Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c083a60d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c083a60d
编写于
1月 15, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add python split and glu
上级
9867a379
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
120 addition
and
12 deletion
+120
-12
doc/api/v2/fluid/layers.rst
doc/api/v2/fluid/layers.rst
+6
-0
doc/api/v2/fluid/nets.rst
doc/api/v2/fluid/nets.rst
+5
-0
paddle/operators/split_op.cc
paddle/operators/split_op.cc
+6
-0
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+61
-1
python/paddle/v2/fluid/nets.py
python/paddle/v2/fluid/nets.py
+34
-1
python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py
python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py
+8
-10
未找到文件。
doc/api/v2/fluid/layers.rst
浏览文件 @
c083a60d
...
...
@@ -348,3 +348,9 @@ reduce_min
.. autofunction:: paddle.v2.fluid.layers.reduce_min
:noindex:
split
-----
.. autofunction:: paddle.v2.fluid.layers.split
:noindex:
doc/api/v2/fluid/nets.rst
浏览文件 @
c083a60d
...
...
@@ -20,3 +20,8 @@ sequence_conv_pool
:noindex:
glu
---
.. autofunction:: paddle.v2.fluid.nets.glu
:noindex:
paddle/operators/split_op.cc
浏览文件 @
c083a60d
...
...
@@ -60,6 +60,12 @@ class SplitOp : public framework::OperatorWithKernel {
}
}
ctx
->
SetOutputsDim
(
"Out"
,
outs_dims
);
if
(
axis
!=
0
)
{
// Only pass LoD when not spliting along the first dim.
for
(
size_t
i
=
0
;
i
<
outs_number
;
++
i
)
{
ctx
->
ShareLoD
(
"X"
,
"Out"
,
0
,
i
);
}
}
}
};
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
c083a60d
...
...
@@ -14,7 +14,7 @@ __all__ = [
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
]
...
...
@@ -1504,3 +1504,63 @@ def reduce_min(input, dim=None, keep_dim=False):
'reduce_all'
:
True
if
dim
==
None
else
False
})
return
out
def
split
(
input
,
num_or_sections
,
dim
=-
1
):
"""
Splits the tensor into multiple sub-tensors.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-tensors
that the tensor will be divided into. If :attr:`num_or_sections`
is a list of integers, the length of list indicates the number of
sub-tensors and the integers indicate the sizes of sub-tensors'
:attr:`dim` dimension orderly.
dim (int): The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`.
Returns:
List: The list of segmented tensor variables.
Examples:
.. code-block:: python
# x is a Tensor variable with shape [3, 9, 5]:
x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
x0.shape # [3, 3, 5]
x1.shape # [3, 3, 5]
x2.shape # [3, 3, 5]
x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
x0.shape # [3, 2, 5]
x1.shape # [3, 3, 5]
x2.shape # [3, 4, 5]
"""
helper
=
LayerHelper
(
'split'
,
**
locals
())
input_shape
=
input
.
shape
dim
=
(
len
(
input_shape
)
+
dim
)
if
dim
<
0
else
dim
if
isinstance
(
num_or_sections
,
int
):
assert
num_or_sections
>
1
,
'num_or_sections must be more than 1.'
assert
input_shape
[
dim
]
%
num_or_sections
==
0
,
'num_or_sections must evenly divide input.shape[dim].'
num
=
num_or_sections
else
:
assert
len
(
num_or_sections
)
<
input_shape
[
dim
],
'len(num_or_sections) must not be more than input.shape[dim].'
num
=
len
(
num_or_sections
)
outs
=
[
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
for
i
in
range
(
num
)
]
helper
.
append_op
(
type
=
'split'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
outs
},
attrs
=
{
'num'
:
num_or_sections
if
isinstance
(
num_or_sections
,
int
)
else
0
,
'sections'
:
num_or_sections
if
isinstance
(
num_or_sections
,
list
)
else
[],
'axis'
:
dim
})
return
outs
python/paddle/v2/fluid/nets.py
浏览文件 @
c083a60d
import
layers
__all__
=
[
"simple_img_conv_pool"
,
"sequence_conv_pool"
]
__all__
=
[
"simple_img_conv_pool"
,
"sequence_conv_pool"
,
"glu"
]
def
simple_img_conv_pool
(
input
,
...
...
@@ -98,3 +98,36 @@ def sequence_conv_pool(input,
pool_out
=
layers
.
sequence_pool
(
input
=
conv_out
,
pool_type
=
pool_type
)
return
pool_out
def
glu
(
input
,
dim
=-
1
):
"""
The gated linear unit composed by split and elementwise multiplication.
Specifically, Split the input into two equal sized parts :math:`a` and
:math:`b` along the given dimension and then compute as following:
.. math::
{GLU}(a, b)= a \otimes \sigma(b)
Refer to `Language Modeling with Gated Convolutional Networks
<https://arxiv.org/pdf/1612.08083.pdf>`_.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (int): The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`.
Returns:
Variable: The Tensor variable with half the size of input.
Examples:
.. code-block:: python
# x is a Tensor variable with shape [3, 6, 9]
fluid.nets.glu(input=x, dim=-1) # shape of output: [3, 3, 9]
"""
a
,
b
=
layers
.
split
(
input
,
num_or_sections
=
2
,
dim
=
dim
)
out
=
layers
.
elementwise_mul
(
x
=
a
,
y
=
b
)
return
out
python/paddle/v2/fluid/tests/test_reorder_lod_tensor.py
浏览文件 @
c083a60d
...
...
@@ -6,8 +6,8 @@ import numpy
class
TestReorderLoDTensor
(
unittest
.
TestCase
):
num_seq
=
5
# [name,
dim
, lod_level] pair indicating data info of source and target
data_desc
=
([
'input'
,
9
,
0
],
[
'ref'
,
5
,
1
])
# [name,
shape
, lod_level] pair indicating data info of source and target
data_desc
=
([
'input'
,
[
9
],
0
],
[
'ref'
,
[
5
]
,
1
])
@
classmethod
def
setUpClass
(
cls
):
...
...
@@ -16,10 +16,10 @@ class TestReorderLoDTensor(unittest.TestCase):
@
classmethod
def
set_program
(
cls
):
dat
=
fluid
.
layers
.
data
(
name
=
cls
.
data_desc
[
0
][
0
],
shape
=
[
cls
.
data_desc
[
0
][
1
]
])
name
=
cls
.
data_desc
[
0
][
0
],
shape
=
cls
.
data_desc
[
0
][
1
])
dat
.
stop_gradient
=
False
rank_dat
=
fluid
.
layers
.
data
(
name
=
cls
.
data_desc
[
1
][
0
],
shape
=
[
cls
.
data_desc
[
1
][
1
]
])
name
=
cls
.
data_desc
[
1
][
0
],
shape
=
cls
.
data_desc
[
1
][
1
])
table
=
fluid
.
layers
.
lod_rank_table
(
rank_dat
)
new_dat
=
fluid
.
layers
.
reorder_lod_tensor_by_rank
(
x
=
dat
,
rank_table
=
table
)
...
...
@@ -49,7 +49,7 @@ class TestReorderLoDTensor(unittest.TestCase):
self
.
data
=
{}
for
desc
in
self
.
data_desc
:
data_name
=
desc
[
0
]
data_
dim
=
desc
[
1
]
data_
shape
=
desc
[
1
]
data_lod_level
=
desc
[
2
]
data_lod
=
[]
for
i
in
range
(
data_lod_level
):
...
...
@@ -59,9 +59,9 @@ class TestReorderLoDTensor(unittest.TestCase):
size
=
self
.
num_seq
if
i
==
0
else
lod_level_i
[
-
1
])
lod_level_i
=
[
0
]
+
numpy
.
cumsum
(
lod_level_i
).
tolist
()
data_lod
.
append
(
lod_level_i
)
data_value
=
numpy
.
random
.
random
(
size
=
[
data_lod
[
-
1
][
-
1
]
if
data_lod
else
self
.
num_seq
,
data_dim
]
).
astype
(
'float32'
)
data_value
=
numpy
.
random
.
random
(
size
=
[
data_lod
[
-
1
][
-
1
]
if
data_lod
else
self
.
num_seq
]
+
data_shape
).
astype
(
'float32'
)
self
.
data
[
data_name
]
=
(
data_value
,
data_lod
)
def
set_inputs
(
self
,
place
):
...
...
@@ -163,8 +163,6 @@ class TestReorderLoDTensor(unittest.TestCase):
numpy
.
allclose
(
numpy
.
array
(
actual_grad
),
expect_grad
,
atol
=
0.001
))
self
.
assertEqual
(
expect_grad_lod
,
actual_grad
.
lod
())
global
outputs_from_tensor_implicit_lod
outputs_from_tensor_implicit_lod
=
self
.
actual_outputs
# compare outputs between LodTensors with explicit and implicit lod
# use the same data but set the input lod explicitly
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录