(), in_.numel()); + } +}; + +// functor for processing a multi-dimentional Tensor +template +struct UniqueDimsCUDAFunctor { + const framework::ExecutionContext& ctx_; + const Tensor& in_; + Tensor* out_; + const int axis_; + const bool return_index_; + const bool return_inverse_; + const bool return_counts_; + + UniqueDimsCUDAFunctor(const framework::ExecutionContext& context, + const Tensor& in, Tensor* out, const int axis, + bool return_index, bool return_inverse, + bool return_counts) + : ctx_(context), + in_(in), + out_(out), + axis_(axis), + return_index_(return_index), + return_inverse_(return_inverse), + return_counts_(return_counts) {} + + template + void apply() const { + UniqueDimsCUDATensor( + ctx_, in_, out_, return_index_, return_inverse_, return_counts_, axis_); + } +}; + +// Unique_op CUDA implementation. +template +class UniqueKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input("X"); + auto* out = context.Output("Out"); + auto data_type = static_cast( + context.Attr("dtype")); + if (data_type == framework::proto::VarType::INT32) { + PADDLE_ENFORCE_LE( + x->numel() + 1, INT_MAX, + platform::errors::InvalidArgument( + "The number of elements in Input(X) should be less than or " + "equal to INT_MAX, but received num is %d. Please set `dtype` to " + "int64.", + x->numel())); + } + + std::vector axis_vec = context.Attr>("axis"); + bool return_index = context.Attr("return_index"); + bool return_inverse = context.Attr("return_inverse"); + bool return_counts = context.Attr("return_counts"); + + // if 'axis' is not required, flatten the Tensor. + if (axis_vec.empty()) { + framework::VisitDataTypeTiny( + data_type, + UniqueFlattendCUDAFunctor( + context, *x, out, return_index, return_inverse, return_counts)); + } else { + // 'axis' is required. + int axis = axis_vec[0]; + framework::VisitDataTypeTiny( + data_type, UniqueDimsCUDAFunctor( + context, *x, out, axis, return_index, return_inverse, + return_counts)); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_CUDA_KERNEL( + unique, ops::UniqueKernel, + ops::UniqueKernel, + ops::UniqueKernel, + ops::UniqueKernel);