From c1914543b0eaef98450314a1b56f4f918aa36ce2 Mon Sep 17 00:00:00 2001 From: tensor-tang Date: Thu, 19 Oct 2017 14:34:44 +0800 Subject: [PATCH] refine mkldnn logic, move reset buffers into MKLDNNLayer --- paddle/gserver/layers/MKLDNNConvLayer.cpp | 233 +++------------- paddle/gserver/layers/MKLDNNConvLayer.h | 66 ----- paddle/gserver/layers/MKLDNNFcLayer.cpp | 101 ++----- paddle/gserver/layers/MKLDNNFcLayer.h | 8 - paddle/gserver/layers/MKLDNNLayer.h | 324 ++++++++++++++++++---- paddle/gserver/layers/MKLDNNPoolLayer.cpp | 103 +------ paddle/gserver/layers/MKLDNNPoolLayer.h | 13 - paddle/math/MKLDNNMatrix.cpp | 2 +- paddle/math/MKLDNNMatrix.h | 14 +- 9 files changed, 358 insertions(+), 506 deletions(-) diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp index 26810a64834..463e6ad0ed7 100644 --- a/paddle/gserver/layers/MKLDNNConvLayer.cpp +++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp @@ -116,8 +116,6 @@ void MKLDNNConvLayer::resetFwd(std::vector& pipeline, resetFwdBuffers(fwdPD_, in, wgt, bias, out); resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out); - - printValueFormatFlow(); } void MKLDNNConvLayer::resetBwd(std::vector& pipeline, @@ -135,12 +133,6 @@ void MKLDNNConvLayer::resetBwd(std::vector& pipeline, resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out); resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out); - - printGradFormatFlow(); -} - -void MKLDNNConvLayer::updateInputData() { - cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); } void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) { @@ -211,11 +203,18 @@ void MKLDNNConvLayer::resetFwdBuffers( MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { CHECK(pd); - resetInValue(pd, in); + resetInValue( + in, std::make_shared(pd->src_primitive_desc())); + + resetOutValue(out, pd->dst_primitive_desc()); - resetWgtBiasValue(pd, wgt, bias); + resetWithMatrix(wgt, weight_->getW(), pd->weights_primitive_desc()); - resetOutValue(pd, out); + bias = nullptr; + if (biases_ == nullptr || biases_->getW() == nullptr) { + return; + } + resetWithMatrix(bias, biases_->getW(), pd->bias_primitive_desc()); } void MKLDNNConvLayer::resetFwdPipeline( @@ -225,104 +224,12 @@ void MKLDNNConvLayer::resetFwdPipeline( MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - if (cvtInVal_) { - pipeline.push_back(*cvtInVal_); - } - if (bias) { fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out)); } else { fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out)); } pipeline.push_back(*fwd_); - - if (cvtOutVal_) { - pipeline.push_back(*cvtOutVal_); - } -} - -void MKLDNNConvLayer::resetInValue( - std::shared_ptr& pd, MKLDNNMatrixPtr& in) { - const MatrixPtr& inMat = inputLayers_[0]->getOutputValue(); - in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc()); - - // create buffer and reorder if input value do not match - cpuInVal_ = nullptr; - cvtInVal_ = nullptr; - - MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast(inMat); - CHECK_EQ(inputIsOnlyMKLDNN(), dnnIn != nullptr); - if (dnnIn != nullptr && dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) { - in = dnnIn; - return; - } - if (dnnIn) { - if (dnnIn->getFormat() == format::nc) { - CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format"; - // create a new one with nchw format and same data - memory::dims inDims = memory::dims{bs_, ic_, 1, 1}; - dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_); - } - if (dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) { - in = dnnIn; - return; - } - cpuInVal_ = dnnIn; - in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc()); - cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in); - CHECK(cvtInVal_) << "should not be emptry"; - } else { - memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_}; - cpuInVal_ = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_); - if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) { - // create new mkldnn matrix - in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc()); - cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in); - CHECK(cvtInVal_) << "should not be emptry"; - } else { - in = cpuInVal_; - } - } -} - -void MKLDNNConvLayer::resetWgtBiasValue( - std::shared_ptr& pd, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias) { - wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc()); - VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat(); - - bias = (biases_ && biases_->getW()) - ? MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc()) - : nullptr; -} - -void MKLDNNConvLayer::resetOutValue( - std::shared_ptr& pd, MKLDNNMatrixPtr& out) { - out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc()); - - // create reorder if output value has cpu device and pd do not match - cpuOutVal_ = nullptr; - cvtOutVal_ = nullptr; - if (!outputIsOnlyMKLDNN()) { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value; - memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; - cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_); - if (cpuOutVal_->getPrimitiveDesc() != pd->dst_primitive_desc()) { - out = MKLDNNMatrix::create(nullptr, pd->dst_primitive_desc()); - cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); - CHECK(cvtOutVal_) << "should not be empty"; - } else { - cpuOut->setData(output_.value->getData()); - cpuOutVal_ = out; - } - // when output is cpu device, change the mkldnn output value and make them - // share the same data. Then if next layer use inputlayer->getOuputValue() - // to achieve the input value, it will get the right data. - output_.value = std::dynamic_pointer_cast(cpuOutVal_); - return; - } - output_.value = std::dynamic_pointer_cast(out); } void MKLDNNConvLayer::resetBwdWgtPD( @@ -331,8 +238,8 @@ void MKLDNNConvLayer::resetBwdWgtPD( loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); // create backward weight using input, output and weight value memory desc - CHECK(inVal_) << "Should have input value"; - CHECK(outVal_) << "Should have output value"; + CHECK(inVal_) << "Should have internal input value"; + CHECK(outVal_) << "Should have internal output value"; CHECK(wgtVal_) << "Should have weight value"; algorithm algo = algorithm::convolution_direct; padding_kind padKind = padding_kind::zero; @@ -372,8 +279,8 @@ void MKLDNNConvLayer::resetBwdDataPD( memory::dims wgtDims, biasDims, strides, dilations, padL, padR; loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); - CHECK(inVal_) << "Should have input value"; - CHECK(outVal_) << "Should have output value"; + CHECK(inVal_) << "Should have internal input value"; + CHECK(outVal_) << "Should have internal output value"; // create backward data using input and output value memory desc // but using weight memory desc with any format auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct, @@ -399,12 +306,27 @@ void MKLDNNConvLayer::resetBwdBuffers( MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { CHECK(wgtPD); - resetOutGrad(wgtPD, out); + resetOutGrad(out, wgtPD->diff_dst_primitive_desc()); - resetWgtBiasGrad(wgtPD, wgt, bias); + resetWithMatrix( + wgt, weight_->getWGrad(), wgtPD->diff_weights_primitive_desc()); + CHECK(wgtVal_ != nullptr && + wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc()) + << "primitive desc of weight grad and value should be equal"; - resetInGrad(dataPD, in); + bias = nullptr; + if (biases_ && biases_->getWGrad()) { + resetWithMatrix( + bias, biases_->getWGrad(), wgtPD->diff_bias_primitive_desc()); + CHECK(bias && biasVal_ && + bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc()) + << "primitive desc of bias grad should equal the bias value"; + } + if (dataPD == nullptr) { + return; + } + resetInGrad(in, dataPD->diff_src_primitive_desc()); resetWgtValBwdData(dataPD, wgtValBwdData_); } @@ -416,10 +338,7 @@ void MKLDNNConvLayer::resetBwdPipeline( MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - if (cvtOutGrad_) { - pipeline.push_back(*cvtOutGrad_); - } - + CHECK(inVal_); // add bwdWgt handle if (bias) { bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias)); @@ -431,99 +350,13 @@ void MKLDNNConvLayer::resetBwdPipeline( if (dataPD == nullptr) { return; } - if (cvtWgtVal_) { pipeline.push_back(*cvtWgtVal_); } - // add bwdData handle CHECK(wgtValBwdData_) << "Should have weight memory"; bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in)); pipeline.push_back(*bwdData_); - - if (cvtInGrad_) { - pipeline.push_back(*cvtInGrad_); - } -} - -void MKLDNNConvLayer::resetOutGrad( - std::shared_ptr& wgtPD, MKLDNNMatrixPtr& out) { - cpuOutGrad_ = nullptr; - cvtOutGrad_ = nullptr; - CHECK(outVal_ != nullptr && - outVal_->getPrimitiveDesc() == wgtPD->diff_dst_primitive_desc()) - << "primitive desc of out grad and value should be equal"; - if (outputIsOnlyMKLDNN()) { - MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc()); - } else { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; - // always share the same grad data of CPU output - // then the activation can get the right grad from output_.grad - output_.grad->setData(cpuOut->getData()); - // same PrimitiveDesc with cpuInVal_ - CHECK(cpuOutVal_); - cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc()); - // create reorder if primitive desc does not match - if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) { - out = MKLDNNMatrix::create(nullptr, outVal_->getPrimitiveDesc()); - cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); - CHECK(cvtOutGrad_); - } else { - out = cpuOutGrad_; - } - } -} - -void MKLDNNConvLayer::resetWgtBiasGrad( - std::shared_ptr& wgtPD, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias) { - wgt = MKLDNNMatrix::create(weight_->getWGrad(), - wgtPD->diff_weights_primitive_desc()); - CHECK(nullptr != wgtVal_ && - wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc()) - << "primitive desc of weight grad and value should be equal"; - VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat(); - - bias = nullptr; - if (biasVal_ == nullptr) { - return; - } - bias = MKLDNNMatrix::create(biases_->getWGrad(), - wgtPD->diff_bias_primitive_desc()); - CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc()) - << "primitive desc of bias grad should equal the bias value"; -} - -void MKLDNNConvLayer::resetInGrad( - std::shared_ptr& dataPD, - MKLDNNMatrixPtr& in) { - in = nullptr; - cpuInGrad_ = nullptr; - cvtInGrad_ = nullptr; - if (dataPD == nullptr) { - return; - } - - if (inputIsOnlyMKLDNN()) { - MKLDNNLayer::resetInGrad(in, dataPD->diff_src_primitive_desc()); - CHECK(nullptr != inVal_ && - in->getPrimitiveDesc() == inVal_->getPrimitiveDesc()) - << "primitive desc of input grad and value should be equal"; - } else { - const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE); - // same PrimitiveDesc with cpuInVal_ - CHECK(cpuInVal_); - cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc()); - in = cpuInGrad_; - // create reorder if PrimitiveDesc does not match - if (cpuInGrad_->getPrimitiveDesc() != dataPD->diff_src_primitive_desc()) { - in = MKLDNNMatrix::create(getInputGrad(0, MKLDNN_DEVICE), - dataPD->diff_src_primitive_desc()); - cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_); - CHECK(cvtInGrad_); - } - } } void MKLDNNConvLayer::resetWgtValBwdData( diff --git a/paddle/gserver/layers/MKLDNNConvLayer.h b/paddle/gserver/layers/MKLDNNConvLayer.h index f84f2f737c4..1fed0e1c656 100644 --- a/paddle/gserver/layers/MKLDNNConvLayer.h +++ b/paddle/gserver/layers/MKLDNNConvLayer.h @@ -48,17 +48,6 @@ protected: // save forward primitive_desc, which can be used backward std::shared_ptr fwdPD_; - // MKLDNNMatrixPtr which should be created from CPU Device - MKLDNNMatrixPtr cpuInVal_; - MKLDNNMatrixPtr cpuInGrad_; - MKLDNNMatrixPtr cpuOutVal_; - MKLDNNMatrixPtr cpuOutGrad_; - // convert handle between CPU device and MKLDNN device - std::shared_ptr cvtInVal_; - std::shared_ptr cvtInGrad_; - std::shared_ptr cvtOutVal_; - std::shared_ptr cvtOutGrad_; - // whether the weight has been init bool hasInitedWgt_; @@ -94,8 +83,6 @@ public: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) override; - void updateInputData() override; - void updateWeights(const UpdateCallback& callback) override; void convertWeightsFromPaddle() override; @@ -109,26 +96,6 @@ public: << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_; } - void printValueFormatFlow() override { - if (cpuInVal_) { - VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>"; - } - MKLDNNLayer::printValueFormatFlow(); - if (cpuOutVal_) { - VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat(); - } - } - - void printGradFormatFlow() override { - if (cpuInGrad_) { - VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<"; - } - MKLDNNLayer::printGradFormatFlow(); - if (cpuOutGrad_) { - VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat(); - } - } - protected: /** * load the dims settings of this conv @@ -162,23 +129,6 @@ protected: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - /** - * reset MKLDNNMatrix of input value - */ - void resetInValue(std::shared_ptr& pd, - MKLDNNMatrixPtr& in); - /** - * reset MKLDNNMatrix of weight and bias value - */ - void resetWgtBiasValue(std::shared_ptr& pd, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias); - /** - * reset MKLDNNMatrix of output value - */ - void resetOutValue(std::shared_ptr& pd, - MKLDNNMatrixPtr& out); - /** * reset the backward weight primitive descriptor. */ @@ -207,22 +157,6 @@ protected: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - /** - * reset MKLDNNMatrix of output grad - */ - void resetOutGrad(std::shared_ptr& wgtPD, - MKLDNNMatrixPtr& out); - /** - * reset MKLDNNMatrix of weight and bias grad - */ - void resetWgtBiasGrad(std::shared_ptr& wgtPD, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias); - /** - * reset MKLDNNMatrix of input grad - */ - void resetInGrad(std::shared_ptr& dataPD, - MKLDNNMatrixPtr& in); /** * reset MKLDNNMatrix of weight value for backward data * since the primitive_desc would be different with wgtVal_ diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp index cf19a155681..9f82a3b7475 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.cpp +++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp @@ -62,7 +62,7 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() { CHECK(wgtVal_) << "should have been initialized"; bool hasNoSpatial_ = ih_ == 1 && iw_ == 1; auto targetDim = wgtVal_->getDims(); - auto srcFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo; + auto srcFmt = hasNoSpatial_ ? format::io : format::ihwo; wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim); hasInitedWgt_ = true; } @@ -71,7 +71,7 @@ void MKLDNNFcLayer::convertWeightsToPaddle() { CHECK(wgtVal_) << "should have been initialized"; bool hasNoSpatial_ = ih_ == 1 && iw_ == 1; auto targetDim = wgtVal_->getDims(); - auto dstFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo; + auto dstFmt = hasNoSpatial_ ? format::io : format::ihwo; wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); } @@ -100,8 +100,6 @@ void MKLDNNFcLayer::resetFwd(std::vector& pipeline, resetFwdPD(fwdPD_, in, wgt, bias, out); resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out); - - printValueFormatFlow(); } void MKLDNNFcLayer::resetBwd(std::vector& pipeline, @@ -119,12 +117,6 @@ void MKLDNNFcLayer::resetBwd(std::vector& pipeline, resetBwdDataPD(bwdDataPD, in, out); resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out); - - printGradFormatFlow(); -} - -void MKLDNNFcLayer::updateInputData() { - inVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); } void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) { @@ -139,51 +131,33 @@ void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { resetInValue(in); + CHECK(in); + in->downSpatial(); - resetWgtBiasValue(wgt, bias); - - resetOutValue(out); -} + // if (extInVal_) { + // extInVal_->downSpatial(); + // } -void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) { - if (inputIsOnlyMKLDNN()) { - const MatrixPtr& dnnIn = getInputValue(0); - in = std::dynamic_pointer_cast(dnnIn); - CHECK(in) << "Input should be MKLDNNMatrix"; - } else { - CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; - const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE); - in = MKLDNNMatrix::create( - cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_); - } - in->downSpatial(); -} + auto outPD = + MKLDNNMatrix::createPrimitiveDesc({bs_, oc_}, format::nc, engine_); + resetOutValue(out, outPD); -void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias) { format wgtFmt = format::oihw; - if (inVal_->getFormat() == format::nChw8c) { + if (in->getFormat() == format::nChw8c) { wgtFmt = format::oIhw8i; - } else if (inVal_->getFormat() == format::nChw16c) { + } else if (in->getFormat() == format::nChw16c) { wgtFmt = format::oIhw16i; } - wgt = MKLDNNMatrix::create( - weight_->getW(), {oc_, ic_, ih_, iw_}, wgtFmt, engine_); + auto wgtPD = + MKLDNNMatrix::createPrimitiveDesc({oc_, ic_, ih_, iw_}, wgtFmt, engine_); + resetWithMatrix(wgt, weight_->getW(), wgtPD); wgt->downSpatial(); - VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat(); - - bias = (biases_ && biases_->getW()) - ? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_) - : nullptr; -} -void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) { - out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_); - if (!outputIsOnlyMKLDNN()) { - // fc cpu output value do not need create convert, just share data - getOutput(CPU_DEVICE).value->setData(out->getData()); + if (biases_ == nullptr || biases_->getW() == nullptr) { + return; } - output_.value = std::dynamic_pointer_cast(out); + auto biasPD = MKLDNNMatrix::createPrimitiveDesc({oc_}, format::x, engine_); + resetWithMatrix(bias, biases_->getW(), biasPD); } void MKLDNNFcLayer::resetFwdPD(std::shared_ptr& pd, @@ -219,7 +193,6 @@ void MKLDNNFcLayer::resetFwdPipeline( } else { fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out)); } - pipeline.push_back(*fwd_); } @@ -227,44 +200,18 @@ void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - resetOutGrad(out); - - resetWgtBiasGrad(wgt, bias); - - resetInGrad(in); -} - -void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) { - CHECK(outVal_); - if (outputIsOnlyMKLDNN()) { - MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc()); - } else { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; - output_.grad->setData(cpuOut->getData()); - out = MKLDNNMatrix::create(cpuOut, outVal_->getPrimitiveDesc()); - } -} + CHECK(inVal_ && outVal_); + resetOutGrad(out, outVal_->getPrimitiveDesc()); + resetInGrad(in, inVal_->getPrimitiveDesc()); -void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias) { CHECK(wgtVal_); - wgt = MKLDNNMatrix::create(weight_->getWGrad(), wgtVal_->getPrimitiveDesc()); + resetWithMatrix(wgt, weight_->getWGrad(), wgtVal_->getPrimitiveDesc()); bias = nullptr; if (biasVal_ == nullptr) { return; } - bias = - MKLDNNMatrix::create(biases_->getWGrad(), biasVal_->getPrimitiveDesc()); -} - -void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) { - in = nullptr; - if (inputLayers_[0]->getOutput().grad == nullptr) { - return; - } - CHECK(inVal_); - MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc()); + resetWithMatrix(bias, biases_->getWGrad(), biasVal_->getPrimitiveDesc()); } void MKLDNNFcLayer::resetBwdWgtPD( diff --git a/paddle/gserver/layers/MKLDNNFcLayer.h b/paddle/gserver/layers/MKLDNNFcLayer.h index c76878aafab..ee861763ff3 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.h +++ b/paddle/gserver/layers/MKLDNNFcLayer.h @@ -66,8 +66,6 @@ public: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) override; - void updateInputData() override; - void updateWeights(const UpdateCallback& callback) override; void convertWeightsFromPaddle() override; @@ -84,9 +82,6 @@ protected: MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - void resetInValue(MKLDNNMatrixPtr& in); - void resetWgtBiasValue(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias); - void resetOutValue(MKLDNNMatrixPtr& out); void resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, MKLDNNMatrixPtr wgt, @@ -109,9 +104,6 @@ protected: MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out); - void resetOutGrad(MKLDNNMatrixPtr& out); - void resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias); - void resetInGrad(MKLDNNMatrixPtr& in); void resetBwdWgtPD(std::shared_ptr& pd, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index 4e2753eba23..ab59357ad01 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -58,11 +58,30 @@ protected: std::vector pipelineFwd_; std::vector pipelineBwd_; - // MKLDNNMatrixPtr with internal format + /// value and grad are seperate as internal and external buffers. + /// each MKLDNNLayer must init or reset internal buffer at least, + /// and the external buffer format is always nchw of nc(when h==w==1), + /// which is the same format as paddle. + /// When mixed with cpu device, the output_.value and output_.grad + /// always save the external data. + /// When all layers are all mkldnn layers, they could be internal data. + /// below MKLDNNMatrix buffers are all internal buffers MKLDNNMatrixPtr inVal_; MKLDNNMatrixPtr inGrad_; MKLDNNMatrixPtr outVal_; MKLDNNMatrixPtr outGrad_; + // below are external value and grad + MKLDNNMatrixPtr extInVal_; + MKLDNNMatrixPtr extInGrad_; + MKLDNNMatrixPtr extOutVal_; + MKLDNNMatrixPtr extOutGrad_; + // convert handle between external and internal buffers + std::shared_ptr cvtInVal_; + std::shared_ptr cvtInGrad_; + std::shared_ptr cvtOutVal_; + std::shared_ptr cvtOutGrad_; + + // weight and bias are always internal buffers MKLDNNMatrixPtr wgtVal_; MKLDNNMatrixPtr wgtGrad_; MKLDNNMatrixPtr biasVal_; @@ -91,6 +110,7 @@ public: oh_(0), ow_(0), needResetBwd_(true), + outputOnlyMKLDNN_(false), engine_(mkldnn::engine::cpu, 0), stream_(nullptr), fwd_(nullptr), @@ -128,20 +148,39 @@ public: REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); CHECK(!inputLayers_.empty()); copySeqInfoToOutputs(); - size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt(); + size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt(); if (inputElemenCnt_ != elemenCnt) { VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward"; // reset when input total sizes changed, not only the batchsize inputElemenCnt_ = elemenCnt; pipelineFwd_.clear(); reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); + // all cpu device output grad or value share output's + shareCPUDevice(); resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); + // MKLDNNLayer output value should be MKLDNNMatrix + // so external output value is necessary. + // then external input value is not necessary, + // since input may be mkldnn internal buffer. + CHECK(extOutVal_) << "external output value is necessary"; + output_.value = std::dynamic_pointer_cast(extOutVal_); + CHECK(inVal_ && outVal_) << "internal memories are necessary"; + if (cvtInVal_) { + pipelineFwd_.insert(pipelineFwd_.begin(), *cvtInVal_); + } + if (cvtOutVal_) { + pipelineFwd_.push_back(*cvtOutVal_); + } convertWeightsFromPaddle(); + printValueFormat(); needResetBwd_ = true; } if (inputLayers_[0]->getType() == "data") { - updateInputData(); + // Update input value data when input layer is "data" type, + // since the input value data address might be changed. + CHECK(extInVal_); + extInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); } if (!outputOnlyMKLDNN_) { @@ -149,8 +188,7 @@ public: } stream_->submit(pipelineFwd_); } - - /* activation */ { + { REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); forwardActivation(); } @@ -163,6 +201,16 @@ public: pipelineMergeGrad_.clear(); mergeGrad_ = nullptr; resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); + // external output grad is not necessary + // since output may be mkldnn internal buffer or merge them directly. + CHECK(outGrad_) << "internal output grad is necessary"; + if (cvtOutGrad_) { + pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_); + } + if (cvtInGrad_) { + pipelineBwd_.push_back(*cvtInGrad_); + } + printGradFormat(); needResetBwd_ = false; } @@ -179,7 +227,6 @@ public: REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); stream_->submit(pipelineBwd_); } - { REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); updateWeights(callback); @@ -195,7 +242,7 @@ public: int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0; /** - * reset the mkldnn forward primitve and memory + * reset the mkldnn forward primitve and memories * only would be called when input size changes */ virtual void resetFwd(std::vector& pipeline, @@ -205,7 +252,7 @@ public: MKLDNNMatrixPtr& out) = 0; /** - * reset the mkldnn backward primitve and memory for mkldnn fc + * reset the mkldnn backward primitve and memories * only would be called when needed */ virtual void resetBwd(std::vector& pipeline, @@ -214,12 +261,6 @@ public: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) = 0; - /** - * Update input value data when input layer is "data" type. - * Since the input value data address might be changed. - */ - virtual void updateInputData() {} - /** * Update weights and biases if necessary. */ @@ -272,21 +313,167 @@ protected: } /** - * reset the output grad matrix from primitive desc. - * and reset the merge grad primitive if needed. - * note: when this layer has serval outputs, + * reset MKLDNNMatrix from Matrix and internal primitive desc. + * reset nullptr if matrix or primitive desc is empty + */ + void resetWithMatrix(MKLDNNMatrixPtr& dnn, + const MatrixPtr& mat, + mkldnn::memory::primitive_desc pd) { + dnn = nullptr; + if (mat == nullptr) { + return; + } + dnn = MKLDNNMatrix::create(mat, pd); + } + + /** + * reset input value from input MKLDNNMatrix and internal primitive desc. + * reset both internal and external buffer and create reorder if necessary. + */ + void resetInValue( + MKLDNNMatrixPtr& in, + const std::shared_ptr& intPD = nullptr) { + cvtInVal_ = nullptr; + extInVal_ = nullptr; + in = nullptr; + CHECK_GT(bs_ * ic_ * ih_ * iw_, 0); + auto extPD = MKLDNNMatrix::createPrimitiveDesc( + {bs_, ic_, ih_, iw_}, mkldnn::memory::format::nchw, engine_); + const MatrixPtr& inMat = inputLayers_[0]->getOutputValue(); + in = std::dynamic_pointer_cast(inMat); + CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr); + if (in == nullptr || in->getFormat() == mkldnn::memory::format::nc) { + in = MKLDNNMatrix::create(inMat, extPD); + } + extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr; + if (in->getFormat() == mkldnn::memory::format::nc) { + CHECK(ih_ == 1 && iw_ == 1); + } + if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) { + return; + } + // need create reorder + in = MKLDNNMatrix::create(nullptr, *intPD); + extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(inMat, extPD); + cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in); + CHECK(cvtInVal_) << "should not be emptry"; + } + + /** + * reset output value from internal primitive desc. + * reset both internal and external buffer and create reorder if necessary. + */ + void resetOutValue(MKLDNNMatrixPtr& out, + mkldnn::memory::primitive_desc intPD) { + cvtOutVal_ = nullptr; + out = MKLDNNMatrix::create(output_.value, intPD); + extOutVal_ = out; + if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) { + return; + } + // need create reorder + CHECK_GT(bs_ * oc_ * oh_ * ow_, 0); + extOutVal_ = MKLDNNMatrix::create(output_.value, + {bs_, oc_, oh_, ow_}, + mkldnn::memory::format::nchw, + engine_); + out = MKLDNNMatrix::create(nullptr, intPD); + cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_); + CHECK(cvtOutVal_) << "should not be empty"; + } + + /** + * reset input grad from internal primitive desc. + * reset both internal and external buffer and create reorder if necessary. + */ + void resetInGrad(MKLDNNMatrixPtr& in, mkldnn::memory::primitive_desc intPD) { + cvtInGrad_ = nullptr; + extInGrad_ = nullptr; + in = nullptr; + LayerPtr& input = inputLayers_[0]; + if (input->getOutputGrad() == nullptr) { + // no need input grad + return; + } + CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1) + << "only support input is MKLDNN layer or only have one output layer"; + // when input is a mkldnn branch node, + // this layer will save input grad to a internal buffer, + // and the mkldnn input layer will merge them to actual prev->output_.grad + const MatrixPtr& inMat = + input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr; + in = MKLDNNMatrix::create(inMat, intPD); + Argument& arg = input->getOutput(this->getName()); + arg.grad = std::dynamic_pointer_cast(in); + CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD) + << "should have internal input value and primitive desc must equal"; + if (inputIsOnlyMKLDNN()) { + return; + } + + extInGrad_ = in; + if (isPaddleFormat(extInGrad_->getFormat())) { + return; + } + // need create reorder + CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat())) + << "should have external input value and the format must be nchw(nc)"; + extInGrad_ = MKLDNNMatrix::create(inMat, extInVal_->getPrimitiveDesc()); + CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD) + << "should have internal input value and primitive desc must equal"; + in = MKLDNNMatrix::create(nullptr, intPD); + cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_); + CHECK(cvtInGrad_); + } + + /** + * reset output grad from internal primitive desc. + * merge grad if necessary. + * reset both internal and external buffer and create reorder if necessary. + * note: about merge grad, when this layer has serval outputs, * it could not be mixed with cpu device, * since it can not get memory desc from cpu device. */ - virtual void resetOutGrad(MKLDNNMatrixPtr& out, - mkldnn::memory::primitive_desc pd) { - CHECK(outputIsOnlyMKLDNN()) << "do not support mixed with other device yet"; + void resetOutGrad(MKLDNNMatrixPtr& out, + mkldnn::memory::primitive_desc intPD) { + cvtOutGrad_ = nullptr; + extOutGrad_ = nullptr; + out = nullptr; + MatrixPtr& outMat = output_.grad; + out = MKLDNNMatrix::create(outMat, intPD); + resetMergeGrad(out); + if (outputIsOnlyMKLDNN()) { + return; + } + CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device"; + extOutGrad_ = out; + if (isPaddleFormat(extOutGrad_->getFormat())) { + return; + } + // need create reorder + CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat())) + << "should have external output value and the format must be nchw(nc)"; + extOutGrad_ = MKLDNNMatrix::create(outMat, extOutVal_->getPrimitiveDesc()); + CHECK(outVal_ != nullptr && outVal_->getPrimitiveDesc() == intPD) + << "should have internal output value and primitive desc must equal"; + out = MKLDNNMatrix::create(nullptr, intPD); + cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out); + CHECK(cvtOutGrad_); + } + + /** + * reset the merge grad primitive if necessary. + * note: do not support the grads are mixed with cpu device, + * since it can not get memory desc from cpu device. + */ + virtual void resetMergeGrad(MKLDNNMatrixPtr& out) { mergeGrad_ = nullptr; pipelineMergeGrad_.clear(); - out = MKLDNNMatrix::create(output_.grad, pd); - if (outputMap_.size() <= 1) { + if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) { + // do not merge when output is not all MKLDNN or only one output return; } + CHECK(out) << "should have reset internal ouput grad"; std::vector scales(outputMap_.size(), 1.0); std::vector srcPDs; std::vector srcs; @@ -309,15 +496,13 @@ protected: for (size_t i = 1; i < srcPDs.size(); ++i) { CHECK(srcPDs[0] == srcPDs[i]); } - tmpOutGrad_ = nullptr; + tmpOutGrad_ = out; tmpCvt_ = nullptr; if (out->getPrimitiveDesc() != srcPDs[0]) { tmpOutGrad_ = MKLDNNMatrix::create(nullptr, srcPDs[0]); tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out); CHECK(tmpCvt_); pipelineMergeGrad_.push_back(*tmpCvt_); - } else { - tmpOutGrad_ = out; } auto sumPD = mkldnn::sum::primitive_desc( @@ -326,21 +511,6 @@ protected: pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_); } - /** - * reset input grad from primitive desc. - * this function is avaiable for input is only mkldnn - * or input do not care cpu device - */ - virtual void resetInGrad(MKLDNNMatrixPtr& in, - mkldnn::memory::primitive_desc pd) { - LayerPtr& input = inputLayers_[0]; - const MatrixPtr& grad = - input->getOutputMapSize() > 1 ? nullptr : input->getOutput().grad; - in = MKLDNNMatrix::create(grad, pd); - Argument& arg = input->getOutput(this->getName()); - arg.grad = std::dynamic_pointer_cast(in); - } - /** * print info about sizes */ @@ -351,22 +521,50 @@ protected: } /** - * Print the mkldnn memory format flow of value + * print the mkldnn memory format of value */ - virtual void printValueFormatFlow() { - if (inVal_ && outVal_) { - VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> " - << outVal_->getFormat(); + virtual void printValueFormat() { + if (extInVal_) { + VLOG(MKLDNN_FMTS) << extInVal_->getFormat() << " >>> "; + } + if (inVal_) { + VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>>"; + } + if (outVal_) { + VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> "; + } + if (extOutVal_) { + VLOG(MKLDNN_FMTS) << extOutVal_->getFormat(); + } + if (wgtVal_) { + VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat(); + } + if (biasVal_) { + VLOG(MKLDNN_FMTS) << "Bias value format: " << biasVal_->getFormat(); } } /** - * Print the mkldnn memory format flow of grad + * print the mkldnn memory format of grad */ - virtual void printGradFormatFlow() { - if (inGrad_ && outGrad_) { - VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< " - << outGrad_->getFormat(); + virtual void printGradFormat() { + if (extInGrad_) { + VLOG(MKLDNN_FMTS) << extInGrad_->getFormat() << " <<< "; + } + if (inGrad_) { + VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<<"; + } + if (outGrad_) { + VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< "; + } + if (extOutGrad_) { + VLOG(MKLDNN_FMTS) << extOutGrad_->getFormat(); + } + if (wgtGrad_) { + VLOG(MKLDNN_FMTS) << "Weight grad format: " << wgtGrad_->getFormat(); + } + if (biasGrad_) { + VLOG(MKLDNN_FMTS) << "Bias grad format: " << biasGrad_->getFormat(); } } @@ -405,6 +603,19 @@ protected: void setDevice(int id) { deviceId_ = id; } private: + /** + * check the format is nchw or nc, + * which is supported by Paddle default memory layout + */ + bool isPaddleFormat(mkldnn::memory::format fmt) { + if (fmt == mkldnn::memory::format::nchw || + fmt == mkldnn::memory::format::nc) { + return true; + } else { + return false; + } + } + /** * clear all grad */ @@ -449,6 +660,19 @@ private: } } + /** + * if have cpu device, share value and grad data with output_ + */ + void shareCPUDevice() { + if (outputIsOnlyMKLDNN()) { + return; + } + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + outputOtherDevice_[i].value = output_.value; + outputOtherDevice_[i].grad = output_.grad; + } + } + /** * Check the cpu device number of outputOtherDevice_. * should have only one at most. diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.cpp b/paddle/gserver/layers/MKLDNNPoolLayer.cpp index 0e53e2d1b7e..6e89260f499 100644 --- a/paddle/gserver/layers/MKLDNNPoolLayer.cpp +++ b/paddle/gserver/layers/MKLDNNPoolLayer.cpp @@ -85,8 +85,6 @@ void MKLDNNPoolLayer::resetFwd(std::vector& pipeline, resetFwdPD(fwdPD_, in, out); resetFwdPipeline(pipeline, fwdPD_, in, out); - - printValueFormatFlow(); } void MKLDNNPoolLayer::resetBwd(std::vector& pipeline, @@ -101,65 +99,22 @@ void MKLDNNPoolLayer::resetBwd(std::vector& pipeline, resetBwdPD(pd, in, out); resetBwdPipeline(pipeline, pd, in, out); - - printGradFormatFlow(); -} - -void MKLDNNPoolLayer::updateInputData() { - inVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); } void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { resetInValue(in); - resetOutValue(out); -} - -void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) { - if (inputIsOnlyMKLDNN()) { - const MatrixPtr& dnnIn = getInputValue(0); - in = std::dynamic_pointer_cast(dnnIn); - CHECK(in) << "Input should be MKLDNNMatrix"; - } else { - CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; - const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE); - in = MKLDNNMatrix::create( - cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_); - } -} - -void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) { - CHECK(inVal_) << "Should reset input value first"; memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; - out = MKLDNNMatrix::create( - output_.value, outDims, inVal_->getFormat(), engine_); - - // create reorder if output value has cpu device and pd do not match - cpuOutVal_ = nullptr; - cvtOutVal_ = nullptr; - if (!outputIsOnlyMKLDNN()) { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value; - cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_); - if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) { - out = MKLDNNMatrix::create(nullptr, out->getPrimitiveDesc()); - cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); - CHECK(cvtOutVal_) << "should not be emptry"; - } else { - cpuOut->setData(output_.value->getData()); - cpuOutVal_ = out; - } - output_.value = std::dynamic_pointer_cast(cpuOutVal_); - return; - } - output_.value = std::dynamic_pointer_cast(outVal_); + CHECK(in); + auto outPD = + MKLDNNMatrix::createPrimitiveDesc(outDims, in->getFormat(), engine_); + resetOutValue(out, outPD); } void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, MKLDNNMatrixPtr out) { - memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_}; - memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; memory::dims kernels = memory::dims{fh_, fw_}; memory::dims strides = memory::dims{sh_, sw_}; memory::dims padL = memory::dims{ph_, pw_}; @@ -194,58 +149,26 @@ void MKLDNNPoolLayer::resetFwdPipeline( ? std::make_shared(pool_fwd(*pd, *in, *out, *workspace_)) : std::make_shared(pool_fwd(*pd, *in, *out)); pipeline.push_back(*fwd_); - - if (cvtOutVal_) { - pipeline.push_back(*cvtOutVal_); - } } void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { - resetOutGrad(out); - - resetInGrad(in); -} -void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) { - cpuOutGrad_ = nullptr; - cvtOutGrad_ = nullptr; - CHECK(outVal_); - if (outputIsOnlyMKLDNN()) { - MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc()); - } else { - const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; - // always share the same grad data of CPU output - // then the activation can get the right grad from output_.grad - output_.grad->setData(cpuOut->getData()); - cpuOutGrad_ = MKLDNNMatrix::create( - cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_); - if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) { - out = MKLDNNMatrix::create(nullptr, outVal_->getPrimitiveDesc()); - cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); - CHECK(cvtOutGrad_) << "should not be emptry"; - } else { - out = cpuOutGrad_; - } - } -} - -void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) { - in = nullptr; - if (inputLayers_[0]->getOutput().grad == nullptr) { - return; - } - CHECK(inVal_); - MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc()); + CHECK(inVal_ && outVal_); + resetOutGrad(out, outVal_->getPrimitiveDesc()); + resetInGrad(in, inVal_->getPrimitiveDesc()); } void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { + pd = nullptr; + if (in == nullptr) { + return; + } memory::dims kernels = memory::dims{fh_, fw_}; memory::dims strides = memory::dims{sh_, sw_}; memory::dims padL = memory::dims{ph_, pw_}; memory::dims padR = getPaddingR(); - CHECK(in); CHECK(out); auto bwdDesc = pool_bwd::desc(poolAlgo_, in->getMemoryDesc(), @@ -263,8 +186,8 @@ void MKLDNNPoolLayer::resetBwdPipeline( std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out) { - if (cvtOutGrad_) { - pipeline.push_back(*cvtOutGrad_); + if (pd == nullptr) { + return; } bwdData_ = diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.h b/paddle/gserver/layers/MKLDNNPoolLayer.h index 891e15a7efc..c5ec87828bf 100644 --- a/paddle/gserver/layers/MKLDNNPoolLayer.h +++ b/paddle/gserver/layers/MKLDNNPoolLayer.h @@ -38,13 +38,6 @@ protected: // pooling_avg or pooling_max mkldnn::algorithm poolAlgo_; - // MKLDNNMatrixPtr which should be created from CPU Device - MKLDNNMatrixPtr cpuOutVal_; - MKLDNNMatrixPtr cpuOutGrad_; - // convert handle between CPU device and MKLDNN device - std::shared_ptr cvtOutVal_; - std::shared_ptr cvtOutGrad_; - // save forward primitive_desc, which can be used backward std::shared_ptr fwdPD_; // according to https://github.com/01org/mkl-dnn/blob/master/tests/gtests/ @@ -74,8 +67,6 @@ public: MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) override; - void updateInputData() override; - void printSizeInfo() override { MKLDNNLayer::printSizeInfo(); VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_ @@ -90,8 +81,6 @@ protected: * reset pipeline. */ void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); - void resetInValue(MKLDNNMatrixPtr& in); - void resetOutValue(MKLDNNMatrixPtr& out); void resetFwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr in, MKLDNNMatrixPtr out); @@ -106,8 +95,6 @@ protected: * reset pipeline. */ void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); - void resetOutGrad(MKLDNNMatrixPtr& out); - void resetInGrad(MKLDNNMatrixPtr& in); void resetBwdPD(std::shared_ptr& pd, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); diff --git a/paddle/math/MKLDNNMatrix.cpp b/paddle/math/MKLDNNMatrix.cpp index 0778bb63b7b..c606560473a 100644 --- a/paddle/math/MKLDNNMatrix.cpp +++ b/paddle/math/MKLDNNMatrix.cpp @@ -46,7 +46,7 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, memory::format fmt, engine& eg, mkldnn::memory::data_type dtype) { - return create(m, memory::primitive_desc(memory::desc(dims, dtype, fmt), eg)); + return create(m, createPrimitiveDesc(dims, fmt, eg, dtype)); } std::shared_ptr MKLDNNMatrix::createReorder(const MKLDNNMatrixPtr& src, diff --git a/paddle/math/MKLDNNMatrix.h b/paddle/math/MKLDNNMatrix.h index c843115eb9a..9e3f29eb575 100644 --- a/paddle/math/MKLDNNMatrix.h +++ b/paddle/math/MKLDNNMatrix.h @@ -52,12 +52,24 @@ public: mkldnn::engine& eg, mkldnn::memory::data_type dtype = mkldnn::memory::data_type::f32); + /** + * Create primitive descriptor. + * default with f32 dtype + */ + static mkldnn::memory::primitive_desc createPrimitiveDesc( + const mkldnn::memory::dims dims, + const mkldnn::memory::format& fmt, + const mkldnn::engine& eg, + const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) { + return mkldnn::memory::primitive_desc(memory::desc(dims, dtype, fmt), eg); + } + /** * Create Memory descriptor. * default with any format and f32 dtype */ static mkldnn::memory::desc createMemoryDesc( - const mkldnn::memory::dims& dims, + const mkldnn::memory::dims dims, const mkldnn::memory::format& fmt = mkldnn::memory::format::any, const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) { return mkldnn::memory::desc(dims, dtype, fmt); -- GitLab