Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bff0cbfc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bff0cbfc
编写于
12月 26, 2017
作者:
F
fengjiayi
提交者:
GitHub
12月 26, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7025 from JiayiFeng/rename_output_of_softmax_and_activitions
Rename output of softmax and activations
上级
073746f5
e41a71ce
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
353 addition
and
323 deletion
+353
-323
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+59
-59
paddle/operators/activation_op.h
paddle/operators/activation_op.h
+208
-179
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+11
-11
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+6
-6
python/paddle/v2/fluid/layer_helper.py
python/paddle/v2/fluid/layer_helper.py
+1
-1
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+10
-9
python/paddle/v2/fluid/tests/test_activation_op.py
python/paddle/v2/fluid/tests/test_activation_op.py
+54
-54
python/paddle/v2/fluid/tests/test_net.py
python/paddle/v2/fluid/tests/test_net.py
+2
-2
python/paddle/v2/fluid/tests/test_softmax_op.py
python/paddle/v2/fluid/tests/test_softmax_op.py
+2
-2
未找到文件。
paddle/operators/activation_op.cc
浏览文件 @
bff0cbfc
...
...
@@ -22,8 +22,8 @@ class ActivationOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
"
Y
"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"
Y
"
);
ctx
->
SetOutputDim
(
"
Out
"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"
Out
"
);
}
};
...
...
@@ -32,7 +32,7 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"
Y
"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"
Out
"
));
}
};
...
...
@@ -41,11 +41,11 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
SigmoidOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Sigmoid operator"
);
AddOutput
(
"
Y
"
,
"Output of Sigmoid operator"
);
AddOutput
(
"
Out
"
,
"Output of Sigmoid operator"
);
AddComment
(
R"DOC(
Sigmoid Activation Operator
$$
y
= \frac{1}{1 + e^{-x}}$$
$$
out
= \frac{1}{1 + e^{-x}}$$
)DOC"
);
}
...
...
@@ -56,11 +56,11 @@ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
LogSigmoidOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of LogSigmoid operator"
);
AddOutput
(
"
Y
"
,
"Output of LogSigmoid operator"
);
AddOutput
(
"
Out
"
,
"Output of LogSigmoid operator"
);
AddComment
(
R"DOC(
Logsigmoid Activation Operator
$$
y
= \log \frac{1}{1 + e^{-x}}$$
$$
out
= \log \frac{1}{1 + e^{-x}}$$
)DOC"
);
}
...
...
@@ -71,11 +71,11 @@ class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
ExpOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Exp operator"
);
AddOutput
(
"
Y
"
,
"Output of Exp operator"
);
AddOutput
(
"
Out
"
,
"Output of Exp operator"
);
AddComment
(
R"DOC(
Exp Activation Operator.
$
y
= e^x$
$
out
= e^x$
)DOC"
);
}
...
...
@@ -86,11 +86,11 @@ class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
ReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Relu operator"
);
AddOutput
(
"
Y
"
,
"Output of Relu operator"
);
AddOutput
(
"
Out
"
,
"Output of Relu operator"
);
AddComment
(
R"DOC(
Relu Activation Operator.
$
y
= \max(x, 0)$
$
out
= \max(x, 0)$
)DOC"
);
}
...
...
@@ -101,12 +101,12 @@ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
LeakyReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of LeakyRelu operator"
);
AddOutput
(
"
Y
"
,
"Output of LeakyRelu operator"
);
AddOutput
(
"
Out
"
,
"Output of LeakyRelu operator"
);
AddAttr
<
float
>
(
"alpha"
,
"The small negative slope"
).
SetDefault
(
0.02
f
);
AddComment
(
R"DOC(
LeakyRelu Activation Operator.
$
y
= \max(x, \alpha * x)$
$
out
= \max(x, \alpha * x)$
)DOC"
);
}
...
...
@@ -117,13 +117,13 @@ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
SoftShrinkOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Softshrink operator"
);
AddOutput
(
"
Y
"
,
"Output of Softshrink operator"
);
AddOutput
(
"
Out
"
,
"Output of Softshrink operator"
);
AddAttr
<
float
>
(
"lambda"
,
"non-negative offset"
).
SetDefault
(
0.5
f
);
AddComment
(
R"DOC(
Softshrink Activation Operator.
$$
y
= \begin{cases}
out
= \begin{cases}
x - \lambda, \text{if } x > \lambda \\
x + \lambda, \text{if } x < -\lambda \\
0, \text{otherwise}
...
...
@@ -139,11 +139,11 @@ class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
TanhOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Tanh operator"
);
AddOutput
(
"
Y
"
,
"Output of Tanh operator"
);
AddOutput
(
"
Out
"
,
"Output of Tanh operator"
);
AddComment
(
R"DOC(
Tanh Activation Operator.
$$
y
= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$
out
= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
)DOC"
);
}
...
...
@@ -154,11 +154,11 @@ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
TanhShrinkOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of TanhShrink operator"
);
AddOutput
(
"
Y
"
,
"Output of TanhShrink operator"
);
AddOutput
(
"
Out
"
,
"Output of TanhShrink operator"
);
AddComment
(
R"DOC(
TanhShrink Activation Operator.
$$
y
= x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$
out
= x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
)DOC"
);
}
...
...
@@ -169,14 +169,14 @@ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
HardShrinkOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of HardShrink operator"
);
AddOutput
(
"
Y
"
,
"Output of HardShrink operator"
);
AddOutput
(
"
Out
"
,
"Output of HardShrink operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The value of threshold for HardShrink"
)
.
SetDefault
(
0.5
f
);
AddComment
(
R"DOC(
HardShrink Activation Operator.
$$
y
= \begin{cases}
out
= \begin{cases}
x, \text{if } x > \lambda \\
x, \text{if } x < -\lambda \\
0, \text{otherwise}
...
...
@@ -192,11 +192,11 @@ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
SqrtOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Sqrt operator"
);
AddOutput
(
"
Y
"
,
"Output of Sqrt operator"
);
AddOutput
(
"
Out
"
,
"Output of Sqrt operator"
);
AddComment
(
R"DOC(
Sqrt Activation Operator.
$
y
= \sqrt{x}$
$
out
= \sqrt{x}$
)DOC"
);
}
...
...
@@ -207,11 +207,11 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
AbsOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Abs operator"
);
AddOutput
(
"
Y
"
,
"Output of Abs operator"
);
AddOutput
(
"
Out
"
,
"Output of Abs operator"
);
AddComment
(
R"DOC(
Abs Activation Operator.
$
y
= |x|$
$
out
= |x|$
)DOC"
);
}
...
...
@@ -222,11 +222,11 @@ class CeilOpMaker : public framework::OpProtoAndCheckerMaker {
CeilOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Ceil operator"
);
AddOutput
(
"
Y
"
,
"Output of Ceil operator"
);
AddOutput
(
"
Out
"
,
"Output of Ceil operator"
);
AddComment
(
R"DOC(
Ceil Activation Operator.
$
y
= ceil(x)$
$
out
= ceil(x)$
)DOC"
);
}
...
...
@@ -237,11 +237,11 @@ class FloorOpMaker : public framework::OpProtoAndCheckerMaker {
FloorOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Floor operator"
);
AddOutput
(
"
Y
"
,
"Output of Floor operator"
);
AddOutput
(
"
Out
"
,
"Output of Floor operator"
);
AddComment
(
R"DOC(
Floor Activation Operator.
$
y
= floor(x)$
$
out
= floor(x)$
)DOC"
);
}
...
...
@@ -252,11 +252,11 @@ class RoundOpMaker : public framework::OpProtoAndCheckerMaker {
RoundOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Round operator"
);
AddOutput
(
"
Y
"
,
"Output of Round operator"
);
AddOutput
(
"
Out
"
,
"Output of Round operator"
);
AddComment
(
R"DOC(
Round Activation Operator.
$
y
= [x]$
$
out
= [x]$
)DOC"
);
}
...
...
@@ -267,11 +267,11 @@ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
ReciprocalOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Reciprocal operator"
);
AddOutput
(
"
Y
"
,
"Output of Reciprocal operator"
);
AddOutput
(
"
Out
"
,
"Output of Reciprocal operator"
);
AddComment
(
R"DOC(
Reciprocal Activation Operator.
$$
y
= \frac{1}{x}$$
$$
out
= \frac{1}{x}$$
)DOC"
);
}
...
...
@@ -282,11 +282,11 @@ class LogOpMaker : public framework::OpProtoAndCheckerMaker {
LogOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Log operator"
);
AddOutput
(
"
Y
"
,
"Output of Log operator"
);
AddOutput
(
"
Out
"
,
"Output of Log operator"
);
AddComment
(
R"DOC(
Log Activation Operator.
$
y
= \ln(x)$
$
out
= \ln(x)$
Natural logarithm of x.
...
...
@@ -299,11 +299,11 @@ class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
SquareOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Square operator"
);
AddOutput
(
"
Y
"
,
"Output of Square operator"
);
AddOutput
(
"
Out
"
,
"Output of Square operator"
);
AddComment
(
R"DOC(
Square Activation Operator.
$
y
= x^2$
$
out
= x^2$
)DOC"
);
}
...
...
@@ -314,11 +314,11 @@ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
SoftplusOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Softplus operator"
);
AddOutput
(
"
Y
"
,
"Output of Softplus operator"
);
AddOutput
(
"
Out
"
,
"Output of Softplus operator"
);
AddComment
(
R"DOC(
Softplus Activation Operator.
$
y
= \ln(1 + e^{x})$
$
out
= \ln(1 + e^{x})$
)DOC"
);
}
...
...
@@ -329,11 +329,11 @@ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker {
SoftsignOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Softsign operator"
);
AddOutput
(
"
Y
"
,
"Output of Softsign operator"
);
AddOutput
(
"
Out
"
,
"Output of Softsign operator"
);
AddComment
(
R"DOC(
Softsign Activation Operator.
$$
y
= \frac{x}{1 + |x|}$$
$$
out
= \frac{x}{1 + |x|}$$
)DOC"
);
}
...
...
@@ -344,7 +344,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
BReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of BRelu operator"
);
AddOutput
(
"
Y
"
,
"Output of BRelu operator"
);
AddOutput
(
"
Out
"
,
"Output of BRelu operator"
);
AddAttr
<
float
>
(
"t_min"
,
"The min marginal value of BRelu"
)
.
SetDefault
(
static_cast
<
float
>
(
0
));
AddAttr
<
float
>
(
"t_max"
,
"The max marginal value of BRelu"
)
...
...
@@ -352,7 +352,7 @@ class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
BRelu Activation Operator.
$
y
= \max(\min(x, t_{min}), t_{max})$
$
out
= \max(\min(x, t_{min}), t_{max})$
)DOC"
);
}
...
...
@@ -363,13 +363,13 @@ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
SoftReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of SoftRelu operator"
);
AddOutput
(
"
Y
"
,
"Output of SoftRelu operator"
);
AddOutput
(
"
Out
"
,
"Output of SoftRelu operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The threshold value of SoftRelu"
)
.
SetDefault
(
40.0
f
);
AddComment
(
R"DOC(
SoftRelu Activation Operator.
$
y
= \ln(1 + \exp(\max(\min(x, threshold), threshold))$
$
out
= \ln(1 + \exp(\max(\min(x, threshold), threshold))$
)DOC"
);
}
...
...
@@ -380,7 +380,7 @@ class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
ELUOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of ELU operator"
);
AddOutput
(
"
Y
"
,
"Output of ELU operator"
);
AddOutput
(
"
Out
"
,
"Output of ELU operator"
);
AddAttr
<
float
>
(
"alpha"
,
"The alpha value of ELU"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
ELU Activation Operator.
...
...
@@ -388,7 +388,7 @@ ELU Activation Operator.
Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.
$
y
= \max(0, x) + \min(0, \alpha * (e^x - 1))$
$
out
= \max(0, x) + \min(0, \alpha * (e^x - 1))$
)DOC"
);
}
...
...
@@ -399,13 +399,13 @@ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
Relu6OpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Relu6 operator"
);
AddOutput
(
"
Y
"
,
"Output of Relu6 operator"
);
AddOutput
(
"
Out
"
,
"Output of Relu6 operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The threshold value of Relu6"
)
.
SetDefault
(
6.0
f
);
AddComment
(
R"DOC(
Relu6 Activation Operator.
$
y
= \min(\max(0, x), 6)$
$
out
= \min(\max(0, x), 6)$
)DOC"
);
}
...
...
@@ -416,12 +416,12 @@ class PowOpMaker : public framework::OpProtoAndCheckerMaker {
PowOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Pow operator"
);
AddOutput
(
"
Y
"
,
"Output of Pow operator"
);
AddOutput
(
"
Out
"
,
"Output of Pow operator"
);
AddAttr
<
float
>
(
"factor"
,
"The exponential factor of Pow"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
Pow Activation Operator.
$
y
= x^{factor}$
$
out
= x^{factor}$
)DOC"
);
}
...
...
@@ -432,7 +432,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
STanhOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of STanh operator"
);
AddOutput
(
"
Y
"
,
"Output of STanh operator"
);
AddOutput
(
"
Out
"
,
"Output of STanh operator"
);
AddAttr
<
float
>
(
"scale_a"
,
"The scale parameter of a for the input"
)
.
SetDefault
(
2.0
f
/
3.0
f
);
AddAttr
<
float
>
(
"scale_b"
,
"The scale parameter of b for the input"
)
...
...
@@ -440,7 +440,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
STanh Activation Operator.
$$
y
= b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
$$
out
= b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
)DOC"
);
}
...
...
@@ -451,14 +451,14 @@ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
ThresholdedReluOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of ThresholdedRelu operator"
);
AddOutput
(
"
Y
"
,
"Output of ThresholdedRelu operator"
);
AddOutput
(
"
Out
"
,
"Output of ThresholdedRelu operator"
);
AddAttr
<
float
>
(
"threshold"
,
"The threshold location of activation"
)
.
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
ThresholdedRelu Activation Operator.
$$
y
= \begin{cases}
out
= \begin{cases}
x, \text{if } x > threshold \\
0, \text{otherwise}
\end{cases}
...
...
@@ -473,7 +473,7 @@ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
HardSigmoidOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of HardSigmoid operator"
);
AddOutput
(
"
Y
"
,
"Output of HardSigmoid operator"
);
AddOutput
(
"
Out
"
,
"Output of HardSigmoid operator"
);
AddAttr
<
float
>
(
"slope"
,
"Slope for linear approximation of sigmoid"
)
.
SetDefault
(
0.2
f
);
AddAttr
<
float
>
(
"offset"
,
"Offset for linear approximation of sigmoid"
)
...
...
@@ -484,7 +484,7 @@ HardSigmoid Activation Operator.
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
$
y
= \max(0, \min(1, slope * x + shift))$
$
out
= \max(0, \min(1, slope * x + shift))$
The slope should be positive. The offset can be either positive or negative.
The default slope and shift are set according to the above reference.
...
...
@@ -499,12 +499,12 @@ class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
SwishOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"Input of Swish operator"
);
AddOutput
(
"
Y
"
,
"Output of Swish operator"
);
AddOutput
(
"
Out
"
,
"Output of Swish operator"
);
AddAttr
<
float
>
(
"beta"
,
"Constant beta of swish operator"
).
SetDefault
(
1.0
f
);
AddComment
(
R"DOC(
Swish Activation Operator.
$$
y
= \frac{x}{1 + e^{- \beta x}}$$
$$
out
= \frac{x}{1 + e^{- \beta x}}$$
)DOC"
);
}
...
...
paddle/operators/activation_op.h
浏览文件 @
bff0cbfc
...
...
@@ -27,11 +27,11 @@ class ActivationKernel
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y
"
);
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
Out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out
"
);
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Out
);
auto
*
place
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Functor
functor
;
...
...
@@ -40,7 +40,7 @@ class ActivationKernel
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
functor
(
*
place
,
x
,
y
);
functor
(
*
place
,
x
,
out
);
}
};
...
...
@@ -51,14 +51,15 @@ class ActivationGradKernel
using
T
=
typename
Functor
::
ELEMENT_TYPE
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
Out
=
context
.
Input
<
framework
::
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
d
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dOut
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Out
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
*
place
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
...
...
@@ -67,7 +68,7 @@ class ActivationGradKernel
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
functor
(
*
place
,
x
,
y
,
dy
,
dx
);
functor
(
*
place
,
x
,
out
,
dout
,
dx
);
}
};
...
...
@@ -83,17 +84,18 @@ struct BaseActivationFunctor {
// sigmoid(x) = 1 / (1 + exp(-x))
template
<
typename
T
>
struct
SigmoidFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
(
-
x
).
exp
());
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
(
-
x
).
exp
());
}
};
template
<
typename
T
>
struct
SigmoidGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
y
*
(
static_cast
<
T
>
(
1
)
-
y
);
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
out
*
(
static_cast
<
T
>
(
1
)
-
out
);
}
};
...
...
@@ -101,7 +103,7 @@ struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
//
y
= -log( exp(0) + exp(-x)) [since exp(0) = 1]
//
out
= -log( exp(0) + exp(-x)) [since exp(0) = 1]
// = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
// = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
// max(-x, 0)))
...
...
@@ -112,10 +114,10 @@ struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
// + exp(-x - max(-x, 0))))
template
<
typename
T
>
struct
LogSigmoidFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
auto
temp
=
(
-
x
).
cwiseMax
(
static_cast
<
T
>
(
0
));
// temp = max(-x, 0)
y
.
device
(
d
)
=
-
temp
-
(((
-
temp
).
exp
()
+
(
-
x
-
temp
).
exp
()).
log
());
out
.
device
(
d
)
=
-
temp
-
(((
-
temp
).
exp
()
+
(
-
x
-
temp
).
exp
()).
log
());
}
};
...
...
@@ -124,62 +126,66 @@ struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
// exp(-x - max(-x, 0)))
template
<
typename
T
>
struct
LogSigmoidGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
temp
=
(
-
x
).
cwiseMax
(
static_cast
<
T
>
(
0
));
// temp = max(-x, 0)
dx
.
device
(
d
)
=
d
y
*
((
-
x
-
temp
).
exp
()
/
((
-
temp
).
exp
()
+
(
-
x
-
temp
).
exp
()));
d
out
*
((
-
x
-
temp
).
exp
()
/
((
-
temp
).
exp
()
+
(
-
x
-
temp
).
exp
()));
}
};
// exp(x) = e^x
template
<
typename
T
>
struct
ExpFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
exp
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
exp
();
}
};
template
<
typename
T
>
struct
ExpGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
y
;
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
out
;
}
};
// relu(x) = max(x, 0)
template
<
typename
T
>
struct
ReluFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
));
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
));
}
};
template
<
typename
T
>
struct
ReluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
}
};
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template
<
typename
T
>
struct
TanhFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
tanh
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
tanh
();
}
};
template
<
typename
T
>
struct
TanhGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
(
static_cast
<
T
>
(
1
)
-
y
*
y
);
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
-
out
*
out
);
}
};
...
...
@@ -187,17 +193,18 @@ struct TanhGradFunctor : public BaseActivationFunctor<T> {
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template
<
typename
T
>
struct
TanhShrinkFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
-
x
.
tanh
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
-
x
.
tanh
();
}
};
template
<
typename
T
>
struct
TanhShrinkGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
(
x
.
tanh
()
*
x
.
tanh
());
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
x
.
tanh
()
*
x
.
tanh
());
}
};
...
...
@@ -210,11 +217,11 @@ struct HardShrinkFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"threshold"
,
&
threshold
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
auto
temp1
=
(
x
<
static_cast
<
T
>
(
threshold
*
-
1
)).
template
cast
<
T
>().
eval
();
auto
temp2
=
(
x
>
static_cast
<
T
>
(
threshold
)).
template
cast
<
T
>().
eval
();
y
.
device
(
d
)
=
x
*
(
temp1
+
temp2
);
out
.
device
(
d
)
=
x
*
(
temp1
+
temp2
);
}
};
...
...
@@ -226,11 +233,12 @@ struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
return
{{
"threshold"
,
&
threshold
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
temp1
=
(
x
<
static_cast
<
T
>
(
threshold
*
-
1
)).
template
cast
<
T
>().
eval
();
auto
temp2
=
(
x
>
static_cast
<
T
>
(
threshold
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
d
y
*
(
temp1
+
temp2
).
template
cast
<
T
>();
dx
.
device
(
d
)
=
d
out
*
(
temp1
+
temp2
).
template
cast
<
T
>();
}
};
...
...
@@ -243,12 +251,12 @@ struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
return
{{
"lambda"
,
&
lambda
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
auto
lambdaT
=
static_cast
<
T
>
(
lambda
);
auto
temp1
=
(
x
>
lambdaT
).
template
cast
<
T
>().
eval
();
auto
temp2
=
(
x
<
-
lambdaT
).
template
cast
<
T
>().
eval
();
y
.
device
(
d
)
=
temp1
*
(
x
-
lambdaT
)
+
temp2
*
(
x
+
lambdaT
);
out
.
device
(
d
)
=
temp1
*
(
x
-
lambdaT
)
+
temp2
*
(
x
+
lambdaT
);
}
};
...
...
@@ -258,46 +266,49 @@ struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"lambda"
,
&
lambda
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
lambdaT
=
static_cast
<
T
>
(
lambda
);
auto
temp1
=
(
x
>
lambdaT
).
template
cast
<
T
>().
eval
();
auto
temp2
=
(
x
<
-
lambdaT
).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
d
y
*
(
temp1
+
temp2
).
template
cast
<
T
>();
dx
.
device
(
d
)
=
d
out
*
(
temp1
+
temp2
).
template
cast
<
T
>();
}
};
// sqrt(x) = x^(1/2)
template
<
typename
T
>
struct
SqrtFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
sqrt
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
sqrt
();
}
};
template
<
typename
T
>
struct
SqrtGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
const
Y
y_conj
=
Eigen
::
numext
::
conj
(
y
);
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0.5
)
*
dy
/
y_conj
;
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
const
Out
out_conj
=
Eigen
::
numext
::
conj
(
out
);
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0.5
)
*
dout
/
out_conj
;
}
};
// ceil(x) = ceiling(x)
template
<
typename
T
>
struct
CeilFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
ceil
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
ceil
();
}
};
template
<
typename
T
>
struct
ZeroGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0
)
/
x
;
}
};
...
...
@@ -305,86 +316,90 @@ struct ZeroGradFunctor : public BaseActivationFunctor<T> {
// floor(x) = flooring(x)
template
<
typename
T
>
struct
FloorFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
ceil
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
ceil
();
}
};
// round(x) = [x]
template
<
typename
T
>
struct
RoundFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
round
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
round
();
}
};
// abs(x) = |x|
template
<
typename
T
>
struct
AbsFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
abs
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
abs
();
}
};
template
<
typename
T
>
struct
AbsGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
x
.
sign
();
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
x
.
sign
();
}
};
// reciprocal(x) = 1 / x
template
<
typename
T
>
struct
ReciprocalFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
static_cast
<
T
>
(
1
)
/
x
;
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
static_cast
<
T
>
(
1
)
/
x
;
}
};
template
<
typename
T
>
struct
ReciprocalGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
static_cast
<
T
>
(
-
1
)
*
y
*
y
;
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
-
1
)
*
out
*
out
;
}
};
// log(x) = natural logarithm of x
template
<
typename
T
>
struct
LogFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
log
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
log
();
}
};
template
<
typename
T
>
struct
LogGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
(
static_cast
<
T
>
(
1
)
/
x
);
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
/
x
);
}
};
// square(x) = x^2
template
<
typename
T
>
struct
SquareFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
square
();
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
square
();
}
};
template
<
typename
T
>
struct
SquareGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
static_cast
<
T
>
(
2
)
*
x
;
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
2
)
*
x
;
}
};
...
...
@@ -399,9 +414,9 @@ struct BReluFunctor : public BaseActivationFunctor<T> {
return
{{
"t_min"
,
&
t_min
},
{
"t_max"
,
&
t_max
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
t_min
)).
cwiseMin
(
static_cast
<
T
>
(
t_max
));
}
};
...
...
@@ -413,9 +428,10 @@ struct BReluGradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"t_min"
,
&
t_min
},
{
"t_max"
,
&
t_max
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
((
x
>
static_cast
<
T
>
(
t_min
))
*
(
x
<
static_cast
<
T
>
(
t_max
)))
.
template
cast
<
T
>();
}
...
...
@@ -430,9 +446,9 @@ struct Relu6Functor : public BaseActivationFunctor<T> {
return
{{
"threshold"
,
&
threshold
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
)).
cwiseMin
(
static_cast
<
T
>
(
threshold
));
}
};
...
...
@@ -443,9 +459,10 @@ struct Relu6GradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"threshold"
,
&
threshold
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
((
x
>
static_cast
<
T
>
(
0
))
*
(
x
<
static_cast
<
T
>
(
threshold
)))
.
template
cast
<
T
>();
}
...
...
@@ -458,10 +475,10 @@ struct Relu6GradFunctor : public BaseActivationFunctor<T> {
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template
<
typename
T
>
struct
SoftplusFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
{
auto
temp
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
));
// temp = max(x, 0)
y
.
device
(
d
)
=
temp
+
(((
-
temp
).
exp
()
+
(
x
-
temp
).
exp
()).
log
());
out
.
device
(
d
)
=
temp
+
(((
-
temp
).
exp
()
+
(
x
-
temp
).
exp
()).
log
());
}
};
...
...
@@ -471,19 +488,21 @@ struct SoftplusFunctor : public BaseActivationFunctor<T> {
// exp(x - max(x, 0)))
template
<
typename
T
>
struct
SoftplusGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
{
auto
temp
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
));
// temp = max(x, 0)
dx
.
device
(
d
)
=
dy
*
((
x
-
temp
).
exp
()
/
((
-
temp
).
exp
()
+
(
x
-
temp
).
exp
()));
dx
.
device
(
d
)
=
dout
*
((
x
-
temp
).
exp
()
/
((
-
temp
).
exp
()
+
(
x
-
temp
).
exp
()));
}
};
// softsign(x) = x / (1 + |x|)
template
<
typename
T
>
struct
SoftsignFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
y
.
device
(
d
)
=
x
/
(
static_cast
<
T
>
(
1
)
+
x
.
abs
());
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
{
out
.
device
(
d
)
=
x
/
(
static_cast
<
T
>
(
1
)
+
x
.
abs
());
}
};
...
...
@@ -491,10 +510,11 @@ struct SoftsignFunctor : public BaseActivationFunctor<T> {
// Taken from https://en.wikipedia.org/wiki/Activation_function
template
<
typename
T
>
struct
SoftsignGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
{
dx
.
device
(
d
)
=
d
y
*
(
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
x
.
abs
()).
square
());
d
out
*
(
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
x
.
abs
()).
square
());
}
};
...
...
@@ -505,11 +525,11 @@ struct SoftReluFunctor : public BaseActivationFunctor<T> {
return
{{
"threshold"
,
&
threshold
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
auto
tmp
=
static_cast
<
T
>
(
threshold
);
auto
temp
=
x
.
cwiseMax
(
-
tmp
).
cwiseMin
(
tmp
);
y
.
device
(
d
)
=
(
static_cast
<
T
>
(
1
)
+
temp
.
exp
()).
log
();
out
.
device
(
d
)
=
(
static_cast
<
T
>
(
1
)
+
temp
.
exp
()).
log
();
}
};
...
...
@@ -519,11 +539,12 @@ struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"threshold"
,
&
threshold
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
tmp
=
static_cast
<
T
>
(
threshold
);
auto
temp
=
((
x
>
-
tmp
)
*
(
x
<
tmp
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
d
y
*
(
static_cast
<
T
>
(
1
)
-
(
-
y
).
exp
())
*
temp
;
dx
.
device
(
d
)
=
d
out
*
(
static_cast
<
T
>
(
1
)
-
(
-
out
).
exp
())
*
temp
;
}
};
...
...
@@ -534,9 +555,9 @@ struct LeakyReluFunctor : public BaseActivationFunctor<T> {
return
{{
"alpha"
,
&
alpha
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
alpha
)
*
x
);
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
alpha
)
*
x
);
}
};
...
...
@@ -546,12 +567,13 @@ struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
temp1
=
static_cast
<
T
>
(
alpha
)
*
(
x
<
static_cast
<
T
>
(
0
)).
template
cast
<
T
>().
eval
();
auto
temp2
=
(
x
>=
static_cast
<
T
>
(
0
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
d
y
*
(
temp1
+
temp2
).
template
cast
<
T
>();
dx
.
device
(
d
)
=
d
out
*
(
temp1
+
temp2
).
template
cast
<
T
>();
}
};
...
...
@@ -562,11 +584,11 @@ struct ELUFunctor : public BaseActivationFunctor<T> {
return
{{
"alpha"
,
&
alpha
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
))
+
(
static_cast
<
T
>
(
alpha
)
*
(
x
.
exp
()
-
static_cast
<
T
>
(
1
)))
.
cwiseMin
(
static_cast
<
T
>
(
0
));
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
))
+
(
static_cast
<
T
>
(
alpha
)
*
(
x
.
exp
()
-
static_cast
<
T
>
(
1
)))
.
cwiseMin
(
static_cast
<
T
>
(
0
));
}
};
...
...
@@ -576,10 +598,11 @@ struct ELUGradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>()
+
dy
*
(
y
+
static_cast
<
T
>
(
alpha
))
*
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>()
+
dout
*
(
out
+
static_cast
<
T
>
(
alpha
))
*
(
x
<
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
}
};
...
...
@@ -591,9 +614,9 @@ struct PowFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"factor"
,
&
factor
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
pow
(
static_cast
<
T
>
(
factor
));
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
.
pow
(
static_cast
<
T
>
(
factor
));
}
};
...
...
@@ -603,9 +626,10 @@ struct PowGradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"factor"
,
&
factor
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
static_cast
<
T
>
(
factor
)
*
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
static_cast
<
T
>
(
factor
)
*
x
.
pow
(
static_cast
<
T
>
(
factor
-
static_cast
<
T
>
(
1
)));
}
};
...
...
@@ -618,9 +642,9 @@ struct STanhFunctor : public BaseActivationFunctor<T> {
return
{{
"scale_a"
,
&
scale_a
},
{
"scale_b"
,
&
scale_b
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
static_cast
<
T
>
(
scale_b
)
*
(
static_cast
<
T
>
(
scale_a
)
*
x
).
tanh
();
}
};
...
...
@@ -633,12 +657,13 @@ struct STanhGradFunctor : public BaseActivationFunctor<T> {
return
{{
"scale_a"
,
&
scale_a
},
{
"scale_b"
,
&
scale_b
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
a
=
static_cast
<
T
>
(
scale_a
);
auto
b
=
static_cast
<
T
>
(
scale_b
);
auto
temp
=
(
a
*
x
).
tanh
()
*
(
a
*
x
).
tanh
();
dx
.
device
(
d
)
=
d
y
*
a
*
b
*
(
static_cast
<
T
>
(
1
)
-
temp
);
dx
.
device
(
d
)
=
d
out
*
a
*
b
*
(
static_cast
<
T
>
(
1
)
-
temp
);
}
};
...
...
@@ -649,10 +674,10 @@ struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
return
{{
"threshold"
,
&
threshold
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
auto
th
=
static_cast
<
T
>
(
threshold
);
y
.
device
(
d
)
=
(
x
>
th
).
template
cast
<
T
>()
*
x
;
out
.
device
(
d
)
=
(
x
>
th
).
template
cast
<
T
>()
*
x
;
}
};
...
...
@@ -663,10 +688,11 @@ struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
return
{{
"threshold"
,
&
threshold
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
th
=
static_cast
<
T
>
(
threshold
);
dx
.
device
(
d
)
=
d
y
*
(
x
>
th
).
template
cast
<
T
>();
dx
.
device
(
d
)
=
d
out
*
(
x
>
th
).
template
cast
<
T
>();
}
};
...
...
@@ -678,10 +704,11 @@ struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
return
{{
"slope"
,
&
slope
},
{
"offset"
,
&
offset
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
auto
temp
=
x
*
static_cast
<
T
>
(
slope
)
+
static_cast
<
T
>
(
offset
);
y
.
device
(
d
)
=
temp
.
cwiseMax
(
static_cast
<
T
>
(
0
)).
cwiseMin
(
static_cast
<
T
>
(
1
));
out
.
device
(
d
)
=
temp
.
cwiseMax
(
static_cast
<
T
>
(
0
)).
cwiseMin
(
static_cast
<
T
>
(
1
));
}
};
...
...
@@ -693,12 +720,13 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
return
{{
"slope"
,
&
slope
},
{
"offset"
,
&
offset
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
((
y
>
static_cast
<
T
>
(
0
))
*
(
y
<
static_cast
<
T
>
(
1
))).
template
cast
<
T
>()
*
static_cast
<
T
>
(
slope
);
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
((
out
>
static_cast
<
T
>
(
0
))
*
(
out
<
static_cast
<
T
>
(
1
)))
.
template
cast
<
T
>()
*
static_cast
<
T
>
(
slope
);
}
};
...
...
@@ -709,9 +737,9 @@ struct SwishFunctor : public BaseActivationFunctor<T> {
return
{{
"beta"
,
&
beta
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
/
(
static_cast
<
T
>
(
1
)
+
(
static_cast
<
T
>
(
-
beta
)
*
x
).
exp
());
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
out
.
device
(
d
)
=
x
/
(
static_cast
<
T
>
(
1
)
+
(
static_cast
<
T
>
(
-
beta
)
*
x
).
exp
());
}
};
...
...
@@ -722,12 +750,13 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> {
return
{{
"beta"
,
&
beta
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
temp1
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
(
static_cast
<
T
>
(
-
beta
)
*
x
).
exp
());
auto
temp2
=
temp1
*
(
static_cast
<
T
>
(
1
)
-
(
beta
*
y
));
dx
.
device
(
d
)
=
d
y
*
((
beta
*
y
)
+
temp2
);
auto
temp2
=
temp1
*
(
static_cast
<
T
>
(
1
)
-
(
beta
*
out
));
dx
.
device
(
d
)
=
d
out
*
((
beta
*
out
)
+
temp2
);
}
};
...
...
paddle/operators/softmax_op.cc
浏览文件 @
bff0cbfc
...
...
@@ -24,13 +24,13 @@ class SoftmaxOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SoftmaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"
Y
"
),
"Output(
Y
) of SoftmaxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"
Out
"
),
"Output(
Out
) of SoftmaxOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE
(
x_dims
.
size
()
==
2UL
,
"The input of softmax op must be a matrix."
);
ctx
->
SetOutputDim
(
"
Y
"
,
x_dims
);
ctx
->
SetOutputDim
(
"
Out
"
,
x_dims
);
}
};
...
...
@@ -41,7 +41,7 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The input tensor of softmax. "
"2-D with shape [batch_size, input_feature_dimensions]."
);
AddOutput
(
"
Y
"
,
"The normalized values with the same shape as X."
);
AddOutput
(
"
Out
"
,
"The normalized values with the same shape as X."
);
AddComment
(
R"DOC(
Softmax Operator.
...
...
@@ -59,7 +59,7 @@ exponential values of all the other dimensions is the output of the softmax
operator.
For each row $i$ and each column $j$ in Input(X), we have:
$$
Y
[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
$$
Out
[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
)DOC"
);
}
...
...
@@ -70,12 +70,12 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"
Y"
),
"Input(Y
) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"
Y
"
)),
"Input(
Y
@GRAD) should be not null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"
Y
"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"
Y
"
)),
"Input(
Y
) and its gradients should have a same shape."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"
Out"
),
"Input(Out
) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"
Out
"
)),
"Input(
Out
@GRAD) should be not null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"
Out
"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"
Out
"
)),
"Input(
Out
) and its gradients should have a same shape."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
...
...
paddle/operators/softmax_op.h
浏览文件 @
bff0cbfc
...
...
@@ -26,13 +26,13 @@ class SoftmaxKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
Tensor
>
(
"Y
"
);
auto
*
Out
=
context
.
Output
<
Tensor
>
(
"Out
"
);
// allocate memory on device.
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
X
,
Y
);
context
.
template
device_context
<
DeviceContext
>(),
X
,
Out
);
}
};
...
...
@@ -40,15 +40,15 @@ template <typename DeviceContext, typename T>
class
SoftmaxGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
Y
=
context
.
Input
<
Tensor
>
(
"Y
"
);
auto
*
d
Y
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y
"
));
auto
*
Out
=
context
.
Input
<
Tensor
>
(
"Out
"
);
auto
*
d
Out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out
"
));
auto
*
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
Y
,
dY
,
dX
);
context
.
template
device_context
<
DeviceContext
>(),
Out
,
dOut
,
dX
);
}
};
...
...
python/paddle/v2/fluid/layer_helper.py
浏览文件 @
bff0cbfc
...
...
@@ -184,7 +184,7 @@ class LayerHelper(object):
self
.
append_op
(
type
=
act_type
,
inputs
=
{
"X"
:
[
input_var
]},
outputs
=
{
"
Y
"
:
[
tmp
]},
outputs
=
{
"
Out
"
:
[
tmp
]},
attrs
=
act
)
return
tmp
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
bff0cbfc
...
...
@@ -386,7 +386,8 @@ def square_error_cost(input, label, **kwargs):
square_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'square'
,
inputs
=
{
'X'
:
[
minus_out
]},
outputs
=
{
'Y'
:
[
square_out
]})
type
=
'square'
,
inputs
=
{
'X'
:
[
minus_out
]},
outputs
=
{
'Out'
:
[
square_out
]})
return
square_out
...
...
@@ -604,7 +605,7 @@ def sequence_pool(input, pool_type, **kwargs):
sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
pool_type (string): The pooling type of sequence_pool.
...
...
@@ -616,7 +617,7 @@ def sequence_pool(input, pool_type, **kwargs):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
...
...
@@ -654,7 +655,7 @@ def sequence_first_step(input, **kwargs):
out.dim = [3, 1]
with condition len(x.lod[-1]) - 1 == out.dims[0]
out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
...
...
@@ -664,7 +665,7 @@ def sequence_first_step(input, **kwargs):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_first_step = fluid.layers.sequence_first_step(input=x)
...
...
@@ -687,7 +688,7 @@ def sequence_last_step(input, **kwargs):
out.dim = [3, 1]
with condition len(x.lod[-1]) - 1 == out.dims[0]
out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
...
...
@@ -697,7 +698,7 @@ def sequence_last_step(input, **kwargs):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_last_step = fluid.layers.sequence_last_step(input=x)
...
...
@@ -1132,7 +1133,7 @@ def reduce_sum(input, dim=None, keep_dim=False):
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
...
...
@@ -1176,7 +1177,7 @@ def reduce_mean(input, dim=None, keep_dim=False):
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
...
...
python/paddle/v2/fluid/tests/test_activation_op.py
浏览文件 @
bff0cbfc
...
...
@@ -10,13 +10,13 @@ class TestExp(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
exp
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
exp
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSigmoid
(
OpTest
):
...
...
@@ -25,13 +25,13 @@ class TestSigmoid(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
self
.
outputs
=
{
'
Out
'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestLogSigmoid
(
OpTest
):
...
...
@@ -40,13 +40,13 @@ class TestLogSigmoid(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
])))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
])))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestTanh
(
OpTest
):
...
...
@@ -55,13 +55,13 @@ class TestTanh(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
tanh
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
tanh
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestTanhShrink
(
OpTest
):
...
...
@@ -70,13 +70,13 @@ class TestTanhShrink(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
self
.
inputs
[
'X'
]
-
np
.
tanh
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
self
.
inputs
[
'X'
]
-
np
.
tanh
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestHardShrink
(
OpTest
):
...
...
@@ -90,13 +90,13 @@ class TestHardShrink(OpTest):
t
=
np
.
copy
(
x
)
t
[(
t
>=
-
threshold
)
&
(
t
<=
threshold
)]
=
0
self
.
outputs
=
{
'
Y
'
:
t
}
self
.
outputs
=
{
'
Out
'
:
t
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.005
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.005
)
class
TestSoftShrink
(
OpTest
):
...
...
@@ -110,13 +110,13 @@ class TestSoftShrink(OpTest):
y
=
np
.
copy
(
self
.
inputs
[
'X'
])
y
=
(
y
<
-
lambda_val
)
*
(
y
+
lambda_val
)
+
(
y
>
lambda_val
)
*
(
y
-
lambda_val
)
self
.
outputs
=
{
'
Y
'
:
y
}
self
.
outputs
=
{
'
Out
'
:
y
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSqrt
(
OpTest
):
...
...
@@ -125,13 +125,13 @@ class TestSqrt(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
sqrt
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
sqrt
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestAbs
(
OpTest
):
...
...
@@ -144,13 +144,13 @@ class TestAbs(OpTest):
# we should avoid this
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
abs
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
abs
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestCeil
(
OpTest
):
...
...
@@ -158,13 +158,13 @@ class TestCeil(OpTest):
self
.
op_type
=
"ceil"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
ceil
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
ceil
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestFloor
(
OpTest
):
...
...
@@ -173,13 +173,13 @@ class TestFloor(OpTest):
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
# numpy floor need +1
self
.
outputs
=
{
'
Y
'
:
np
.
floor
(
self
.
inputs
[
'X'
])
+
1.0
}
self
.
outputs
=
{
'
Out
'
:
np
.
floor
(
self
.
inputs
[
'X'
])
+
1.0
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestRound
(
OpTest
):
...
...
@@ -187,13 +187,13 @@ class TestRound(OpTest):
self
.
op_type
=
"round"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
round
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
round
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestRelu
(
OpTest
):
...
...
@@ -203,13 +203,13 @@ class TestRelu(OpTest):
# The same reason with TestAbs
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
self
.
outputs
=
{
'
Out
'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestBRelu
(
OpTest
):
...
...
@@ -227,13 +227,13 @@ class TestBRelu(OpTest):
t
=
np
.
copy
(
x
)
t
[
t
<
t_min
]
=
t_min
t
[
t
>
t_max
]
=
t_max
self
.
outputs
=
{
'
Y
'
:
t
}
self
.
outputs
=
{
'
Out
'
:
t
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestRelu6
(
OpTest
):
...
...
@@ -248,14 +248,14 @@ class TestRelu6(OpTest):
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'threshold'
:
threshold
}
self
.
outputs
=
{
'
Y
'
:
np
.
minimum
(
np
.
maximum
(
self
.
inputs
[
'X'
],
0
),
threshold
)
'
Out
'
:
np
.
minimum
(
np
.
maximum
(
self
.
inputs
[
'X'
],
0
),
threshold
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestSoftRelu
(
OpTest
):
...
...
@@ -271,13 +271,13 @@ class TestSoftRelu(OpTest):
t
=
np
.
copy
(
x
)
t
[
t
<
-
threshold
]
=
-
threshold
t
[
t
>
threshold
]
=
threshold
self
.
outputs
=
{
'
Y
'
:
np
.
log
((
np
.
exp
(
t
)
+
1
))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
((
np
.
exp
(
t
)
+
1
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestELU
(
OpTest
):
...
...
@@ -290,27 +290,27 @@ class TestELU(OpTest):
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'alpha'
:
alpha
}
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
0
,
x
)
+
np
.
minimum
(
0
,
alpha
*
(
np
.
exp
(
x
)
-
1
))
'
Out
'
:
np
.
maximum
(
0
,
x
)
+
np
.
minimum
(
0
,
alpha
*
(
np
.
exp
(
x
)
-
1
))
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestReciprocal
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reciprocal"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
outputs
=
{
'
Y
'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.01
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.01
)
class
TestLog
(
OpTest
):
...
...
@@ -319,13 +319,13 @@ class TestLog(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSquare
(
OpTest
):
...
...
@@ -334,13 +334,13 @@ class TestSquare(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
square
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
square
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestPow
(
OpTest
):
...
...
@@ -348,13 +348,13 @@ class TestPow(OpTest):
self
.
op_type
=
"pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
attrs
=
{
'factor'
:
3.0
}
self
.
outputs
=
{
'
Y
'
:
np
.
power
(
self
.
inputs
[
'X'
],
3
)}
self
.
outputs
=
{
'
Out
'
:
np
.
power
(
self
.
inputs
[
'X'
],
3
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestSTanh
(
OpTest
):
...
...
@@ -366,13 +366,13 @@ class TestSTanh(OpTest):
scale_a
=
2.0
/
3.0
scale_b
=
1.7159
self
.
attrs
=
{
'scale_a'
:
scale_a
,
'scale_b'
:
scale_b
}
self
.
outputs
=
{
'
Y
'
:
scale_b
*
np
.
tanh
(
self
.
inputs
[
'X'
]
*
scale_a
)}
self
.
outputs
=
{
'
Out
'
:
scale_b
*
np
.
tanh
(
self
.
inputs
[
'X'
]
*
scale_a
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSoftplus
(
OpTest
):
...
...
@@ -381,13 +381,13 @@ class TestSoftplus(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
1
+
np
.
exp
(
self
.
inputs
[
'X'
]))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
1
+
np
.
exp
(
self
.
inputs
[
'X'
]))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSoftsign
(
OpTest
):
...
...
@@ -397,14 +397,14 @@ class TestSoftsign(OpTest):
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
divide
(
self
.
inputs
[
'X'
],
1
+
np
.
abs
(
self
.
inputs
[
'X'
]))
'
Out
'
:
np
.
divide
(
self
.
inputs
[
'X'
],
1
+
np
.
abs
(
self
.
inputs
[
'X'
]))
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestThresholdedRelu
(
OpTest
):
...
...
@@ -419,13 +419,13 @@ class TestThresholdedRelu(OpTest):
self
.
inputs
=
{
'X'
:
X
}
self
.
attrs
=
{
'threshold'
:
threshold
}
self
.
outputs
=
{
'
Y
'
:
(
X
>
threshold
)
*
X
}
self
.
outputs
=
{
'
Out
'
:
(
X
>
threshold
)
*
X
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
self
.
relative_error
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
self
.
relative_error
)
class
TestHardSigmoid
(
OpTest
):
...
...
@@ -447,13 +447,13 @@ class TestHardSigmoid(OpTest):
upper_threshold
-
0.2
temp
=
X
*
slope
+
offset
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
0.0
,
np
.
minimum
(
1.0
,
temp
))}
self
.
outputs
=
{
'
Out
'
:
np
.
maximum
(
0.0
,
np
.
minimum
(
1.0
,
temp
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.002
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.002
)
class
TestSwish
(
OpTest
):
...
...
@@ -462,13 +462,13 @@ class TestSwish(OpTest):
X
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
}
self
.
attrs
=
{
'beta'
:
2.3
}
self
.
outputs
=
{
'
Y
'
:
X
*
expit
(
self
.
attrs
[
'beta'
]
*
X
)}
self
.
outputs
=
{
'
Out
'
:
X
*
expit
(
self
.
attrs
[
'beta'
]
*
X
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/fluid/tests/test_net.py
浏览文件 @
bff0cbfc
...
...
@@ -7,7 +7,7 @@ def fc(X, W, Y):
ret_v
=
core
.
Net
.
create
()
ret_v
.
append_op
(
Operator
(
"mul"
,
X
=
"X"
,
Y
=
"W"
,
Out
=
"pre_activation"
))
ret_v
.
append_op
(
Operator
(
"sigmoid"
,
X
=
"pre_activation"
,
Y
=
Y
))
ret_v
.
append_op
(
Operator
(
"sigmoid"
,
X
=
"pre_activation"
,
Out
=
Y
))
ret_v
.
complete_add_op
(
True
)
return
ret_v
...
...
@@ -30,7 +30,7 @@ Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}.
Op(sigmoid), inputs:{X[pre_activation]}, outputs:{
Y
[fc.out]}.
Op(sigmoid), inputs:{X[pre_activation]}, outputs:{
Out
[fc.out]}.
'''
self
.
assertEqual
(
expected
,
"
\n
"
+
str
(
net
))
...
...
python/paddle/v2/fluid/tests/test_softmax_op.py
浏览文件 @
bff0cbfc
...
...
@@ -17,14 +17,14 @@ class TestSoftmaxOp(OpTest):
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
inputs
[
'X'
])
'
Out
'
:
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
inputs
[
'X'
])
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
)
self
.
check_grad
([
'X'
],
'
Out
'
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录