提交 c0aa1367 编写于 作者: L lidanqing 提交者: Tao Luo

Fp32 vs int8 qat C++ performance (#21244)

* add ut for comparing FP32 and QAT INT8

* add save qat transformed model python script
test=develop

* updated

* added missing file

* add "with_label"
test=develop

* performance benchmark as unit test
test=develop

* change names of unnecessary thing

* Change CMakeList.txt for model downloading and UT
test=develop

* change names of functions and params for more readable code
test=develop

* Change PADDLE_ENFORCE messages
test=develop

* fix indent problems
test=develop

* indent problems
test=develop
上级 f1178e9d
......@@ -16,6 +16,12 @@ function(download_int8_data install_dir data_file)
endif()
endfunction()
function(download_qat_data install_dir data_file)
if (NOT EXISTS ${install_dir}/${data_file})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL}/int8/QAT_models ${data_file})
endif()
endfunction()
function(download_model_and_data install_dir model_name data_name)
download_data(${install_dir} ${model_name})
download_data(${install_dir} ${data_name})
......@@ -31,7 +37,7 @@ function(inference_analysis_api_test target install_dir filename)
ARGS --infer_model=${install_dir}/model --infer_data=${install_dir}/data.txt --refer_result=${install_dir}/result.txt)
endfunction()
function(inference_analysis_api_int8_test_build TARGET_NAME filename)
function(inference_analysis_api_test_build TARGET_NAME filename)
inference_analysis_test_build(${TARGET_NAME} SRCS ${filename}
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} benchmark)
endfunction()
......@@ -77,6 +83,18 @@ function(inference_analysis_api_test_with_refer_result target install_dir filena
--refer_result=${install_dir}/result.txt)
endfunction()
function(inference_analysis_api_qat_test_run TARGET_NAME test_binary fp32_model_dir int8_model_dir data_path)
inference_analysis_test_run(${TARGET_NAME}
COMMAND ${test_binary}
ARGS --fp32_model=${fp32_model_dir}
--int8_model=${int8_model_dir}
--infer_data=${data_path}
--batch_size=50
--paddle_num_threads=${CPU_NUM_THREADS_ON_CI}
--with_accuracy_layer=false
--iterations=2)
endfunction()
if(NOT APPLE AND WITH_MKLML)
# RNN1
set(RNN1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn1")
......@@ -196,9 +214,10 @@ download_data(${MOBILENET_MODEL_DIR} "mobilenet_model.tar.gz")
inference_analysis_api_test_with_fake_data_run(test_analyzer_mobilenet_depthwise_conv ${IMG_CLASS_TEST_APP}
${MOBILENET_MODEL_DIR} false)
### INT8 tests
if(WITH_MKLDNN)
### INT8 tests
set(INT8_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8v2")
### Image classification tests
......@@ -210,7 +229,7 @@ if(WITH_MKLDNN)
download_int8_data(${INT8_DATA_DIR} "imagenet_val_100_tail.tar.gz")
# build test binary to be used in subsequent tests
inference_analysis_api_int8_test_build(${INT8_IMG_CLASS_TEST_APP} ${INT8_IMG_CLASS_TEST_APP_SRC})
inference_analysis_api_test_build(${INT8_IMG_CLASS_TEST_APP} ${INT8_IMG_CLASS_TEST_APP_SRC})
# resnet50 int8
set(INT8_RESNET50_MODEL_DIR "${INT8_DATA_DIR}/resnet50")
......@@ -259,13 +278,29 @@ if(WITH_MKLDNN)
download_int8_data(${INT8_DATA_DIR} "pascalvoc_small.tar.gz")
# build test binary to be used in subsequent tests
inference_analysis_api_int8_test_build(${INT8_OBJ_DETECT_TEST_APP} ${INT8_OBJ_DETECT_TEST_APP_SRC})
inference_analysis_api_test_build(${INT8_OBJ_DETECT_TEST_APP} ${INT8_OBJ_DETECT_TEST_APP_SRC})
# mobilenet-ssd int8
set(INT8_MOBILENET_SSD_MODEL_DIR "${INT8_DATA_DIR}/mobilenet-ssd")
download_int8_data(${INT8_MOBILENET_SSD_MODEL_DIR} "mobilenet_ssd_int8_model.tar.gz" )
inference_analysis_api_object_dection_int8_test_run(test_analyzer_int8_mobilenet_ssd ${INT8_OBJ_DETECT_TEST_APP} ${INT8_MOBILENET_SSD_MODEL_DIR} ${PASCALVOC_DATA_PATH})
### optimized FP32 vs. QAT INT8 tests
set(QAT_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8v2")
set(QAT_IMG_CLASS_TEST_APP "test_analyzer_qat_image_classification")
set(QAT_IMG_CLASS_TEST_APP_SRC "analyzer_qat_image_classification_tester.cc")
# build test binary to be used in subsequent tests
inference_analysis_api_test_build(${QAT_IMG_CLASS_TEST_APP} ${QAT_IMG_CLASS_TEST_APP_SRC})
# ResNet50 FP32 vs. QAT INT8
set(QAT2_RESNET50_MODEL_DIR "${QAT_DATA_DIR}/ResNet50_qat_perf")
download_qat_data(${QAT2_RESNET50_MODEL_DIR} "ResNet50_qat_perf.tar.gz")
set(QAT2_INT8_RESNET50_MODEL_DIR "${QAT_DATA_DIR}/ResNet50_qat_perf_int8")
download_qat_data(${QAT2_INT8_RESNET50_MODEL_DIR} "ResNet50_qat_perf_int8.tar.gz")
inference_analysis_api_qat_test_run(test_analyzer_qat_performance_benchmark ${QAT_IMG_CLASS_TEST_APP} ${QAT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float ${QAT2_INT8_RESNET50_MODEL_DIR}/ResNet50_qat_perf_int8 ${IMAGENET_DATA_PATH})
endif()
# bert, max_len=20, embedding_dim=128
......
......@@ -35,8 +35,8 @@ class TensorReader {
public:
TensorReader(std::ifstream &file, size_t beginning_offset,
std::vector<int> shape, std::string name)
: file_(file), position(beginning_offset), shape_(shape), name_(name) {
numel = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
: file_(file), position_(beginning_offset), shape_(shape), name_(name) {
numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
std::multiplies<size_t>());
}
......@@ -45,11 +45,11 @@ class TensorReader {
tensor.name = name_;
tensor.shape = shape_;
tensor.dtype = GetPaddleDType<T>();
tensor.data.Resize(numel * sizeof(T));
tensor.data.Resize(numel_ * sizeof(T));
file_.seekg(position);
file_.read(static_cast<char *>(tensor.data.data()), numel * sizeof(T));
position = file_.tellg();
file_.seekg(position_);
file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
position_ = file_.tellg();
if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
if (file_.fail())
......@@ -60,10 +60,10 @@ class TensorReader {
protected:
std::ifstream &file_;
size_t position;
size_t position_;
std::vector<int> shape_;
std::string name_;
size_t numel;
size_t numel_;
};
std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
......@@ -71,10 +71,13 @@ std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
int num_images = FLAGS_warmup_batch_size) {
int test_data_batch_size = test_data[0][0].shape[0];
auto iterations = test_data.size();
PADDLE_ENFORCE(
static_cast<size_t>(num_images) <= iterations * test_data_batch_size,
"The requested quantization warmup data size " +
std::to_string(num_images) + " is bigger than all test data size.");
auto all_test_data_size = iterations * test_data_batch_size;
PADDLE_ENFORCE_LE(static_cast<size_t>(num_images), all_test_data_size,
platform::errors::InvalidArgument(
"The requested quantization warmup data size must be "
"smaller than the test data size. But received warmup "
"size is %d and test data size is %d",
num_images, all_test_data_size));
PaddleTensor images;
images.name = "image";
......
......@@ -50,7 +50,7 @@ template <typename T>
class TensorReader {
public:
TensorReader(std::ifstream &file, size_t beginning_offset, std::string name)
: file_(file), position(beginning_offset), name_(name) {}
: file_(file), position_(beginning_offset), name_(name) {}
PaddleTensor NextBatch(std::vector<int> shape, std::vector<size_t> lod) {
int numel =
......@@ -64,9 +64,9 @@ class TensorReader {
tensor.lod.clear();
tensor.lod.push_back(lod);
}
file_.seekg(position);
file_.seekg(position_);
file_.read(reinterpret_cast<char *>(tensor.data.data()), numel * sizeof(T));
position = file_.tellg();
position_ = file_.tellg();
if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
if (file_.fail())
throw std::runtime_error(name_ + ": failed reading file.");
......@@ -75,7 +75,7 @@ class TensorReader {
protected:
std::ifstream &file_;
size_t position;
size_t position_;
std::string name_;
};
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
void SetConfig(AnalysisConfig *cfg, std::string model_path) {
cfg->SetModel(model_path);
cfg->DisableGpu();
cfg->SwitchIrOptim(false);
cfg->SwitchSpecifyInputNames();
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
cfg->EnableMKLDNN();
}
template <typename T>
class TensorReader {
public:
TensorReader(std::ifstream &file, size_t beginning_offset,
std::vector<int> shape, std::string name)
: file_(file), position_(beginning_offset), shape_(shape), name_(name) {
numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
std::multiplies<size_t>());
}
PaddleTensor NextBatch() {
PaddleTensor tensor;
tensor.name = name_;
tensor.shape = shape_;
tensor.dtype = GetPaddleDType<T>();
tensor.data.Resize(numel_ * sizeof(T));
file_.seekg(position_);
file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
position_ = file_.tellg();
if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
if (file_.fail())
throw std::runtime_error(name_ + ": failed reading file.");
return tensor;
}
protected:
std::ifstream &file_;
size_t position_;
std::vector<int> shape_;
std::string name_;
size_t numel_;
};
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs,
bool with_accuracy_layer = FLAGS_with_accuracy_layer,
int32_t batch_size = FLAGS_batch_size) {
std::ifstream file(FLAGS_infer_data, std::ios::binary);
if (!file) {
FAIL() << "Couldn't open file: " << FLAGS_infer_data;
}
int64_t total_images{0};
file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
LOG(INFO) << "Total images in file: " << total_images;
std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
std::vector<int> label_batch_shape{batch_size, 1};
auto images_offset_in_file = static_cast<size_t>(file.tellg());
TensorReader<float> image_reader(file, images_offset_in_file,
image_batch_shape, "image");
auto iterations_max = total_images / batch_size;
auto iterations = iterations_max;
if (FLAGS_iterations > 0 && FLAGS_iterations < iterations_max) {
iterations = FLAGS_iterations;
}
auto labels_offset_in_file =
images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224;
TensorReader<int64_t> label_reader(file, labels_offset_in_file,
label_batch_shape, "label");
for (auto i = 0; i < iterations; i++) {
auto images = image_reader.NextBatch();
std::vector<PaddleTensor> tmp_vec;
tmp_vec.push_back(std::move(images));
if (with_accuracy_layer) {
auto labels = label_reader.NextBatch();
tmp_vec.push_back(std::move(labels));
}
inputs->push_back(std::move(tmp_vec));
}
}
TEST(Analyzer_qat_image_classification, quantization) {
AnalysisConfig fp32_cfg;
SetConfig(&fp32_cfg, FLAGS_fp32_model);
AnalysisConfig int8_cfg;
SetConfig(&int8_cfg, FLAGS_int8_model);
// read data from file and prepare batches with test data
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
// 0 is avg_cost, 1 is top1_accuracy, 2 is top5_accuracy or mAP
CompareAnalysisAndAnalysis(&fp32_cfg, &int8_cfg, input_slots_all,
FLAGS_with_accuracy_layer, 1);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -39,9 +39,13 @@
DEFINE_string(model_name, "", "model name");
DEFINE_string(infer_model, "", "model path");
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
DEFINE_string(infer_data, "", "data file");
DEFINE_string(refer_result, "", "reference result for comparison");
DEFINE_int32(batch_size, 1, "batch size");
DEFINE_bool(with_accuracy_layer, true,
"Calculate the accuracy while label is in the input");
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
DEFINE_bool(enable_int8, true, "Enable INT8 type prediction");
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
......@@ -246,7 +250,11 @@ void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
const std::vector<std::string> *feed_names = nullptr,
const int continuous_inuput_index = 0) {
// Set fake_image_data
PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
platform::errors::InvalidArgument(
"In SetFakeImageInput, expected test_all_data = false, "
"but now test_all_data=",
FLAGS_test_all_data));
std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
dirname, is_combined, model_filename, params_filename);
std::ostringstream os;
......@@ -259,7 +267,13 @@ void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
}
LOG(INFO) << os.str();
if (feed_names) {
PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
PADDLE_ENFORCE_EQ(
feed_names->size(), feed_target_shapes.size(),
platform::errors::InvalidArgument(
"The size of feeds_names and size of "
"feed_target_shapes must be equal, but now feeds_names "
"size is %d and feed_target_shapes size is %d",
feed_names->size(), feed_target_shapes.size()));
}
std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
......@@ -474,12 +488,20 @@ void TestPrediction(const PaddlePredictor::Config *config,
void SummarizeAccuracy(float avg_acc_fp32, float avg_acc_int8,
int compared_idx) {
PADDLE_ENFORCE_LE(compared_idx, 2,
"Compare either top1 accuracy or mAP (top5), the "
"compared_idx is out of range");
PADDLE_ENFORCE_GE(compared_idx, 1,
"Compare either top1 accuracy or mAP (top5), the "
"compared_idx is out of range");
PADDLE_ENFORCE_LE(
compared_idx, 2,
platform::errors::InvalidArgument(
"The compared_idx should be <= 2. But received compared_idx = %d. "
"For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
"Average Precision (mAP), set compared_idx = 2.",
compared_idx));
PADDLE_ENFORCE_GE(
compared_idx, 1,
platform::errors::InvalidArgument(
"The compared_idx should be >= 1. But received compared_idx = %d. "
"For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
"Average Precision (mAP), set compared_idx = 2.",
compared_idx));
std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
LOG(INFO) << "--- Accuracy summary --- ";
LOG(INFO) << "Accepted " << prefix
......@@ -509,9 +531,10 @@ void SummarizePerformance(float sample_latency_fp32,
float CompareAccuracyOne(
const std::vector<std::vector<PaddleTensor>> &output_slots,
int compared_idx) {
if (output_slots.size() == 0)
throw std::invalid_argument(
"CompareAccuracy: output_slots vector is empty.");
PADDLE_ENFORCE_GT(output_slots.size(), 0,
platform::errors::InvalidArgument(
"The accuracy vector is empty. The accuracy vector "
"size should be bigger than 0"));
float total_accs{0};
......@@ -520,12 +543,19 @@ float CompareAccuracyOne(
case 1:
PADDLE_ENFORCE_GE(
output_slots[i].size(), 2UL,
"To achieve top 1 accuracy, output_slots_quant[i].size()>=2");
platform::errors::InvalidArgument(
"To achieve top 1 accuracy, output_slots size "
"must be bigger than or equal to 2, but now the size is %d",
output_slots[i].size()));
break;
case 2:
PADDLE_ENFORCE_GE(
output_slots[i].size(), 2UL,
"To achieve top 1 accuracy, output_slots_ref[i].size()>=2");
output_slots[i].size(), 3UL,
platform::errors::InvalidArgument(
"To achieve top 5 accuracy or mean Average "
"Precision (mAP), output_slots size must be "
"bigger than or equal to 3, but now the size is %d",
output_slots[i].size()));
break;
default:
throw std::invalid_argument(
......@@ -543,8 +573,6 @@ float CompareAccuracyOne(
*static_cast<float *>(output_slots[i][compared_idx].data.data());
}
CHECK_GT(output_slots.size(), 0);
return total_accs / output_slots.size();
}
......@@ -602,8 +630,14 @@ void CompareNativeAndAnalysis(
std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
TestOneThreadPrediction(config, inputs, &native_outputs, false);
TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
PADDLE_ENFORCE_GT(native_outputs.size(), 0, "Native output is empty.");
PADDLE_ENFORCE_GT(analysis_outputs.size(), 0, "Analysis output is empty.");
PADDLE_ENFORCE_GT(native_outputs.size(), 0,
platform::errors::InvalidArgument(
"The native outputs is empty. The native outputs "
"vector size must be bigger than 0"));
PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
platform::errors::InvalidArgument(
"The analysis outputs is empty. The analysis outputs "
"vector size must be bigger than 0"));
CompareResult(analysis_outputs.back(), native_outputs.back());
}
......@@ -611,8 +645,12 @@ void CompareQuantizedAndAnalysis(
const AnalysisConfig *config, const AnalysisConfig *qconfig,
const std::vector<std::vector<PaddleTensor>> &inputs,
const int compared_idx = 1) {
PADDLE_ENFORCE_EQ(inputs[0][0].shape[0], FLAGS_batch_size,
"Input data has to be packed batch by batch.");
PADDLE_ENFORCE_EQ(
inputs[0][0].shape[0], FLAGS_batch_size,
platform::errors::InvalidArgument(
"Input data has to be packed batch by batch. The batchsize is set to "
"%d, but the real input is packed with batchsize = %d",
FLAGS_batch_size, inputs[0][0].shape[0]));
LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
<< ", warmup batch size " << FLAGS_warmup_batch_size << ".";
......@@ -642,6 +680,48 @@ void CompareQuantizedAndAnalysis(
CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
}
void CompareAnalysisAndAnalysis(
const AnalysisConfig *config1, const AnalysisConfig *config2,
const std::vector<std::vector<PaddleTensor>> &inputs,
const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
const int compared_idx = 1) {
PADDLE_ENFORCE_EQ(
inputs[0][0].shape[0], FLAGS_batch_size,
platform::errors::InvalidArgument(
"Input data has to be packed batch by batch. The batchsize is set to "
"%d, but the real input is packed with batchsize = %d",
FLAGS_batch_size, inputs[0][0].shape[0]));
LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
<< ", warmup batch size " << FLAGS_warmup_batch_size << ".";
LOG(INFO) << "--- FP32 prediction start ---";
auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
PrintConfig(cfg1, true);
std::vector<std::vector<PaddleTensor>> analysis_outputs;
float sample_latency_fp32{-1};
if (FLAGS_enable_fp32) {
TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
VarType::FP32, &sample_latency_fp32);
}
LOG(INFO) << "--- INT8 prediction start ---";
auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
PrintConfig(cfg2, true);
std::vector<std::vector<PaddleTensor>> int8_outputs;
float sample_latency_int8{-1};
if (FLAGS_enable_int8) {
TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
&sample_latency_int8);
}
SummarizePerformance(sample_latency_fp32, sample_latency_int8);
if (with_accuracy_layer) {
CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
}
}
void CompareNativeAndAnalysis(
PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
const std::vector<std::vector<PaddleTensor>> &inputs) {
......
......@@ -330,6 +330,17 @@ class FakeQAT2MkldnnINT8PerfPass(object):
graph = self._remove_unused_var_nodes(graph)
return graph
def apply_fp32(self, graph):
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
graph = self._gather_scales(graph)
graph = self._remove_fake_ops(graph)
graph = self._dequantize_weights(graph)
graph = self._optimize_fp32_graph(graph)
graph = self._remove_unused_var_nodes(graph)
return graph
def _convert_scale2tensor(self, scale):
tensor = core.LoDTensor()
tensor.set(scale, core.CPUPlace())
......
......@@ -45,6 +45,12 @@ function(inference_qat2_int8_test target model_dir data_dir test_script use_mkld
--qat2)
endfunction()
function(save_qat_model_test target qat_model_dir fp32_model_save_path int8_model_save_path test_script)
py_test(${target} SRCS ${test_script}
ARGS --qat_model_path ${qat_model_dir}
--fp32_model_save_path ${fp32_model_save_path}
--int8_model_save_path ${int8_model_save_path})
endfunction()
if(WIN32)
list(REMOVE_ITEM TEST_OPS test_light_nas)
......@@ -171,6 +177,13 @@ if(LINUX AND WITH_MKLDNN)
endif()
inference_qat2_int8_test(test_qat2_int8_mobilenetv1_mkldnn ${QAT2_MOBILENETV1_MODEL_DIR}/MobileNet_qat_perf ${DATASET_DIR} ${MKLDNN_QAT_TEST_FILE_PATH} true)
# Save qat2 fp32 model or qat2 int8 model
set(QAT2_INT8_SAVE_PATH "${QAT_DATA_DIR}/ResNet50_qat2_int8")
set(QAT2_FP32_SAVE_PATH "${QAT_DATA_DIR}/ResNet50_qat2_fp32")
set(SAVE_QAT2_MODEL_SCRIPT "${CMAKE_CURRENT_SOURCE_DIR}/save_qat_model.py")
save_qat_model_test(save_qat2_model_resnet50 ${QAT2_RESNET50_MODEL_DIR}/ResNet50_qat_perf/float ${QAT2_FP32_SAVE_PATH} ${QAT2_INT8_SAVE_PATH} ${SAVE_QAT2_MODEL_SCRIPT} true)
endif()
# Since the test for QAT FP32 & INT8 comparison supports only testing on Linux
......
# copyright (c) 2019 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import sys
import argparse
import logging
import struct
import six
import numpy as np
import time
import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import FakeQAT2MkldnnINT8PerfPass
from paddle.fluid import core
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--qat_model_path', type=str, default='', help='A path to a QAT model.')
parser.add_argument(
'--fp32_model_save_path',
type=str,
default='',
help='Saved optimized fp32 model')
parser.add_argument(
'--int8_model_save_path',
type=str,
default='',
help='Saved optimized and quantized INT8 model')
test_args, args = parser.parse_known_args(namespace=unittest)
return test_args, sys.argv[:1] + args
def transform_and_save_model(original_path, save_path, save_type):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
inference_scope = fluid.executor.global_scope()
with fluid.scope_guard(inference_scope):
if os.path.exists(os.path.join(original_path, '__model__')):
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(original_path, exe)
else:
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(original_path, exe,
'model', 'params')
transform_to_mkldnn_int8_pass = FakeQAT2MkldnnINT8PerfPass(
_scope=inference_scope, _place=place, _core=core)
graph = IrGraph(core.Graph(inference_program.desc), for_test=True)
if save_type == 'FP32':
graph = transform_to_mkldnn_int8_pass.apply_fp32(graph)
elif save_type == 'INT8':
graph = transform_to_mkldnn_int8_pass.apply(graph)
inference_program = graph.to_program()
with fluid.scope_guard(inference_scope):
fluid.io.save_inference_model(save_path, feed_target_names,
fetch_targets, exe, inference_program)
print("Success! Transformed QAT_{0} model can be found at {1}\n".format(
save_type, save_path))
if __name__ == '__main__':
global test_args
test_args, remaining_args = parse_args()
if test_args.fp32_model_save_path:
transform_and_save_model(test_args.qat_model_path,
test_args.fp32_model_save_path, 'FP32')
if test_args.int8_model_save_path:
transform_and_save_model(test_args.qat_model_path,
test_args.int8_model_save_path, 'INT8')
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册