Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c26f2b21
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c26f2b21
编写于
10月 15, 2018
作者:
T
Tao Luo
提交者:
GitHub
10月 15, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13813 from sfraczek/sfraczek/conv-bn-fuse-pass-full-eigen
rewrite conv_bn fuse pass fully to eigen
上级
fededdda
50c5e9b0
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
35 addition
and
104 deletion
+35
-104
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
+35
-104
未找到文件。
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
浏览文件 @
c26f2b21
...
@@ -44,89 +44,6 @@ namespace ir {
...
@@ -44,89 +44,6 @@ namespace ir {
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
template
<
typename
UnaryOperation
>
LoDTensor
tensor_apply
(
const
LoDTensor
&
vec
,
UnaryOperation
f
)
{
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec
.
dims
());
const
float
*
x
=
vec
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
x
[
i
]);
}
return
vec_y
;
}
void
tensor_apply_inplace
(
LoDTensor
*
vec
,
float
(
*
f
)(
float
))
{
float
*
data
=
vec
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
->
numel
();
i
++
)
{
data
[
i
]
=
f
(
data
[
i
]);
}
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
(),
vec_b
.
dims
());
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec_a
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
a
[
i
],
b
[
i
]);
}
return
vec_y
;
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise_broadcast
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
()[
0
],
vec_b
.
dims
()[
0
]);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
()[
1
],
1
);
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
size_t
a_height
=
vec_a
.
dims
()[
0
];
size_t
a_width
=
vec_a
.
dims
()[
1
];
for
(
size_t
h
=
0
;
h
<
a_height
;
h
++
)
{
for
(
size_t
w
=
0
;
w
<
a_width
;
++
w
)
{
*
(
y
++
)
=
f
(
*
(
a
++
),
b
[
h
]);
}
}
return
vec_y
;
}
// reshape to two dimensions {A, B * C * ...}
void
make_tensor_2d
(
LoDTensor
*
tensor_to_reshape
)
{
auto
dims_count
=
tensor_to_reshape
->
dims
().
size
();
PADDLE_ENFORCE_GT
(
dims_count
,
0
);
int
size2
=
1
;
for
(
int
i
=
1
;
i
<
dims_count
;
i
++
)
{
size2
*=
tensor_to_reshape
->
dims
()[
i
];
}
tensor_to_reshape
->
Resize
(
make_ddim
({
tensor_to_reshape
->
dims
()[
0
],
size2
}));
}
void
recompute_conv_weights
(
LoDTensor
*
weights
,
LoDTensor
*
tmp
)
{
// remember the weights tensor shape {A, B, C, ...}
auto
weights_shape
=
weights
->
dims
();
// reduce the weights to 2d {A, B * C * ...}
make_tensor_2d
(
weights
);
// make tmp tensor 2d by adding 1 as second dim {A, 1}
make_tensor_2d
(
tmp
);
*
weights
=
tensor_apply_eltwise_broadcast
(
*
weights
,
*
tmp
,
std
::
multiplies
<
float
>
());
// reshape weights to the original dims {A, B, C, ...}
weights
->
Resize
(
weights_shape
);
}
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
ir
::
Node
*
conv_weight
,
//
ir
::
Node
*
conv_weight
,
//
const
ir
::
Node
&
bn_scale
,
//
const
ir
::
Node
&
bn_scale
,
//
...
@@ -135,6 +52,13 @@ void recompute_bias_and_weights(const Scope* scope,
...
@@ -135,6 +52,13 @@ void recompute_bias_and_weights(const Scope* scope,
const
ir
::
Node
&
bn_variance
,
//
const
ir
::
Node
&
bn_variance
,
//
LoDTensor
*
eltwise_y_in_tensor
,
//
LoDTensor
*
eltwise_y_in_tensor
,
//
float
epsilon
)
{
float
epsilon
)
{
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
using
ConstEigenVectorArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
using
EigenMatrixArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
// Re-compute bias of conv2d from BN
// Re-compute bias of conv2d from BN
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
bn_bias_tensor
.
dims
());
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
bn_bias_tensor
.
dims
());
...
@@ -143,31 +67,38 @@ void recompute_bias_and_weights(const Scope* scope,
...
@@ -143,31 +67,38 @@ void recompute_bias_and_weights(const Scope* scope,
scope
->
FindVar
(
bn_variance
.
Name
())
->
GetMutable
<
LoDTensor
>
();
scope
->
FindVar
(
bn_variance
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
mean_tensor
=
scope
->
FindVar
(
bn_mean
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
mean_tensor
=
scope
->
FindVar
(
bn_mean
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
std_tensor
=
LoDTensor
();
ConstEigenVectorArrayMap
scale_array
(
scale_tensor
->
data
<
float
>
(),
std_tensor
.
Resize
(
bn_bias_tensor
.
dims
());
scale_tensor
->
numel
(),
1
);
std_tensor
=
EigenVectorArrayMap
variance_array
(
tensor_apply
(
*
variance_tensor
,
[
&
](
float
x
)
{
return
x
+
epsilon
;
});
variance_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
variance_tensor
->
numel
(),
1
);
ConstEigenVectorArrayMap
mean_array
(
mean_tensor
->
data
<
float
>
(),
mean_tensor
->
numel
(),
1
);
ConstEigenVectorArrayMap
bn_bias_array
(
bn_bias_tensor
.
data
<
float
>
(),
bn_bias_tensor
.
numel
(),
1
);
using
EigenVectorArrayMap
=
// variance will not be used anymore, so make it std_array and then tmp_array
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
variance_array
+=
epsilon
;
variance_array
=
variance_array
.
sqrt
();
variance_array
=
scale_array
/
variance_array
;
EigenVectorArrayMap
eltwise_y_in_array
(
eltwise_y_in_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
eltwise_y_in_tensor
->
numel
(),
1
);
EigenVectorArrayMap
std_vec
(
eltwise_y_in_array
=
std_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
std_tensor
.
numel
(),
((
eltwise_y_in_array
-
mean_array
)
*
variance_array
)
+
bn_bias_array
;
1
);
std_vec
=
std_vec
.
sqrt
();
auto
tmp_tensor
=
tensor_apply_eltwise
(
*
scale_tensor
,
std_tensor
,
std
::
divides
<
float
>
());
auto
tensor_minus
=
tensor_apply_eltwise
(
*
eltwise_y_in_tensor
,
*
mean_tensor
,
std
::
minus
<
float
>
());
auto
tensor_mul
=
tensor_apply_eltwise
(
tensor_minus
,
tmp_tensor
,
std
::
multiplies
<
float
>
());
*
eltwise_y_in_tensor
=
tensor_apply_eltwise
(
tensor_mul
,
bn_bias_tensor
,
std
::
plus
<
float
>
());
// Re-compute weight of conv2d from BN
// Re-compute weight of conv2d from BN
auto
*
current_param
=
auto
*
weights
=
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
weights_shape
=
weights
->
dims
();
recompute_conv_weights
(
current_param
,
&
tmp_tensor
);
auto
weights_shape_2d
=
flatten_to_2d
(
weights_shape
,
1
);
EigenMatrixArrayMap
weights_array_2d
(
weights
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
weights_shape_2d
[
0
],
weights_shape_2d
[
1
]);
weights_array_2d
.
colwise
()
*=
variance_array
;
}
}
std
::
unique_ptr
<
ir
::
Graph
>
ConvBNFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
ConvBNFusePass
::
ApplyImpl
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录