diff --git a/python/paddle/v2/framework/tests/test_conv3d_op.py b/python/paddle/v2/framework/tests/test_conv3d_op.py new file mode 100644 index 0000000000000000000000000000000000000000..cbc60111890c7ca5b85c4beff0a90bbeef6680f0 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_conv3d_op.py @@ -0,0 +1,118 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestConv3dOp(OpTest): + def setUp(self): + self.init_groups() + self.op_type = "conv3d" + batch_size = 2 + input_channels = 3 + input_depth = 5 + input_height = 5 + input_width = 5 + output_channels = 6 + filter_depth = 3 + filter_height = 3 + filter_width = 3 + stride = 1 + padding = 0 + output_depth = (input_depth - filter_depth + 2 * padding) / stride + 1 + output_height = (input_height - filter_height + 2 * padding + ) / stride + 1 + output_width = (input_width - filter_width + 2 * padding) / stride + 1 + input = np.random.random((batch_size, input_channels, input_depth, + input_height, input_width)).astype("float32") + + filter = np.random.random( + (output_channels, input_channels / self.groups, filter_depth, + filter_height, filter_width)).astype("float32") + output = np.ndarray((batch_size, output_channels, output_depth, + output_height, output_width)) + + self.inputs = {'Input': input, 'Filter': filter} + self.attrs = { + 'strides': [1, 1, 1], + 'paddings': [0, 0, 0], + 'groups': self.groups + } + + output_group_channels = output_channels / self.groups + input_group_channels = input_channels / self.groups + for batchid in xrange(batch_size): + for group in xrange(self.groups): + for outchannelid in range(group * output_group_channels, + (group + 1) * output_group_channels): + for deepid in xrange(output_depth): + for rowid in xrange(output_height): + for colid in xrange(output_width): + start_d = (deepid * stride) - padding + start_h = (rowid * stride) - padding + start_w = (colid * stride) - padding + output_value = 0.0 + for inchannelid in range( + group * input_group_channels, + (group + 1) * input_group_channels): + for fdeepid in xrange(filter_depth): + for frowid in xrange(filter_height): + for fcolid in xrange(filter_width): + input_value = 0.0 + indeepid = start_d + fdeepid + inrowid = start_h + frowid + incolid = start_w + fcolid + if ((indeepid >= 0 and + indeepid < input_depth) and + (inrowid >= 0 and + inrowid < input_height) and + (incolid >= 0 and + incolid < input_width)): + + input_value = input[ + batchid][inchannelid][ + indeepid][inrowid][ + incolid] + filter_value = filter[ + outchannelid][ + inchannelid % + input_group_channels][ + fdeepid][frowid][ + fcolid] + output_value += input_value * filter_value + output[batchid][outchannelid][deepid][rowid][ + colid] = output_value + + self.outputs = {'Output': output} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad( + set(['Input', 'Filter']), 'Output', max_relative_error=0.05) + + def test_check_grad_no_filter(self): + self.check_grad( + ['Input'], + 'Output', + max_relative_error=0.05, + no_grad_set=set(['Filter'])) + + def test_check_grad_no_input(self): + self.check_grad( + ['Filter'], + 'Output', + max_relative_error=0.05, + no_grad_set=set(['Input'])) + + def init_groups(self): + self.groups = 1 + + +class TestWithGroup(TestConv3dOp): + def init_groups(self): + self.groups = 3 + + +if __name__ == '__main__': + unittest.main()