From c1fdacd4b495369db5f5bfcf2b9dc25d16a8e231 Mon Sep 17 00:00:00 2001 From: Xin Pan Date: Tue, 15 Jan 2019 10:12:09 +0800 Subject: [PATCH] add imperative mode design test=develop --- paddle/fluid/imperative/README.md | 148 ++++++++++++++++++++++++++++++ 1 file changed, 148 insertions(+) create mode 100644 paddle/fluid/imperative/README.md diff --git a/paddle/fluid/imperative/README.md b/paddle/fluid/imperative/README.md new file mode 100644 index 00000000000..294c64b36ab --- /dev/null +++ b/paddle/fluid/imperative/README.md @@ -0,0 +1,148 @@ +# Overview + +Imperative Programming + +# Related Works + +## Pytorch +https://pytorch.org/ + +## TensorFlow Eager +https://www.tensorflow.org/guide/eager + +# Design + +## API +```python +class Layer(object): + + def __call__(inputs): + # build some parameter once. + # ... + return self.apply(inputs): + + + def apply(inputs): + # forward logic with paddle operators. backward auto-generated. + + +class PyLayer(core.PyLayer): + + def __call__(cls, inputs): + # trace the logic. + + @staticmethod + def forward(inputs): + # any forward logic implemented with numpy io. + + @static method + # any backward logic implemented with numpy io. +``` + + +## Tracer + +Python Variable -> C++ VarBase -> C++ Variable -> C++ Tensor + + +```cpp +class Tracer { + public: + explicit Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {} + + virtual ~Tracer() {} + + void Trace(OpBase* op, + const std::map>& inputs, + const std::map>& outputs, + framework::BlockDesc* block, const bool stop_gradient = false); + + std::vector PyTrace(OpBase* op, const std::vector& inputs, + bool stop_gradient = false); +}; +``` + +## Autodiff + +Lots of research already. +https://autodiff-workshop.github.io/ + + +## Tests + +* All op tests run once in static graph, once in imperative mode. + +## Refactor + +* All function layers with parameters converted to class Layers. +* Models converted to imperative mode. + + +# Examples + +```python +class MyLayer(fluid.imperative.Layer): + def __init__(self): + super(MyLayer, self).__init__() + + def forward(self, inputs): + x = fluid.layers.relu(inputs) + x = fluid.layers.elementwise_mul(x, x) + x = fluid.layers.reduce_sum(x) + return [x] + + +class MyPyLayer(fluid.imperative.PyLayer): + def __init__(self): + super(MyPyLayer, self).__init__() + + @staticmethod + def forward(inputs): + return np.tanh(inputs[0]) + + @staticmethod + def backward(inputs): + return np.array(dout) * (1 - np.square(np.array(out))) + + +class MLP(fluid.imperative.Layer): + def __init__(self): + super(MLP, self).__init__() + self._fc1 = FC(3, + fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.1))) + self._fc2 = FC(4, + fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=0.1))) + + def forward(self, inputs): + x = self._fc1(inputs) + x = self._fc2(x) + x = fluid.layers.reduce_sum(x) + return x + + + np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) + with fluid.imperative.guard(): + var_inp = fluid.imperative.base.to_variable(np_inp) + mlp = MLP() + out = mlp(var_inp) + dy_out = out._numpy() + out._backward() +``` + +# Plan + +2.1,3 fulltime, Can run a few simple models. (Currently, 2 20% engs) + +4.1, 4 fulltime, Can run 6 models, Performance 70% Pytorch. Release alpha. + +6.1, 5 fulltime, Performance close to Pytorch, can run multi-devices. Release Beta. + +8.1, 5 fulltime, Works in general. Covert current models to use imperative mode. + +12.1, 5 fulltime, Can compile to static graph, support more optimizations. + +# Discussion + +TODO. -- GitLab