提交 bf485999 编写于 作者: L Liu Yiqun

Merge branch 'develop' into core_inference_prepare

...@@ -48,6 +48,13 @@ parser.add_argument( ...@@ -48,6 +48,13 @@ parser.add_argument(
type=int, type=int,
default=16, default=16,
help="The sequence number of a mini-batch data. (default: %(default)d)") help="The sequence number of a mini-batch data. (default: %(default)d)")
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test')
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument( parser.add_argument(
"--dict_size", "--dict_size",
type=int, type=int,
...@@ -72,16 +79,21 @@ parser.add_argument( ...@@ -72,16 +79,21 @@ parser.add_argument(
default=3, default=3,
help="The width for beam searching. (default: %(default)d)") help="The width for beam searching. (default: %(default)d)")
parser.add_argument( parser.add_argument(
"--use_gpu", '--device',
type=distutils.util.strtobool, type=str,
default=True, default='GPU',
help="Whether to use gpu. (default: %(default)d)") choices=['CPU', 'GPU'],
help="The device type.")
parser.add_argument( parser.add_argument(
"--max_length", "--max_length",
type=int, type=int,
default=250, default=250,
help="The maximum length of sequence when doing generation. " help="The maximum length of sequence when doing generation. "
"(default: %(default)d)") "(default: %(default)d)")
parser.add_argument(
'--with_test',
action='store_true',
help='If set, test the testset during training.')
def lstm_step(x_t, hidden_t_prev, cell_t_prev, size): def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
...@@ -281,7 +293,7 @@ def train(): ...@@ -281,7 +293,7 @@ def train():
paddle.dataset.wmt14.test(args.dict_size), buf_size=1000), paddle.dataset.wmt14.test(args.dict_size), buf_size=1000),
batch_size=args.batch_size) batch_size=args.batch_size)
place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace() place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
exe = Executor(place) exe = Executor(place)
exe.run(framework.default_startup_program()) exe.run(framework.default_startup_program())
...@@ -307,14 +319,20 @@ def train(): ...@@ -307,14 +319,20 @@ def train():
return total_loss / count return total_loss / count
iters, num_samples, start_time = 0, 0, time.time()
for pass_id in xrange(args.pass_num): for pass_id in xrange(args.pass_num):
pass_start_time = time.time() train_accs = []
words_seen = 0 train_losses = []
for batch_id, data in enumerate(train_batch_generator()): for batch_id, data in enumerate(train_batch_generator()):
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
src_seq, word_num = to_lodtensor(map(lambda x: x[0], data), place) src_seq, word_num = to_lodtensor(map(lambda x: x[0], data), place)
words_seen += word_num num_samples += word_num
trg_seq, word_num = to_lodtensor(map(lambda x: x[1], data), place) trg_seq, word_num = to_lodtensor(map(lambda x: x[1], data), place)
words_seen += word_num num_samples += word_num
lbl_seq, _ = to_lodtensor(map(lambda x: x[2], data), place) lbl_seq, _ = to_lodtensor(map(lambda x: x[2], data), place)
fetch_outs = exe.run(framework.default_main_program(), fetch_outs = exe.run(framework.default_main_program(),
...@@ -325,24 +343,36 @@ def train(): ...@@ -325,24 +343,36 @@ def train():
}, },
fetch_list=[avg_cost]) fetch_list=[avg_cost])
avg_cost_val = np.array(fetch_outs[0]) iters += 1
print('pass_id=%d, batch_id=%d, train_loss: %f' % loss = np.array(fetch_outs[0])
(pass_id, batch_id, avg_cost_val)) print(
"Pass = %d, Iter = %d, Loss = %f" % (pass_id, iters, loss)
) # The accuracy is the accumulation of batches, but not the current batch.
pass_end_time = time.time() train_elapsed = time.time() - start_time
test_loss = do_validation() examples_per_sec = num_samples / train_elapsed
time_consumed = pass_end_time - pass_start_time print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
words_per_sec = words_seen / time_consumed (num_samples, train_elapsed, examples_per_sec))
print("pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f" % # evaluation
(pass_id, test_loss, words_per_sec, time_consumed)) if args.with_test:
test_loss = do_validation()
exit(0)
def infer(): def infer():
pass pass
def print_arguments(args):
print('----------- seq2seq Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == '__main__': if __name__ == '__main__':
args = parser.parse_args() args = parser.parse_args()
print_arguments(args)
if args.infer_only: if args.infer_only:
infer() infer()
else: else:
......
...@@ -35,6 +35,12 @@ def parse_args(): ...@@ -35,6 +35,12 @@ def parse_args():
parser = argparse.ArgumentParser("mnist model benchmark.") parser = argparse.ArgumentParser("mnist model benchmark.")
parser.add_argument( parser.add_argument(
'--batch_size', type=int, default=128, help='The minibatch size.') '--batch_size', type=int, default=128, help='The minibatch size.')
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument( parser.add_argument(
'--iterations', type=int, default=35, help='The number of minibatches.') '--iterations', type=int, default=35, help='The number of minibatches.')
parser.add_argument( parser.add_argument(
...@@ -53,19 +59,14 @@ def parse_args(): ...@@ -53,19 +59,14 @@ def parse_args():
'--use_nvprof', '--use_nvprof',
action='store_true', action='store_true',
help='If set, use nvprof for CUDA.') help='If set, use nvprof for CUDA.')
parser.add_argument(
'--with_test',
action='store_true',
help='If set, test the testset during training.')
args = parser.parse_args() args = parser.parse_args()
return args return args
def print_arguments(args):
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
vars(args)['device'] == 'GPU')
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def cnn_model(data): def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool( conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data, input=data,
...@@ -138,9 +139,6 @@ def run_benchmark(model, args): ...@@ -138,9 +139,6 @@ def run_benchmark(model, args):
# inference program # inference program
inference_program = fluid.default_main_program().clone() inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor])
# Optimization # Optimization
opt = fluid.optimizer.AdamOptimizer( opt = fluid.optimizer.AdamOptimizer(
...@@ -160,39 +158,60 @@ def run_benchmark(model, args): ...@@ -160,39 +158,60 @@ def run_benchmark(model, args):
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=args.batch_size) paddle.dataset.mnist.train(), batch_size=args.batch_size)
accuracy = fluid.average.WeightedAverage() accuracy = fluid.metrics.Accuracy()
iters, num_samples, start_time = 0, 0, time.time()
for pass_id in range(args.pass_num): for pass_id in range(args.pass_num):
accuracy.reset() accuracy.reset()
pass_start = time.time() train_accs = []
train_losses = []
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
img_data = np.array( img_data = np.array(
map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE) map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE)
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([len(y_data), 1]) y_data = y_data.reshape([len(y_data), 1])
start = time.time()
outs = exe.run( outs = exe.run(
fluid.default_main_program(), fluid.default_main_program(),
feed={"pixel": img_data, feed={"pixel": img_data,
"label": y_data}, "label": y_data},
fetch_list=[avg_cost, batch_acc, batch_size_tensor] fetch_list=[avg_cost, batch_acc, batch_size_tensor]
) # The accuracy is the accumulation of batches, but not the current batch. ) # The accuracy is the accumulation of batches, but not the current batch.
accuracy.add(value=outs[1], weight=outs[2]) accuracy.update(value=outs[1], weight=outs[2])
end = time.time() iters += 1
num_samples += len(y_data)
loss = np.array(outs[0]) loss = np.array(outs[0])
acc = np.array(outs[1]) acc = np.array(outs[1])
print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" % train_losses.append(loss)
(pass_id, batch_id, loss, 1 - acc, (end - start) / 1000)) train_accs.append(acc)
print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
(pass_id, iters, loss, acc))
print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
(pass_id, np.mean(train_losses), np.mean(train_accs)))
train_elapsed = time.time() - start_time
examples_per_sec = num_samples / train_elapsed
pass_end = time.time() print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
(num_samples, train_elapsed, examples_per_sec))
# evaluation
if args.with_test:
test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
inference_program)
exit(0)
train_avg_acc = accuracy.eval()
test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
inference_program)
print("pass=%d, train_avg_acc=%f, test_avg_acc=%f, elapse=%f" % def print_arguments(args):
(pass_id, train_avg_acc, test_avg_acc, vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
(pass_end - pass_start) / 1000)) vars(args)['device'] == 'GPU')
print('----------- mnist Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -87,15 +87,6 @@ def parse_args(): ...@@ -87,15 +87,6 @@ def parse_args():
return args return args
def print_arguments(args):
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
vars(args)['device'] == 'GPU')
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
conv1 = fluid.layers.conv2d( conv1 = fluid.layers.conv2d(
input=input, input=input,
...@@ -279,32 +270,31 @@ def run_benchmark(model, args): ...@@ -279,32 +270,31 @@ def run_benchmark(model, args):
'label': label}, 'label': label},
fetch_list=[avg_cost, batch_acc, batch_size_tensor]) fetch_list=[avg_cost, batch_acc, batch_size_tensor])
iters += 1 iters += 1
num_samples += label[0] num_samples += len(label)
accuracy.add(value=acc, weight=weight) accuracy.add(value=acc, weight=weight)
train_losses.append(loss) train_losses.append(loss)
train_accs.append(acc) train_accs.append(acc)
print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" % print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
(pass_id, iters, loss, acc)) (pass_id, iters, loss, acc))
pass_train_acc = accuracy.eval()
# evaluation
if args.with_test:
pass_test_acc = test(exe)
train_elapsed = time.time() - start_time
print("Pass: %d, Loss: %f, Train Accuray: %f\n" % print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
(pass_id, np.mean(train_losses), np.mean(train_accs))) (pass_id, np.mean(train_losses), np.mean(train_accs)))
train_elapsed = time.time() - start_time
examples_per_sec = num_samples / train_elapsed examples_per_sec = num_samples / train_elapsed
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' % print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
(num_samples, train_elapsed, examples_per_sec)) (num_samples, train_elapsed, examples_per_sec))
# evaluation
if args.with_test:
pass_test_acc = test(exe)
exit(0)
if args.use_cprof:
pr.disable() def print_arguments(args):
s = StringIO.StringIO() vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
sortby = 'cumulative' vars(args)['device'] == 'GPU')
ps = pstats.Stats(pr, stream=s).sort_stats(sortby) print('----------- resnet Configuration Arguments -----------')
ps.print_stats() for arg, value in sorted(vars(args).iteritems()):
print(s.getvalue()) print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == '__main__': if __name__ == '__main__':
......
#!/bin/bash #!/bin/bash
# This script benchmarking the PaddlePaddle Fluid on # This script benchmarking the PaddlePaddle Fluid on
# single thread single GPU. # single thread single GPU.
export CUDNN_PATH=/paddle/cudnn_v5/cuda/lib
#export FLAGS_fraction_of_gpu_memory_to_use=0.0
export CUDNN_PATH=/paddle/cudnn_v5
# disable openmp and mkl parallel # disable openmp and mkl parallel
#https://github.com/PaddlePaddle/Paddle/issues/7199 #https://github.com/PaddlePaddle/Paddle/issues/7199
...@@ -25,25 +27,79 @@ export CUDA_VISIBLE_DEVICES=0 ...@@ -25,25 +27,79 @@ export CUDA_VISIBLE_DEVICES=0
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$CUDNN_PATH:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=$CUDNN_PATH:$LD_LIBRARY_PATH
# only query the gpu used
nohup stdbuf -oL nvidia-smi \
--id=${CUDA_VISIBLE_DEVICES} \
--query-gpu=timestamp \
--query-compute-apps=pid,process_name,used_memory \
--format=csv \
--filename=mem.log \
-l 1 &
# mnist
# mnist gpu mnist 128
FLAGS_benchmark=true stdbuf -oL python fluid/mnist.py \
--device=GPU \
--batch_size=128 \
--skip_batch_num=5 \
--iterations=500 \
2>&1 | tee -a mnist_gpu_128.log
# vgg16 # vgg16
# cifar10 gpu cifar10 128 # gpu cifar10 128
FLAGS_benchmark=true python fluid/vgg.py \ FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
--device=GPU \ --device=GPU \
--batch_size=128 \ --batch_size=128 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 > vgg16_gpu_128.log 2>&1 | tee -a vgg16_gpu_128.log
# flowers gpu 128
FLAGS_benchmark=true stdbuf -oL python fluid/vgg16.py \
--device=GPU \
--batch_size=32 \
--data_set=flowers \
--skip_batch_num=5 \
--iterations=30 \
2>&1 | tee -a vgg16_gpu_flowers_32.log
# resnet50 # resnet50
# resnet50 gpu cifar10 128 # resnet50 gpu cifar10 128
FLAGS_benchmark=true python fluid/resnet.py \ FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \
--device=GPU \ --device=GPU \
--batch_size=128 \ --batch_size=128 \
--data_set=cifar10 \ --data_set=cifar10 \
--model=resnet_cifar10 \ --model=resnet_cifar10 \
--skip_batch_num=5 \ --skip_batch_num=5 \
--iterations=30 \ --iterations=30 \
2>&1 > resnet50_gpu_128.log 2>&1 | tee -a resnet50_gpu_128.log
# resnet50 gpu flowers 64
FLAGS_benchmark=true stdbuf -oL python fluid/resnet50.py \
--device=GPU \
--batch_size=64 \
--data_set=flowers \
--model=resnet_imagenet \
--skip_batch_num=5 \
--iterations=30 \
2>&1 | tee -a resnet50_gpu_flowers_64.log
# lstm # lstm
# lstm gpu imdb 32 # tensorflow only support batch=32
FLAGS_benchmark=true stdbuf -oL python fluid/stacked_dynamic_lstm.py \
--device=GPU \
--batch_size=32 \
--skip_batch_num=5 \
--iterations=30 \
--hidden_dim=512 \
--emb_dim=512 \
--crop_size=1500 \
2>&1 | tee -a lstm_gpu_32.log
# seq2seq
# seq2seq gpu wmb 128
FLAGS_benchmark=true stdbuf -oL python fluid/machine_translation.py \
--device=GPU \
--batch_size=128 \
--skip_batch_num=5 \
--iterations=30 \
2>&1 | tee -a lstm_gpu_128.log
...@@ -37,6 +37,14 @@ def parse_args(): ...@@ -37,6 +37,14 @@ def parse_args():
type=int, type=int,
default=32, default=32,
help='The sequence number of a batch data. (default: %(default)d)') help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument( parser.add_argument(
'--emb_dim', '--emb_dim',
type=int, type=int,
...@@ -64,6 +72,10 @@ def parse_args(): ...@@ -64,6 +72,10 @@ def parse_args():
default=int(os.environ.get('CROP_SIZE', '1500')), default=int(os.environ.get('CROP_SIZE', '1500')),
help='The max sentence length of input. Since this model use plain RNN,' help='The max sentence length of input. Since this model use plain RNN,'
' Gradient could be explored if sentence is too long') ' Gradient could be explored if sentence is too long')
parser.add_argument(
'--with_test',
action='store_true',
help='If set, test the testset during training.')
args = parser.parse_args() args = parser.parse_args()
return args return args
...@@ -157,37 +169,43 @@ def main(): ...@@ -157,37 +169,43 @@ def main():
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
def train_loop(pass_num, crop_size): train_reader = batch(
with profiler.profiler(args.device, 'total') as prof: paddle.reader.shuffle(
for pass_id in range(pass_num): crop_sentence(imdb.train(word_dict), args.crop_size),
train_reader = batch( buf_size=25000),
paddle.reader.shuffle( batch_size=args.batch_size)
crop_sentence(imdb.train(word_dict), crop_size),
buf_size=25000), iters, num_samples, start_time = 0, 0, time.time()
batch_size=args.batch_size) for pass_id in range(args.pass_num):
word_nums = 0 train_accs = []
pass_start_time = time.time() train_losses = []
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
tensor_words = to_lodtensor([x[0] for x in data], place) if iters == args.skip_batch_num:
for x in data: start_time = time.time()
word_nums += len(x[0]) num_samples = 0
label = numpy.array([x[1] for x in data]).astype("int64") if iters == args.iterations:
label = label.reshape((-1, 1)) break
loss_np, acc, weight = exe.run( tensor_words = to_lodtensor([x[0] for x in data], place)
fluid.default_main_program(), label = numpy.array([x[1] for x in data]).astype("int64")
feed={"words": tensor_words, label = label.reshape((-1, 1))
"label": label}, loss_np, acc, weight = exe.run(
fetch_list=[loss, batch_acc, batch_size_tensor]) fluid.default_main_program(),
print("pass_id=%d, batch_id=%d, loss=%f, acc=%f" % feed={"words": tensor_words,
(pass_id, batch_id, loss_np, acc)) "label": label},
fetch_list=[loss, batch_acc, batch_size_tensor])
pass_end_time = time.time() iters += 1
time_consumed = pass_end_time - pass_start_time for x in data:
words_per_sec = word_nums / time_consumed num_samples += len(x[0])
print("pass_id=%d, sec/pass: %f, words/s: %f" % print(
(pass_id, time_consumed, words_per_sec)) "Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
(pass_id, iters, loss_np, acc)
train_loop(args.pass_num, args.crop_size) ) # The accuracy is the accumulation of batches, but not the current batch.
train_elapsed = time.time() - start_time
examples_per_sec = num_samples / train_elapsed
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
(num_samples, train_elapsed, examples_per_sec))
exit(0)
def to_lodtensor(data, place): def to_lodtensor(data, place):
...@@ -205,5 +223,14 @@ def to_lodtensor(data, place): ...@@ -205,5 +223,14 @@ def to_lodtensor(data, place):
return res return res
def print_arguments(args):
print('----------- lstm Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == '__main__': if __name__ == '__main__':
args = parse_args()
print_arguments(args)
main() main()
...@@ -191,25 +191,29 @@ def main(): ...@@ -191,25 +191,29 @@ def main():
fetch_list=[avg_cost, batch_acc, batch_size_tensor]) fetch_list=[avg_cost, batch_acc, batch_size_tensor])
accuracy.add(value=acc, weight=weight) accuracy.add(value=acc, weight=weight)
iters += 1 iters += 1
num_samples += len(data) num_samples += len(y_data)
print( print(
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" % "Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
(pass_id, iters, loss, acc) (pass_id, iters, loss, acc)
) # The accuracy is the accumulation of batches, but not the current batch. ) # The accuracy is the accumulation of batches, but not the current batch.
pass_train_acc = accuracy.eval() # pass_train_acc = accuracy.eval()
train_losses.append(loss) train_losses.append(loss)
train_accs.append(acc) train_accs.append(acc)
print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
(pass_id, np.mean(train_losses), np.mean(train_accs)))
train_elapsed = time.time() - start_time
examples_per_sec = num_samples / train_elapsed
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
(num_samples, train_elapsed, examples_per_sec))
# evaluation # evaluation
if args.with_test: if args.with_test:
pass_test_acc = test(exe) pass_test_acc = test(exe)
train_elapsed = time.time() - start_time exit(0)
print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
(pass_id, np.mean(train_losses), np.mean(train_accs)))
def print_arguments(): def print_arguments():
print('----------- Configuration Arguments -----------') print('----------- vgg Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()): for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value)) print('%s: %s' % (arg, value))
print('------------------------------------------------') print('------------------------------------------------')
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.framework import dtypes
from tensorflow.python.layers.core import Dense
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.framework import ops
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops.rnn_cell_impl import RNNCell, BasicLSTMCell
from tensorflow.python.ops.rnn_cell_impl import LSTMStateTuple
from tensorflow.contrib.rnn.python.ops import core_rnn_cell
from tensorflow.python.ops import array_ops
from tensorflow.python.util import nest
import tensorflow.contrib.seq2seq as seq2seq
from tensorflow.contrib.seq2seq.python.ops import beam_search_decoder
import numpy as np
import os
import argparse
import time
import paddle.v2 as paddle
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--embedding_dim",
type=int,
default=512,
help="The dimension of embedding table. (default: %(default)d)")
parser.add_argument(
"--encoder_size",
type=int,
default=512,
help="The size of encoder bi-rnn unit. (default: %(default)d)")
parser.add_argument(
"--decoder_size",
type=int,
default=512,
help="The size of decoder rnn unit. (default: %(default)d)")
parser.add_argument(
"--batch_size",
type=int,
default=128,
help="The sequence number of a mini-batch data. (default: %(default)d)")
parser.add_argument(
"--dict_size",
type=int,
default=30000,
help="The dictionary capacity. Dictionaries of source sequence and "
"target dictionary have same capacity. (default: %(default)d)")
parser.add_argument(
"--max_time_steps",
type=int,
default=81,
help="Max number of time steps for sequence. (default: %(default)d)")
parser.add_argument(
"--pass_num",
type=int,
default=10,
help="The pass number to train. (default: %(default)d)")
parser.add_argument(
"--learning_rate",
type=float,
default=0.0002,
help="Learning rate used to train the model. (default: %(default)f)")
parser.add_argument(
"--infer_only", action='store_true', help="If set, run forward only.")
parser.add_argument(
"--beam_size",
type=int,
default=3,
help="The width for beam searching. (default: %(default)d)")
parser.add_argument(
"--max_generation_length",
type=int,
default=250,
help="The maximum length of sequence when doing generation. "
"(default: %(default)d)")
parser.add_argument(
"--save_freq",
type=int,
default=500,
help="Save model checkpoint every this interation. (default: %(default)d)")
parser.add_argument(
"--model_dir",
type=str,
default='./checkpoint',
help="Path to save model checkpoints. (default: %(default)d)")
_Linear = core_rnn_cell._Linear # pylint: disable=invalid-name
START_TOKEN_IDX = 0
END_TOKEN_IDX = 1
class LSTMCellWithSimpleAttention(RNNCell):
"""Add attention mechanism to BasicLSTMCell.
This class is a wrapper based on tensorflow's `BasicLSTMCell`.
"""
def __init__(self,
num_units,
encoder_vector,
encoder_proj,
source_sequence_length,
forget_bias=1.0,
state_is_tuple=True,
activation=None,
reuse=None):
super(LSTMCellWithSimpleAttention, self).__init__(_reuse=reuse)
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will "
"soon be deprecated. Use state_is_tuple=True.", self)
self._num_units = num_units
# set padding part to 0
self._encoder_vector = self._reset_padding(encoder_vector,
source_sequence_length)
self._encoder_proj = self._reset_padding(encoder_proj,
source_sequence_length)
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation or math_ops.tanh
self._linear = None
@property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units) \
if self._state_is_tuple else 2 * self._num_units)
@property
def output_size(self):
return self._num_units
def zero_state(self, batch_size, dtype):
state_size = self.state_size
if hasattr(self, "_last_zero_state"):
(last_state_size, last_batch_size, last_dtype,
last_output) = getattr(self, "_last_zero_state")
if (last_batch_size == batch_size and last_dtype == dtype and
last_state_size == state_size):
return last_output
with ops.name_scope(
type(self).__name__ + "ZeroState", values=[batch_size]):
output = _zero_state_tensors(state_size, batch_size, dtype)
self._last_zero_state = (state_size, batch_size, dtype, output)
return output
def call(self, inputs, state):
sigmoid = math_ops.sigmoid
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
# get context from encoder outputs
context = self._simple_attention(self._encoder_vector,
self._encoder_proj, h)
if self._linear is None:
self._linear = _Linear([inputs, context, h], 4 * self._num_units,
True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(
value=self._linear([inputs, context, h]),
num_or_size_splits=4,
axis=1)
new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)
if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
def _simple_attention(self, encoder_vec, encoder_proj, decoder_state):
"""Implement the attention function.
The implementation has the same logic to the fluid decoder.
"""
decoder_state_proj = tf.contrib.layers.fully_connected(
inputs=decoder_state,
num_outputs=self._num_units,
activation_fn=None,
biases_initializer=None)
decoder_state_expand = tf.tile(
tf.expand_dims(
input=decoder_state_proj, axis=1),
[1, tf.shape(encoder_proj)[1], 1])
concated = tf.concat([decoder_state_expand, encoder_proj], axis=2)
# need reduce the first dimension
attention_weights = tf.contrib.layers.fully_connected(
inputs=tf.reshape(
concated, shape=[-1, self._num_units * 2]),
num_outputs=1,
activation_fn=tf.nn.tanh,
biases_initializer=None)
attention_weights_reshaped = tf.reshape(
attention_weights, shape=[tf.shape(encoder_vec)[0], -1, 1])
# normalize the attention weights using softmax
attention_weights_normed = tf.nn.softmax(
attention_weights_reshaped, dim=1)
scaled = tf.multiply(attention_weights_normed, encoder_vec)
context = tf.reduce_sum(scaled, axis=1)
return context
def _reset_padding(self,
memory,
memory_sequence_length,
check_inner_dims_defined=True):
"""Reset the padding part for encoder inputs.
This funtion comes from tensorflow's `_prepare_memory` function.
"""
memory = nest.map_structure(
lambda m: ops.convert_to_tensor(m, name="memory"), memory)
if memory_sequence_length is not None:
memory_sequence_length = ops.convert_to_tensor(
memory_sequence_length, name="memory_sequence_length")
if check_inner_dims_defined:
def _check_dims(m):
if not m.get_shape()[2:].is_fully_defined():
raise ValueError(
"Expected memory %s to have fully defined inner dims, "
"but saw shape: %s" % (m.name, m.get_shape()))
nest.map_structure(_check_dims, memory)
if memory_sequence_length is None:
seq_len_mask = None
else:
seq_len_mask = array_ops.sequence_mask(
memory_sequence_length,
maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
dtype=nest.flatten(memory)[0].dtype)
seq_len_batch_size = (memory_sequence_length.shape[0].value or
array_ops.shape(memory_sequence_length)[0])
def _maybe_mask(m, seq_len_mask):
rank = m.get_shape().ndims
rank = rank if rank is not None else array_ops.rank(m)
extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
if memory_sequence_length is not None:
message = ("memory_sequence_length and memory tensor "
"batch sizes do not match.")
with ops.control_dependencies([
check_ops.assert_equal(
seq_len_batch_size, m_batch_size, message=message)
]):
seq_len_mask = array_ops.reshape(
seq_len_mask,
array_ops.concat(
(array_ops.shape(seq_len_mask), extra_ones), 0))
return m * seq_len_mask
else:
return m
return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask),
memory)
def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
target_dict_dim, is_generating, beam_size,
max_generation_length):
src_word_idx = tf.placeholder(tf.int32, shape=[None, None])
src_sequence_length = tf.placeholder(tf.int32, shape=[None, ])
src_embedding_weights = tf.get_variable("source_word_embeddings",
[source_dict_dim, embedding_dim])
src_embedding = tf.nn.embedding_lookup(src_embedding_weights, src_word_idx)
src_forward_cell = tf.nn.rnn_cell.BasicLSTMCell(encoder_size)
src_reversed_cell = tf.nn.rnn_cell.BasicLSTMCell(encoder_size)
# no peephole
encoder_outputs, _ = tf.nn.bidirectional_dynamic_rnn(
cell_fw=src_forward_cell,
cell_bw=src_reversed_cell,
inputs=src_embedding,
sequence_length=src_sequence_length,
dtype=tf.float32)
# concat the forward outputs and backward outputs
encoded_vec = tf.concat(encoder_outputs, axis=2)
# project the encoder outputs to size of decoder lstm
encoded_proj = tf.contrib.layers.fully_connected(
inputs=tf.reshape(
encoded_vec, shape=[-1, embedding_dim * 2]),
num_outputs=decoder_size,
activation_fn=None,
biases_initializer=None)
encoded_proj_reshape = tf.reshape(
encoded_proj, shape=[-1, tf.shape(encoded_vec)[1], decoder_size])
# get init state for decoder lstm's H
backword_first = tf.slice(encoder_outputs[1], [0, 0, 0], [-1, 1, -1])
decoder_boot = tf.contrib.layers.fully_connected(
inputs=tf.reshape(
backword_first, shape=[-1, embedding_dim]),
num_outputs=decoder_size,
activation_fn=tf.nn.tanh,
biases_initializer=None)
# prepare the initial state for decoder lstm
cell_init = tf.zeros(tf.shape(decoder_boot), tf.float32)
initial_state = LSTMStateTuple(cell_init, decoder_boot)
# create decoder lstm cell
decoder_cell = LSTMCellWithSimpleAttention(
decoder_size,
encoded_vec
if not is_generating else seq2seq.tile_batch(encoded_vec, beam_size),
encoded_proj_reshape if not is_generating else
seq2seq.tile_batch(encoded_proj_reshape, beam_size),
src_sequence_length if not is_generating else
seq2seq.tile_batch(src_sequence_length, beam_size),
forget_bias=0.0)
output_layer = Dense(target_dict_dim, name='output_projection')
if not is_generating:
trg_word_idx = tf.placeholder(tf.int32, shape=[None, None])
trg_sequence_length = tf.placeholder(tf.int32, shape=[None, ])
trg_embedding_weights = tf.get_variable(
"target_word_embeddings", [target_dict_dim, embedding_dim])
trg_embedding = tf.nn.embedding_lookup(trg_embedding_weights,
trg_word_idx)
training_helper = seq2seq.TrainingHelper(
inputs=trg_embedding,
sequence_length=trg_sequence_length,
time_major=False,
name='training_helper')
training_decoder = seq2seq.BasicDecoder(
cell=decoder_cell,
helper=training_helper,
initial_state=initial_state,
output_layer=output_layer)
# get the max length of target sequence
max_decoder_length = tf.reduce_max(trg_sequence_length)
decoder_outputs_train, _, _ = seq2seq.dynamic_decode(
decoder=training_decoder,
output_time_major=False,
impute_finished=True,
maximum_iterations=max_decoder_length)
decoder_logits_train = tf.identity(decoder_outputs_train.rnn_output)
decoder_pred_train = tf.argmax(
decoder_logits_train, axis=-1, name='decoder_pred_train')
masks = tf.sequence_mask(
lengths=trg_sequence_length,
maxlen=max_decoder_length,
dtype=tf.float32,
name='masks')
# place holder of label sequence
lbl_word_idx = tf.placeholder(tf.int32, shape=[None, None])
# compute the loss
loss = seq2seq.sequence_loss(
logits=decoder_logits_train,
targets=lbl_word_idx,
weights=masks,
average_across_timesteps=True,
average_across_batch=True)
# return feeding list and loss operator
return {
'src_word_idx': src_word_idx,
'src_sequence_length': src_sequence_length,
'trg_word_idx': trg_word_idx,
'trg_sequence_length': trg_sequence_length,
'lbl_word_idx': lbl_word_idx
}, loss
else:
start_tokens = tf.ones([tf.shape(src_word_idx)[0], ],
tf.int32) * START_TOKEN_IDX
# share the same embedding weights with target word
trg_embedding_weights = tf.get_variable(
"target_word_embeddings", [target_dict_dim, embedding_dim])
inference_decoder = beam_search_decoder.BeamSearchDecoder(
cell=decoder_cell,
embedding=lambda tokens: tf.nn.embedding_lookup(trg_embedding_weights, tokens),
start_tokens=start_tokens,
end_token=END_TOKEN_IDX,
initial_state=tf.nn.rnn_cell.LSTMStateTuple(
tf.contrib.seq2seq.tile_batch(initial_state[0], beam_size),
tf.contrib.seq2seq.tile_batch(initial_state[1], beam_size)),
beam_width=beam_size,
output_layer=output_layer)
decoder_outputs_decode, _, _ = seq2seq.dynamic_decode(
decoder=inference_decoder,
output_time_major=False,
#impute_finished=True,# error occurs
maximum_iterations=max_generation_length)
predicted_ids = decoder_outputs_decode.predicted_ids
return {
'src_word_idx': src_word_idx,
'src_sequence_length': src_sequence_length
}, predicted_ids
def print_arguments(args):
print('----------- Configuration Arguments -----------')
for arg, value in vars(args).iteritems():
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def padding_data(data, padding_size, value):
data = data + [value] * padding_size
return data[:padding_size]
def save(sess, path, var_list=None, global_step=None):
saver = tf.train.Saver(var_list)
save_path = saver.save(sess, save_path=path, global_step=global_step)
print('Model save at %s' % save_path)
def restore(sess, path, var_list=None):
# var_list = None returns the list of all saveable variables
saver = tf.train.Saver(var_list)
saver.restore(sess, save_path=path)
print('model restored from %s' % path)
def adapt_batch_data(data):
src_seq = map(lambda x: x[0], data)
trg_seq = map(lambda x: x[1], data)
lbl_seq = map(lambda x: x[2], data)
src_sequence_length = np.array(
[len(seq) for seq in src_seq]).astype('int32')
src_seq_maxlen = np.max(src_sequence_length)
trg_sequence_length = np.array(
[len(seq) for seq in trg_seq]).astype('int32')
trg_seq_maxlen = np.max(trg_sequence_length)
src_seq = np.array(
[padding_data(seq, src_seq_maxlen, END_TOKEN_IDX)
for seq in src_seq]).astype('int32')
trg_seq = np.array(
[padding_data(seq, trg_seq_maxlen, END_TOKEN_IDX)
for seq in trg_seq]).astype('int32')
lbl_seq = np.array(
[padding_data(seq, trg_seq_maxlen, END_TOKEN_IDX)
for seq in lbl_seq]).astype('int32')
return {
'src_word_idx': src_seq,
'src_sequence_length': src_sequence_length,
'trg_word_idx': trg_seq,
'trg_sequence_length': trg_sequence_length,
'lbl_word_idx': lbl_seq
}
def train():
feeding_dict, loss = seq_to_seq_net(
embedding_dim=args.embedding_dim,
encoder_size=args.encoder_size,
decoder_size=args.decoder_size,
source_dict_dim=args.dict_size,
target_dict_dim=args.dict_size,
is_generating=False,
beam_size=args.beam_size,
max_generation_length=args.max_generation_length)
global_step = tf.Variable(0, trainable=False, name='global_step')
trainable_params = tf.trainable_variables()
optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
gradients = tf.gradients(loss, trainable_params)
# may clip the parameters
clip_gradients, _ = tf.clip_by_global_norm(gradients, 1.0)
updates = optimizer.apply_gradients(
zip(gradients, trainable_params), global_step=global_step)
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(args.dict_size)
train_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(args.dict_size), buf_size=1000),
batch_size=args.batch_size)
test_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.test(args.dict_size), buf_size=1000),
batch_size=args.batch_size)
def do_validataion():
total_loss = 0.0
count = 0
for batch_id, data in enumerate(test_batch_generator()):
adapted_batch_data = adapt_batch_data(data)
outputs = sess.run([loss],
feed_dict={
item[1]: adapted_batch_data[item[0]]
for item in feeding_dict.items()
})
total_loss += outputs[0]
count += 1
return total_loss / count
config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
sess.run(init_l)
sess.run(init_g)
for pass_id in xrange(args.pass_num):
pass_start_time = time.time()
words_seen = 0
for batch_id, data in enumerate(train_batch_generator()):
adapted_batch_data = adapt_batch_data(data)
words_seen += np.sum(adapted_batch_data['src_sequence_length'])
words_seen += np.sum(adapted_batch_data['trg_sequence_length'])
outputs = sess.run([updates, loss],
feed_dict={
item[1]: adapted_batch_data[item[0]]
for item in feeding_dict.items()
})
print("pass_id=%d, batch_id=%d, train_loss: %f" %
(pass_id, batch_id, outputs[1]))
pass_end_time = time.time()
test_loss = do_validataion()
time_consumed = pass_end_time - pass_start_time
words_per_sec = words_seen / time_consumed
print("pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f" %
(pass_id, test_loss, words_per_sec, time_consumed))
def infer():
feeding_dict, predicted_ids = seq_to_seq_net(
embedding_dim=args.embedding_dim,
encoder_size=args.encoder_size,
decoder_size=args.decoder_size,
source_dict_dim=args.dict_size,
target_dict_dim=args.dict_size,
is_generating=True,
beam_size=args.beam_size,
max_generation_length=args.max_generation_length)
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(args.dict_size)
test_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(args.dict_size), buf_size=1000),
batch_size=args.batch_size)
config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
with tf.Session(config=config) as sess:
restore(sess, './checkpoint/tf_seq2seq-1500')
for batch_id, data in enumerate(test_batch_generator()):
src_seq = map(lambda x: x[0], data)
source_language_seq = [
src_dict[item] for seq in src_seq for item in seq
]
src_sequence_length = np.array(
[len(seq) for seq in src_seq]).astype('int32')
src_seq_maxlen = np.max(src_sequence_length)
src_seq = np.array([
padding_data(seq, src_seq_maxlen, END_TOKEN_IDX)
for seq in src_seq
]).astype('int32')
outputs = sess.run([predicted_ids],
feed_dict={
feeding_dict['src_word_idx']: src_seq,
feeding_dict['src_sequence_length']:
src_sequence_length
})
print("\nDecoder result comparison: ")
source_language_seq = ' '.join(source_language_seq).lstrip(
'<s>').rstrip('<e>').strip()
inference_seq = ''
print(" --> source: " + source_language_seq)
for item in outputs[0][0]:
if item[0] == END_TOKEN_IDX: break
inference_seq += ' ' + trg_dict.get(item[0], '<unk>')
print(" --> inference: " + inference_seq)
if __name__ == '__main__':
args = parser.parse_args()
print_arguments(args)
if args.infer_only:
infer()
else:
train()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import time
import numpy as np
import tensorflow as tf
import paddle.v2 as paddle
DTYPE = tf.float32
def parse_args():
parser = argparse.ArgumentParser("mnist model benchmark.")
parser.add_argument(
'--batch_size', type=int, default=128, help='The minibatch size.')
parser.add_argument(
'--iterations', type=int, default=35, help='The number of minibatches.')
parser.add_argument(
'--pass_num', type=int, default=5, help='The number of passes.')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type.')
args = parser.parse_args()
return args
def run_benchmark(args):
def weight_variable(dtype, shape):
initial = tf.truncated_normal(shape, stddev=0.1, dtype=dtype)
return tf.Variable(initial)
def bias_variable(dtype, shape):
initial = tf.constant(0.1, shape=shape, dtype=dtype)
return tf.Variable(initial)
device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0'
with tf.device(device):
images = tf.placeholder(DTYPE, shape=(None, 28, 28, 1))
labels = tf.placeholder(tf.int64, shape=(None, ))
# conv1, relu, pool1
conv1_weights = weight_variable(DTYPE, [5, 5, 1, 20])
conv1_bias = bias_variable(DTYPE, [20])
conv1 = tf.nn.conv2d(
images, conv1_weights, strides=[1, 1, 1, 1], padding="VALID")
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
pool1 = tf.nn.max_pool(
relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
# conv2, relu, pool2
conv2_weights = weight_variable(DTYPE, [5, 5, 20, 50])
conv2_bias = bias_variable(DTYPE, [50])
conv2 = tf.nn.conv2d(
pool1, conv2_weights, strides=[1, 1, 1, 1], padding="VALID")
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
pool2 = tf.nn.max_pool(
relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
# FC
pool_shape = pool2.get_shape().as_list()
hidden_dim = reduce(lambda a, b: a * b, pool_shape[1:], 1)
reshape = tf.reshape(pool2, shape=(tf.shape(pool2)[0], hidden_dim))
fc_weights = weight_variable(DTYPE, [hidden_dim, 10])
fc_bias = bias_variable(DTYPE, [10])
logits = tf.matmul(reshape, fc_weights) + fc_bias
# Get prediction
prediction = tf.nn.softmax(logits)
# Loss
one_hot_labels = tf.one_hot(labels, depth=10)
cost = -tf.reduce_sum(tf.log(prediction) * one_hot_labels, [1])
avg_cost = tf.reduce_mean(cost)
# Get accuracy
correct = tf.equal(tf.argmax(prediction, 1), labels)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
# metrics, g_accuracy
with tf.variable_scope("reset_metrics_accuracy_scope") as scope:
g_accuracy = tf.metrics.accuracy(
labels, tf.argmax(
prediction, axis=1))
vars = tf.contrib.framework.get_variables(
scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
g_accuracy_reset_op = tf.variables_initializer(vars)
# Optimizer
opt = tf.train.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
train_op = opt.minimize(avg_cost)
# train_op = tf.train.AdamOptimizer(1e-4).minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=args.batch_size)
def eval_test():
sess.run(g_accuracy_reset_op)
for batch_id, data in enumerate(test_reader()):
images_data = np.array(
map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32")
labels_data = np.array(map(lambda x: x[1], data)).astype("int64")
loss, acc, g_acc = sess.run(
[avg_cost, accuracy, g_accuracy],
feed_dict={images: images_data,
labels: labels_data})
return g_acc[1]
config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
sess.run(init_g)
sess.run(init_l)
for pass_id in range(args.pass_num):
sess.run(g_accuracy_reset_op)
pass_start = time.time()
for batch_id, data in enumerate(train_reader()):
images_data = np.array(
map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32")
labels_data = np.array(map(lambda x: x[1], data)).astype(
"int64")
start = time.time()
_, loss, acc, g_acc = sess.run(
[train_op, avg_cost, accuracy, g_accuracy],
feed_dict={images: images_data,
labels: labels_data})
end = time.time()
print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" %
(pass_id, batch_id, loss, 1 - acc, (end - start) / 1000))
pass_end = time.time()
test_avg_acc = eval_test()
print(
"pass=%d, training_avg_accuracy=%f, test_avg_acc=%f, elapse=%f"
% (pass_id, g_acc[1], test_avg_acc,
(pass_end - pass_start) / 1000))
def print_arguments(args):
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
run_benchmark(args)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
based on https://github.com/tensorflow/models/blob/master/official/resnet/resnet_model.py
Get help: python resnet.py --help
See performance on flowers: python resnet.py
Train on cifar10: python resnet.py --data=cifar10 --with_test
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import time
import numpy as np
import paddle.v2 as paddle
import tensorflow as tf
DTYPE = tf.float32
def parse_args():
parser = argparse.ArgumentParser('Convolution model benchmark.')
parser.add_argument(
'--model',
type=str,
choices=['resnet'],
default='resnet',
help='The model architecture.')
parser.add_argument(
'--batch_size', type=int, default=32, help='The minibatch size.')
parser.add_argument(
'--use_fake_data',
action='store_true',
help='use real data or fake data')
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument(
'--iterations',
type=int,
default=105,
help='The number of minibatches.')
parser.add_argument(
'--pass_num', type=int, default=300, help='The number of passes.')
parser.add_argument(
'--order',
type=str,
default='NHWC',
choices=['NCHW', 'NHWC'],
help='The data order, now only support NCHW.')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type.')
parser.add_argument(
'--data',
type=str,
default='flowers102',
choices=['flowers102', 'cifar10'],
help='The kinds of data.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
parser.add_argument(
'--use_cprof', action='store_true', help='If set, use cProfile.')
parser.add_argument(
'--with_test',
action='store_true',
help='If set, test the testset during training.')
parser.add_argument(
'--use_nvprof',
action='store_true',
help='If set, use nvprof for CUDA.')
args = parser.parse_args()
return args
def print_arguments(args):
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
vars(args)['device'] == 'GPU')
vars(args)['iterations'] = vars(args)['pass_num'] * 1000 if vars(args)[
'with_test'] else vars(args)['iterations']
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def fixed_padding(inputs, kernel_size, data_format):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
Should be a positive integer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
A tensor with the same format as the input with the data either intact
(if kernel_size == 1) or padded (if kernel_size > 1).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(inputs, [[0, 0], [0, 0], [pad_beg, pad_end],
[pad_beg, pad_end]])
else:
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
"""Strided 2-D convolution with explicit padding."""
# The padding is consistent and is based only on `kernel_size`, not on the
# dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
# This is consistent with PaddlePaddle.
# In addition, the calculation for output size in TensorFlow can refer:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/common_shape_fns.cc
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format)
return tf.layers.conv2d(
inputs=inputs,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=('SAME' if strides == 1 else 'VALID'),
use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(),
data_format=data_format)
def conv_bn(inputs,
filters,
kernel_size,
strides,
is_training,
data_format,
act=True):
# def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
# set fused=True for a significant performance boost. See
# https://www.tensorflow.org/performance/performance_guide#common_fused_ops
inputs = conv2d_fixed_padding(
inputs=inputs,
filters=filters,
kernel_size=kernel_size,
strides=strides,
data_format=data_format)
inputs = tf.layers.batch_normalization(
inputs=inputs,
axis=1 if data_format == 'channels_first' else 3,
momentum=0.9,
epsilon=1e-05,
center=True,
scale=True,
training=is_training,
fused=True)
if act:
inputs = tf.nn.relu(inputs)
return inputs
def basicblock(inputs, filters, is_training, projection_shortcut, strides,
data_format):
shortcut = inputs
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv_bn(inputs, filters, 3, strides, is_training, data_format)
inputs = conv_bn(inputs, filters, 3, 1, is_training, data_format, act=False)
inputs = inputs + shortcut
inputs = tf.nn.relu(inputs)
return inputs
def bottleneck(inputs, filters, is_training, projection_shortcut, strides,
data_format):
shortcut = inputs
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv_bn(inputs, filters, 1, strides, is_training, data_format)
inputs = conv_bn(inputs, filters, 3, 1, is_training, data_format, act=False)
inputs = conv_bn(
inputs, filters * 4, 1, 1, is_training, data_format, act=False)
inputs = inputs + shortcut
inputs = tf.nn.relu(inputs)
return inputs
def block_layer(inputs, filters, block_fn, blocks, strides, is_training, name,
data_format):
# Bottleneck blocks end with 4x the number of filters as they start with
filters_out = 4 * filters if block_fn is bottleneck else filters
def projection_shortcut(inputs):
return conv2d_fixed_padding(
inputs=inputs,
filters=filters_out,
kernel_size=1,
strides=strides,
data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides
inputs = block_fn(inputs, filters, is_training, projection_shortcut,
strides, data_format)
for _ in range(1, blocks):
inputs = block_fn(inputs, filters, is_training, None, 1, data_format)
return tf.identity(inputs, name)
def resnet_imagenet(depth, class_dim, data_format):
"""Returns the ResNet model for a given size and number of output classes."""
def resnet_generator(block_fn,
layers,
num_classes,
data_format='channels_last'):
if data_format is None:
data_format = ('channels_first'
if tf.test.is_built_with_cuda() else 'channels_last')
def model(inputs, is_training):
"""Constructs the ResNet model given the inputs."""
if data_format == 'channels_first':
# Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
# This provides a large performance boost on GPU. See
# https://www.tensorflow.org/performance/performance_guide#data_formats
inputs = tf.transpose(inputs, [0, 3, 1, 2])
inputs = conv_bn(inputs, 64, 7, 2, is_training, data_format)
inputs = tf.identity(inputs, 'initial_conv')
inputs = tf.layers.max_pooling2d(
inputs=inputs,
pool_size=3,
strides=2,
padding='SAME',
data_format=data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
inputs = block_layer(inputs, 64, block_fn, layers[0], 1,
is_training, 'block_layer1', data_format)
inputs = block_layer(inputs, 128, block_fn, layers[1], 2,
is_training, 'block_layer2', data_format)
inputs = block_layer(inputs, 256, block_fn, layers[2], 2,
is_training, 'block_layer3', data_format)
inputs = block_layer(inputs, 512, block_fn, layers[3], 2,
is_training, 'block_layer4', data_format)
inputs = tf.layers.average_pooling2d(
inputs=inputs,
pool_size=7,
strides=1,
padding='VALID',
data_format=data_format)
inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.reshape(inputs,
[-1, 512 if block_fn is basicblock else 2048])
inputs = tf.layers.dense(inputs=inputs, units=num_classes)
inputs = tf.identity(inputs, 'final_dense')
return inputs
return model
model_params = {
18: {
'block': basicblock,
'layers': [2, 2, 2, 2]
},
34: {
'block': basicblock,
'layers': [3, 4, 6, 3]
},
50: {
'block': bottleneck,
'layers': [3, 4, 6, 3]
},
101: {
'block': bottleneck,
'layers': [3, 4, 23, 3]
},
152: {
'block': bottleneck,
'layers': [3, 8, 36, 3]
},
200: {
'block': bottleneck,
'layers': [3, 24, 36, 3]
}
}
if depth not in model_params:
raise ValueError('Not a valid depth:', depth)
params = model_params[depth]
return resnet_generator(params['block'], params['layers'], class_dim,
data_format)
def resnet_cifar10(depth, num_classes, data_format):
if depth % 6 != 2:
raise ValueError('depth must be 6n + 2:', depth)
num_blocks = (depth - 2) // 6
if data_format is None:
data_format = ('channels_first'
if tf.test.is_built_with_cuda() else 'channels_last')
def model(inputs, is_training):
inputs = conv_bn(inputs, 16, 3, 1, is_training, data_format)
inputs = tf.identity(inputs, 'initial_conv')
inputs = block_layer(inputs, 16, basicblock, num_blocks, 1, is_training,
'block_layer1', data_format)
inputs = block_layer(inputs, 32, basicblock, num_blocks, 2, is_training,
'block_layer2', data_format)
inputs = block_layer(inputs, 64, basicblock, num_blocks, 2, is_training,
'block_layer3', data_format)
inputs = tf.layers.average_pooling2d(
inputs=inputs,
pool_size=8,
strides=1,
padding='VALID',
data_format=data_format)
inputs = tf.identity(inputs, 'final_avg_pool')
inputs = tf.reshape(inputs, [-1, 64])
inputs = tf.layers.dense(inputs=inputs, units=num_classes)
inputs = tf.identity(inputs, 'final_dense')
return inputs
return model
def run_benchmark(args, data_format='channels_last', device='/cpu:0'):
"""Our model_fn for ResNet to be used with our Estimator."""
class_dim = 1000
dshape = (None, 224, 224, 3)
pdshape = (3, 224, 224)
if args.data == 'flowers102':
class_dim = 102
dshape = (None, 224, 224, 3)
pdshape = (3, 224, 224)
elif args.data == 'cifar10':
class_dim = 10
dshape = (None, 32, 32, 3)
pdshape = (3, 32, 32)
with tf.device(device):
images = tf.placeholder(DTYPE, shape=dshape)
labels = tf.placeholder(tf.int64, shape=(None, ))
is_training = tf.placeholder('bool')
onehot_labels = tf.one_hot(labels, depth=class_dim)
network = resnet_cifar10(
32, class_dim,
data_format) if args.data == 'cifar10' else resnet_imagenet(
50, class_dim, data_format)
logits = network(inputs=images, is_training=is_training)
cross_entropy = tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=onehot_labels)
avg_cost = tf.reduce_mean(cross_entropy)
correct = tf.equal(tf.argmax(logits, 1), labels)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
lr = 0.1 if args.data == 'cifar10' else 0.01
optimizer = tf.train.MomentumOptimizer(learning_rate=lr, momentum=0.9)
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data == 'cifar10' else paddle.dataset.flowers.test(),
batch_size=100)
def test():
test_accs = []
for batch_id, data in enumerate(test_reader()):
test_images = np.array(
map(lambda x: np.transpose(x[0].reshape(pdshape),
axes=[1, 2, 0]), data)).astype("float32")
test_labels = np.array(map(lambda x: x[1], data)).astype('int64')
test_accs.append(
accuracy.eval(feed_dict={
images: test_images,
labels: test_labels,
is_training: False
}))
print("Pass = %d, Train performance = %f imgs/s, Test accuracy = %f\n" %
(pass_id, num_samples / train_elapsed, np.mean(test_accs)))
config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
sess.run(init_g)
sess.run(init_l)
if args.use_fake_data:
data = train_reader().next()
images_data = np.array(
map(lambda x: np.transpose(x[0].reshape(pdshape),
axes=[1, 2, 0]), data)).astype("float32")
labels_data = np.array(map(lambda x: x[1], data)).astype('int64')
iters, num_samples, start_time = 0, 0, 0.0
for pass_id in range(args.pass_num):
if iters == args.iterations:
break
train_accs = []
train_losses = []
for batch_id, data in enumerate(train_reader()):
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
if not args.use_fake_data:
images_data = np.array(
map(lambda x: np.transpose(x[0].reshape(pdshape),
axes=[1, 2, 0]), data)).astype("float32")
labels_data = np.array(map(lambda x: x[1], data)).astype(
'int64')
_, loss, acc = sess.run([train_op, avg_cost, accuracy],
feed_dict={
images: images_data,
labels: labels_data,
is_training: True
})
iters += 1
train_accs.append(acc)
train_losses.append(loss)
num_samples += len(data)
print("Pass=%d, Iter=%d, Loss=%f, Accuray=%f\n" %
(pass_id, iters, loss, acc))
train_elapsed = time.time() - start_time
print("Pass=%d, Loss=%f, Accuray=%f\n" %
(pass_id, np.mean(train_losses), np.mean(train_accs)))
# evaluation
if args.with_test:
test()
if not args.with_test:
duration = time.time() - start_time
examples_per_sec = num_samples / duration
sec_per_batch = duration / (iters - args.skip_batch_num)
print('Total examples: %d, total time: %.5f' %
(num_samples, duration))
print('%.5f examples/sec, %.5f sec/batch' %
(examples_per_sec, sec_per_batch))
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
if tf.test.is_built_with_cuda():
device = '/device:GPU:0'
if args.order == 'NHWC':
data_format = 'channels_last'
else:
data_format = 'channels_first'
else:
device = '/cpu:0'
if args.order == 'NHWC':
data_format = 'channels_last'
else:
raise ValueError('Only support NHWC order in CPU mode')
run_benchmark(args, data_format, device)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import argparse
import time
import tensorflow as tf
import paddle.v2 as paddle
def parse_args():
parser = argparse.ArgumentParser("LSTM model benchmark.")
parser.add_argument(
'--batch_size',
type=int,
default=32,
help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--stacked_num',
type=int,
default=5,
help='Number of lstm layers to stack. (default: %(default)d)')
parser.add_argument(
'--embedding_dim',
type=int,
default=512,
help='Dimension of embedding table. (default: %(default)d)')
parser.add_argument(
'--hidden_dim',
type=int,
default=512,
help='Hidden size of lstm unit. (default: %(default)d)')
parser.add_argument(
'--pass_num',
type=int,
default=10,
help='Epoch number to train. (default: %(default)d)')
parser.add_argument(
'--learning_rate',
type=float,
default=0.0002,
help='Learning rate used to train. (default: %(default)f)')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
args = parser.parse_args()
return args
def print_arguments(args):
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def dynamic_lstm_model(dict_size,
embedding_dim,
hidden_dim,
stacked_num,
class_num=2,
is_train=True):
word_idx = tf.placeholder(tf.int64, shape=[None, None])
sequence_length = tf.placeholder(tf.int64, shape=[None, ])
embedding_weights = tf.get_variable('word_embeddings',
[dict_size, embedding_dim])
embedding = tf.nn.embedding_lookup(embedding_weights, word_idx)
lstm_cell = tf.nn.rnn_cell.LSTMCell(
num_units=hidden_dim, use_peepholes=False)
stacked_cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * stacked_num)
# final_state [LSTMTuple(c, h), LSTMTuple(c, h) ...] total stacked_num LSTMTuples
_, final_state = tf.nn.dynamic_rnn(
cell=stacked_cell,
inputs=embedding,
dtype=tf.float32,
sequence_length=sequence_length)
w = tf.Variable(
tf.truncated_normal([hidden_dim, class_num]), dtype=tf.float32)
bias = tf.Variable(
tf.constant(
value=0.0, shape=[class_num], dtype=tf.float32))
prediction = tf.matmul(final_state[-1][1], w) + bias
if not is_train:
return (word_idx, sequence_length), tf.nn.softmax(prediction)
label = tf.placeholder(tf.int64, shape=[None, ])
loss = tf.nn.softmax_cross_entropy_with_logits(
labels=tf.one_hot(label, 2), logits=prediction)
avg_loss = tf.reduce_mean(loss)
correct_count = tf.equal(tf.argmax(prediction, 1), label)
acc = tf.reduce_mean(tf.cast(correct_count, tf.float32))
with tf.variable_scope("reset_metrics_accuracy_scope") as scope:
g_acc = tf.metrics.accuracy(label, tf.argmax(prediction, axis=1))
vars = tf.contrib.framework.get_variables(
scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
reset_op = tf.variables_initializer(vars)
return (word_idx, sequence_length, label), avg_loss, acc, g_acc, reset_op
def padding_data(data, padding_size, value):
data = data + [value] * padding_size
return data[:padding_size]
def train(args):
word_dict = paddle.dataset.imdb.word_dict()
dict_size = len(word_dict)
feeding_list, avg_loss, acc, g_acc, reset_op = dynamic_lstm_model(
dict_size, args.embedding_dim, args.hidden_dim, args.stacked_num)
adam_optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
train_op = adam_optimizer.minimize(avg_loss)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=25000),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.imdb.test(word_dict), buf_size=25000),
batch_size=args.batch_size)
def do_validation(sess):
sess.run(reset_op)
for batch_id, data in enumerate(test_reader()):
word_idx = map(lambda x: x[0], data)
sequence_length = np.array(
[len(seq) for seq in word_idx]).astype('int64')
maxlen = np.max(sequence_length)
word_idx = [padding_data(seq, maxlen, 0) for seq in word_idx]
word_idx = np.array(word_idx).astype('int64')
label = np.array(map(lambda x: x[1], data)).astype('int64')
_, loss, fetch_acc, fetch_g_acc = sess.run(
[train_op, avg_loss, acc, g_acc],
feed_dict={
feeding_list[0]: word_idx,
feeding_list[1]: sequence_length,
feeding_list[2]: label
})
return fetch_g_acc[1]
config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
sess.run(init_l)
sess.run(init_g)
for pass_id in xrange(args.pass_num):
# clear accuracy local variable
sess.run(reset_op)
pass_start_time = time.time()
words_seen = 0
for batch_id, data in enumerate(train_reader()):
word_idx = map(lambda x: x[0], data)
sequence_length = np.array(
[len(seq) for seq in word_idx]).astype('int64')
words_seen += np.sum(sequence_length)
maxlen = np.max(sequence_length)
word_idx = [padding_data(seq, maxlen, 0) for seq in word_idx]
word_idx = np.array(word_idx).astype('int64')
label = np.array(map(lambda x: x[1], data)).astype('int64')
_, loss, fetch_acc, fetch_g_acc = sess.run(
[train_op, avg_loss, acc, g_acc],
feed_dict={
feeding_list[0]: word_idx,
feeding_list[1]: sequence_length,
feeding_list[2]: label
})
print("pass_id=%d, batch_id=%d, loss: %f, acc: %f, avg_acc: %f"
% (pass_id, batch_id, loss, fetch_acc, fetch_g_acc[1]))
pass_end_time = time.time()
time_consumed = pass_end_time - pass_start_time
words_per_sec = words_seen / time_consumed
test_acc = do_validation(sess)
print("pass_id=%d, test_acc: %f, words/s: %f, sec/pass: %f" %
(pass_id, test_acc, words_per_sec, time_consumed))
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
if args.infer_only:
pass
else:
train(args)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VGG16 benchmark in TensorFlow"""
import tensorflow as tf
import paddle.v2 as paddle
import numpy as np
import argparse
import time
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test')
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument(
'--learning_rate',
type=float,
default=1e-3,
help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help="The device type.")
parser.add_argument(
'--data_format',
type=str,
default='NHWC',
choices=['NCHW', 'NHWC'],
help='The data order, NCHW=[batch, channels, height, width].'
'Only support NHWC right now.')
parser.add_argument(
'--data_set',
type=str,
default='cifar10',
choices=['cifar10', 'flowers'],
help='Optional dataset for benchmark.')
args = parser.parse_args()
class VGG16Model(object):
def __init__(self):
self.parameters = []
def batch_norm_relu(self, inputs, is_training):
"""Performs a batch normalization followed by a ReLU."""
# We set fused=True for a significant speed boost. See
# https://www.tensorflow.org/speed/speed_guide#common_fused_ops
inputs = tf.layers.batch_normalization(
inputs=inputs,
axis=1 if args.data_format == 'NCHW' else -1,
momentum=0.9,
epsilon=1e-05,
center=True,
scale=True,
training=is_training,
fused=True)
inputs = tf.nn.relu(inputs)
return inputs
def conv_bn_layer(self,
name,
images,
kernel_shape,
is_training,
drop_rate=0.0):
with tf.name_scope(name) as scope:
kernel = tf.Variable(
tf.truncated_normal(
kernel_shape, dtype=tf.float32, stddev=1e-1),
name='weights')
conv = tf.nn.conv2d(
images,
kernel, [1, 1, 1, 1],
data_format=args.data_format,
padding='SAME')
biases = tf.Variable(
tf.constant(
0.0, shape=[kernel_shape[-1]], dtype=tf.float32),
trainable=True,
name='biases')
out = tf.nn.bias_add(conv, biases)
out = self.batch_norm_relu(out, is_training)
out = tf.layers.dropout(out, rate=drop_rate, training=is_training)
return out
def fc_layer(self, name, inputs, shape):
with tf.name_scope(name) as scope:
fc_w = tf.Variable(
tf.truncated_normal(
shape, dtype=tf.float32, stddev=1e-1),
name='weights')
fc_b = tf.Variable(
tf.constant(
0.0, shape=[shape[-1]], dtype=tf.float32),
trainable=True,
name='biases')
out = tf.nn.bias_add(tf.matmul(inputs, fc_w), fc_b)
return out
def network(self, images, class_dim, is_training):
""" VGG16 model structure.
TODO(kuke): enable this network to support the 'NCHW' data format
"""
# conv1
conv1_1 = self.conv_bn_layer(
'conv1_1', images, [3, 3, 3, 64], is_training, drop_rate=0.3)
conv1_2 = self.conv_bn_layer(
'conv1_2', conv1_1, [3, 3, 64, 64], is_training, drop_rate=0.0)
# pool1
pool1 = tf.nn.max_pool(
conv1_2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool1')
# conv2
conv2_1 = self.conv_bn_layer(
'conv2_1', pool1, [3, 3, 64, 128], is_training, drop_rate=0.4)
conv2_2 = self.conv_bn_layer(
'conv2_2', conv2_1, [3, 3, 128, 128], is_training, drop_rate=0.0)
# pool2
pool2 = tf.nn.max_pool(
conv2_2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool2')
# conv3
conv3_1 = self.conv_bn_layer(
'conv3_1', pool2, [3, 3, 128, 256], is_training, drop_rate=0.4)
conv3_2 = self.conv_bn_layer(
'conv3_2', conv3_1, [3, 3, 256, 256], is_training, drop_rate=0.4)
conv3_3 = self.conv_bn_layer(
'conv3_3', conv3_2, [3, 3, 256, 256], is_training, drop_rate=0.0)
# pool3
pool3 = tf.nn.max_pool(
conv3_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool3')
# conv4
conv4_1 = self.conv_bn_layer(
'conv4_1', pool3, [3, 3, 256, 512], is_training, drop_rate=0.4)
conv4_2 = self.conv_bn_layer(
'conv4_2', conv4_1, [3, 3, 512, 512], is_training, drop_rate=0.4)
conv4_3 = self.conv_bn_layer(
'conv4_3', conv4_2, [3, 3, 512, 512], is_training, drop_rate=0.0)
# pool4
pool4 = tf.nn.max_pool(
conv4_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool4')
# conv5
conv5_1 = self.conv_bn_layer(
'conv5_1', pool4, [3, 3, 512, 512], is_training, drop_rate=0.4)
conv5_2 = self.conv_bn_layer(
'conv5_2', conv5_1, [3, 3, 512, 512], is_training, drop_rate=0.4)
conv5_3 = self.conv_bn_layer(
'conv5_3', conv5_2, [3, 3, 512, 512], is_training, drop_rate=0.0)
# pool5
pool5 = tf.nn.max_pool(
conv5_3,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME',
name='pool4')
# flatten
shape = int(np.prod(pool5.get_shape()[1:]))
pool5_flat = tf.reshape(pool5, [-1, shape])
# fc1
drop = tf.layers.dropout(pool5_flat, rate=0.5, training=is_training)
fc1 = self.fc_layer('fc1', drop, [shape, 512])
# fc2
bn = self.batch_norm_relu(fc1, is_training)
drop = tf.layers.dropout(bn, rate=0.5, training=is_training)
fc2 = self.fc_layer('fc2', drop, [512, 512])
fc3 = self.fc_layer('fc3', fc2, [512, class_dim])
return fc3
def run_benchmark():
"""Run benchmark on cifar10 or flowers."""
if args.data_set == "cifar10":
class_dim = 10
raw_shape = (3, 32, 32)
dat_shape = (None, 32, 32, 3) if args.data_format == 'NHWC' else (
None, 3, 32, 32)
else:
class_dim = 102
raw_shape = (3, 224, 224)
dat_shape = (None, 224, 224, 3) if args.data_format == 'NHWC' else (
None, 3, 224, 224)
device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0'
with tf.device(device):
images = tf.placeholder(tf.float32, shape=dat_shape)
labels = tf.placeholder(tf.int64, shape=(None, ))
is_training = tf.placeholder('bool')
onehot_labels = tf.one_hot(labels, depth=class_dim)
vgg16 = VGG16Model()
logits = vgg16.network(images, class_dim, is_training)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=onehot_labels, logits=logits)
avg_loss = tf.reduce_mean(loss)
correct = tf.equal(tf.argmax(logits, 1), labels)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(avg_loss)
# data reader
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
buf_size=5120),
batch_size=args.batch_size)
# test
def test():
test_accs = []
for batch_id, data in enumerate(test_reader()):
test_images = np.array(
map(lambda x: np.transpose(x[0].reshape(raw_shape),
axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32")
test_labels = np.array(map(lambda x: x[1], data)).astype('int64')
test_accs.append(
accuracy.eval(feed_dict={
images: test_images,
labels: test_labels,
is_training: False
}))
return np.mean(test_accs)
config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
sess.run(init_g)
sess.run(init_l)
iters, num_samples, start_time = 0, 0, time.time()
for pass_id in range(args.num_passes):
# train
num_samples = 0
start_time = time.time()
for batch_id, data in enumerate(train_reader()):
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
train_images = np.array(
map(lambda x: np.transpose(x[0].reshape(raw_shape),
axes=[1, 2, 0]) if args.data_format == 'NHWC' else x[0], data)).astype("float32")
train_labels = np.array(map(lambda x: x[1], data)).astype(
'int64')
_, loss, acc = sess.run([train_op, avg_loss, accuracy],
feed_dict={
images: train_images,
labels: train_labels,
is_training: True
})
iters += 1
num_samples += len(data)
print("Pass = %d, Iters = %d, Loss = %f, Accuracy = %f" %
(pass_id, iters, loss, acc))
train_elapsed = time.time() - start_time
# test
pass_test_acc = test()
print("Pass = %d, Train speed = %f imgs/s, Test accuracy = %f\n" %
(pass_id, num_samples / train_elapsed, pass_test_acc))
def print_arguments():
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == '__main__':
print_arguments()
run_benchmark()
...@@ -36,7 +36,8 @@ MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path") ...@@ -36,7 +36,8 @@ MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE) SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib") SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR}) INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR}) # For MKLDNN code to include internal headers.
INCLUDE_DIRECTORIES(${THIRD_PARTY_PATH}/install) # For Paddle code to include mkldnn.h
IF(${CBLAS_PROVIDER} STREQUAL "MKLML") IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
SET(MKLDNN_DEPENDS ${MKLML_PROJECT}) SET(MKLDNN_DEPENDS ${MKLML_PROJECT})
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
if(NOT WITH_GPU)
return()
endif()
include(ExternalProject)
set(NCCL_SOURCE_DIR ${THIRD_PARTY_PATH}/nccl)
include_directories(${NCCL_SOURCE_DIR}/src/extern_nccl/src)
if(WITH_DSO)
# If we use DSO, we do not build nccl, just download the dependencies
set(NCCL_BUILD_COMMAND "")
set(NCCL_INSTALL_COMMAND "")
set(NCCL_INSTALL_DIR "")
else()
# otherwise, we build nccl and link it.
set(NCCL_INSTALL_DIR ${THIRD_PARTY_PATH}/install/nccl)
# Note: cuda 8.0 is needed to make nccl
# When cuda is not installed on the system directory, need to set CUDA_HOME to your cuda root
set(NCCL_BUILD_COMMAND "make -j 8")
set(NCCL_INSTALL_COMMAND "make install PREFIX=${NCCL_INSTALL_DIR}")
endif()
ExternalProject_Add(
extern_nccl
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/NVIDIA/nccl.git"
GIT_TAG "v1.3.4-1"
PREFIX "${NCCL_SOURCE_DIR}"
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND "${NCCL_BUILD_COMMAND}"
INSTALL_COMMAND "${NCCL_INSTALL_COMMAND}"
INSTALL_DIR "${NCCL_INSTALL_DIR}"
TEST_COMMAND ""
)
if(WITH_DSO)
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/lib_nccl_dummy.c)
file(WRITE ${dummyfile} "const char * dummy_nccl = \"${dummyfile}\";")
add_library(nccl STATIC ${dummyfile})
else()
add_library(nccl INTERFACE)
endif()
else()
add_library(nccl STATIC IMPORTED GLOBAL)
set_property(TARGET nccl PROPERTY IMPORTED_LOCATION
${NCCL_INSTALL_DIR}/lib/libnccl_static.a)
endif()
add_dependencies(nccl extern_nccl)
...@@ -244,11 +244,11 @@ function(cc_test TARGET_NAME) ...@@ -244,11 +244,11 @@ function(cc_test TARGET_NAME)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_test_SRCS}) add_executable(${TARGET_NAME} ${cc_test_SRCS})
# Support linking flags: --whole-archive (Linux) / -force_load (MacOS) # Support linking flags: --whole-archive (Linux) / -force_load (MacOS)
target_circle_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog) target_circle_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
if("${cc_test_DEPS}" MATCHES "ARCHIVE_START") if("${cc_test_DEPS}" MATCHES "ARCHIVE_START")
list(REMOVE_ITEM cc_test_DEPS ARCHIVE_START ARCHIVE_END) list(REMOVE_ITEM cc_test_DEPS ARCHIVE_START ARCHIVE_END)
endif() endif()
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog) add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_test(NAME ${TARGET_NAME} add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS} COMMAND ${TARGET_NAME} ${cc_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
...@@ -311,8 +311,8 @@ function(nv_test TARGET_NAME) ...@@ -311,8 +311,8 @@ function(nv_test TARGET_NAME)
set(multiValueArgs SRCS DEPS) set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(nv_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) cmake_parse_arguments(nv_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cuda_add_executable(${TARGET_NAME} ${nv_test_SRCS}) cuda_add_executable(${TARGET_NAME} ${nv_test_SRCS})
target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog) target_link_libraries(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main paddle_memory gtest gflags glog) add_dependencies(${TARGET_NAME} ${nv_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_test(${TARGET_NAME} ${TARGET_NAME}) add_test(${TARGET_NAME} ${TARGET_NAME})
endif() endif()
endfunction(nv_test) endfunction(nv_test)
...@@ -387,8 +387,8 @@ function(hip_test TARGET_NAME) ...@@ -387,8 +387,8 @@ function(hip_test TARGET_NAME)
endif() endif()
add_executable(${TARGET_NAME} ${_cmake_options} ${_generated_files} ${_sources}) add_executable(${TARGET_NAME} ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE HIP) set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE HIP)
target_link_libraries(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main paddle_memory gtest gflags) target_link_libraries(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main memory gtest gflags)
add_dependencies(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main paddle_memory gtest gflags) add_dependencies(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main memory gtest gflags)
add_test(${TARGET_NAME} ${TARGET_NAME}) add_test(${TARGET_NAME} ${TARGET_NAME})
endif() endif()
endfunction(hip_test) endfunction(hip_test)
......
...@@ -16,3 +16,4 @@ ...@@ -16,3 +16,4 @@
block.md block.md
scope.md scope.md
executor.md executor.md
parallel_executor.md
...@@ -16,3 +16,4 @@ Core Concepts ...@@ -16,3 +16,4 @@ Core Concepts
block.md block.md
scope.md scope.md
executor.md executor.md
parallel_executor.md
# Problem # Kernel Hint Design
## Problem
In PaddlePaddle's [Design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md), one Operator may have multiple kernels. Users may have some personal preference to choose a certain type of kernel for an operator, such as `force_cpu` to choose a CPU kernel, `use_cudnn` to choose a CUDNN kernel, we need to provide a way for users to do this. In PaddlePaddle's [Design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md), one Operator may have multiple kernels. Users may have some personal preference to choose a certain type of kernel for an operator, such as `force_cpu` to choose a CPU kernel, `use_cudnn` to choose a CUDNN kernel, we need to provide a way for users to do this.
In the current design, we use KernelType to describe one kernel. In the current design, we use KernelType to describe one kernel.
......
# Background # Kernel Selection
## Background
Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold. Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold.
The `OpKernelType ` is as follows: The `OpKernelType ` is as follows:
......
Install and Build install and Compile
================= ==========
.. _install_steps: .. _install_steps:
Install Steps PaddlePaddle provides various methods of installation for many different users
++++++++
You can choose either pip or Docker to complete your install: Focus on Deep Learning Model Development
-----------------
PaddlePaddle provides lots of packages of python wheel , that pip can install:
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
pip_install_en.rst pip_install_en.rst
docker_install_en.rst
Build from Source This is the most convenient way of installation. Please choose the right installation package with machine configure and system.
-----------------
Follow the Bottom Frame
----------
PaddlePaddle also supports installation using Docker. Please refer to the tutorial below:
.. toctree::
:maxdepth: 1
docker_install_en.rst
.. warning:: We recommend running PaddlePaddle in Docker. This method has the following advantages:
We recommend to directly install via above installation steps, you'll only need to build PaddlePaddle from source when you need a modifed binary. - Does not require installation of third-party dependencies.
- Easy to share runtime environment.
.. toctree:: Lastly, users can also compile and install PaddlePaddle from source code. The instructions are below:
.. toctree::
:maxdepth: 1 :maxdepth: 1
build_from_source_en.md build_from_source_en.rst
.. warning::
One caveat with this approach is that developers will have to download, compile and install all third-party dependencies. Thus this process of installation is more time consuming.
FAQ FAQ
++++++++++ -----------
For any problems during installation, please refer to the page below for answers:
:ref:`常见问题解答 <install_faq>`
If the problem still persists, you are welcome to seek assistance from the PaddlePaddle community:
`FAQ <http://www.paddlepaddle.org/docs/develop/documentation/zh/faq/build_and_install/index_en.html>`_ `创建issue <https://github.com/PaddlePaddle/Paddle/issues/new>`_
...@@ -65,39 +65,55 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D ...@@ -65,39 +65,55 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D
不使用PaddlePaddle.org工具 不使用PaddlePaddle.org工具
-------------------------- --------------------------
使用Docker构建PaddlePaddle的文档,需要在系统里先安装好Docker工具包。Docker安装请参考 `Docker的官网 <https://docs.docker.com/>`_ 。安装好Docker之后可以使用源码目录下的脚本构建文档,即 使用Docker构建PaddlePaddle的文档,需要在系统里先安装好Docker工具包。Docker安装请参考 `Docker的官网 <https://docs.docker.com/>`_ 。该方法与 `从源码编译PaddlePaddle <http://paddlepaddle.org/docs/develop/documentation/zh/build_and_install/build_from_source_cn.html>`_ 相似,通过从源码中构建可用于编译PaddlePaddle文档的Docker镜像并运行,在进入Docker容器后使用源码中的脚本构建PaddlePaddle文档,具体步骤如下:
[TBD] .. code-block:: bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# 从源码中构建可用于编译PaddlePaddle文档的Docker镜像
docker build -t paddle:dev .
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" -e "WITH_DOC=ON" paddle:dev /bin/bash
# 进入Docker容器后使用build.sh脚本构建PaddlePaddle文档
bash -x /paddle/paddle/scripts/docker/build.sh
注:上述命令把当前目录(源码根目录)映射为 container 里的 :code:`/paddle` 目录。
编译完成后,会产生 ``doc/v2`` 和 ``doc/fluid`` 两个目录,在这两个目录下分别都生成 ``cn/html/`` 、 ``en/html`` 、 ``api/en/html`` 共三个子目录,分别进入这些目录下,执行以下命令:
.. code-block:: bash
python -m SimpleHTTPServer 8088
在浏览器中输入 http://localhost:8088 就可以看到编译生成的 ``v2`` 和 ``fluid`` 两种版本的中/英文的文档页面和英文的API页面。
如果不想使用Docker,也可以使用以下命令直接构建PaddlePaddle文档,即 如果不想使用Docker,也可以使用以下命令直接构建PaddlePaddle文档,即
.. code-block:: bash .. code-block:: bash
mkdir paddle
cd paddle
git clone https://github.com/PaddlePaddle/Paddle.git git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
mkdir -p build mkdir -p build
cd build cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON
# 如果只需要构建使用文档,则执行以下命令 # 如果只需要构建使用文档,则执行以下命令
make -j $processors gen_proto_py make -j $processors paddle_docs
make -j $processors paddle_docs paddle_docs_cn
# 如果只需要构建API,则执行以下命令 # 如果只需要构建API,则执行以下命令
make -j $processors gen_proto_py framework_py_proto make -j $processors paddle_apis
make -j $processors copy_paddle_pybind
make -j $processors paddle_api_docs
其中$processors代表启动和CPU核一样多的进程来并行编译,可以根据本机的CPU核数设置相应的值。 其中$processors代表启动和CPU核一样多的进程来并行编译,可以根据本机的CPU核数设置相应的值。
编译完成后,进入 ``doc/v2`` 目录,如果选择构建文档则会在该目录下生成 ``cn/html/`` 、 ``en/html`` 两个子目录,选择构建API则会生成 ``api/en/html`` 目录,分别进入这些目录下,执行以下命令: 编译完成后,同样会产生 ``doc/v2`` 和 ``doc/fluid`` 两个目录,如果选择构建文档则会在这两个目录下分别都生成 ``cn/html/`` 、 ``en/html`` 两个子目录,选择构建API则会在这两个目录下分别生成 ``api/en/html`` 目录,分别进入这些子目录下,执行以下命令:
.. code-block:: bash .. code-block:: bash
python -m SimpleHTTPServer 8088 python -m SimpleHTTPServer 8088
在浏览器中输入 http://localhost:8088 就可以看到编译生成的中/英文的文档页面和英文的API页面,下图为生成的英文文档首页示例。注意,示例中由于使用了sphinx的原始主题,所以页面的风格与官网并不一致,但这并不影响开发者进行调试。 在浏览器中输入 http://localhost:8088 就可以看到编译生成的 ``v2`` 和 ``fluid`` 两种版本的中/英文的文档页面和英文的API页面。下图为生成的 ``v2`` 英文文档首页示例。注意,示例中由于使用了sphinx的原始主题,所以页面的风格与官网并不一致,但这并不影响开发者进行调试。
.. image:: src/doc_en.png .. image:: src/doc_en.png
:align: center :align: center
......
...@@ -68,39 +68,56 @@ Please `click here <https://github.com/PaddlePaddle/PaddlePaddle.org/blob/develo ...@@ -68,39 +68,56 @@ Please `click here <https://github.com/PaddlePaddle/PaddlePaddle.org/blob/develo
Manually Building the Documentation Manually Building the Documentation
------------------------------------- -------------------------------------
Build PaddlePaddle's documentation with Docker,you need to install Docker first. Please refer to `Docker's official website <https://docs.docker.com/>`_ on how to install Docker. After Docker is installed, you could use the scripts in the source directory to build the documentation. Build PaddlePaddle's documentation with Docker,you need to install Docker first. Please refer to `Docker's official website <https://docs.docker.com/>`_ on how to install Docker. This method is quite similar to ` Build From Sources <http://paddlepaddle.org/docs/develop/documentation/en/build_and_install/build_from_source_en.html>`_ , by constructing, from source code, a docker image that can be used to build PaddlePaddle documentation. Enter the Docker container and use the script ``build.sh`` in the source directory to build the PaddlePaddle documentation. The specific steps are as follows:
[TBD] .. code-block:: bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# Construct a docker image from source code
docker build -t paddle:dev .
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" -e "WITH_DOC=ON" paddle:dev /bin/bash
# Use build.sh to build PaddlePaddle documentation
bash -x /paddle/paddle/scripts/docker/build.sh
Note: The above commands maps the current directory (source root directory) to the :code:`/paddle` directory in the container.
After compiling, there should be two generated directories: ``doc/v2`` and ``doc/fluid``, where three subdirectories ``cn/html/``, ``en/html`` and ``api/en/html`` are generated. Please enter these directories respectively and execute the following commands:
.. code-block:: bash
python -m SimpleHTTPServer 8088
Use a web browser and navigate to http://localhost:8000, you could see the compiled ``v2`` 's and ``fluid`` 's Chinese/English documents page and English APIs page.
If you do not wish to use Docker, you can also use the following commands to directly build the PaddlePaddle documentation. If you do not wish to use Docker, you can also use the following commands to directly build the PaddlePaddle documentation.
.. code-block:: bash .. code-block:: bash
mkdir paddle
cd paddle
git clone https://github.com/PaddlePaddle/Paddle.git git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
mkdir -p build mkdir -p build
cd build cd build
cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON
# If you only need to build documents, use the following commands # If you only need to build documents, use the following commands
make -j $processors gen_proto_py make -j $processors paddle_docs
make -j $processors paddle_docs paddle_docs_cn
# If you only need to build APIs, use the following commands # If you only need to build APIs, use the following commands
make -j $processors gen_proto_py framework_py_proto make -j $processors paddle_apis
make -j $processors copy_paddle_pybind
make -j $processors paddle_api_docs
$processors indicates that as many processes as the CPU cores are started to compile in parallel. It should be set according to the number of CPU cores of your machine. $processors indicates that as many processes as the CPU cores are started to compile in parallel. It should be set according to the number of CPU cores of your machine.
After the compilation is complete, enter the ``doc/v2`` directory. If you chose to build documents, it will generate ``cn/html/`` and ``en/html`` subdirectories under this directory. If you chose to build APIs,it will generate``api/en/html`` subdirectory. Please enter these directories respectively and execute the following commands: After compiling, there also should be two generated directories: ``doc/v2`` and ``doc/fluid`` . If you chose to build documents, two subdirectories ``cn/html/`` and ``en/html`` will be generated in both two directories. If you chose to build APIs,a subdirectory ``api/en/html`` will be generated. Please enter these directories respectively and execute the following commands:
.. code-block:: bash .. code-block:: bash
python -m SimpleHTTPServer 8088 python -m SimpleHTTPServer 8088
Use a web browser and navigate to http://localhost:8000, you could see the compiled Chinese/English documents page and the English APIs page. The following figure is an example of the built English documents home page. Note that due to the sphinx's original theme used in the example, the style of the page is not consistent with the official website, but this does not affect the developer's debugging. Use a web browser and navigate to http://localhost:8000, you could see the compiled ``v2`` 's and ``fluid`` 's Chinese/English documents page and English APIs page. The following figure is an example of the built ``v2`` 's English documents home page. Note that due to the sphinx's original theme used in the example, the style of the page is not consistent with the official website, but this does not affect the developer's debugging.
.. image:: src/doc_en.png .. image:: src/doc_en.png
:align: center :align: center
......
## Install and Build ## Install and Build
TBD ### Download & Install
Download the latest C-API development package from CI system and install. You can find the required version in the table below:
<table>
<thead>
<tr>
<th>Version Tips</th>
<th>C-API</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cpu_avx_openblas</td>
<td>-</td>
</tr>
<tr>
<td>cpu_noavx_openblas</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda7.5_cudnn5_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda8.0_cudnn5_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr>
<tr>
<td>cuda8.0_cudnn7_avx_mkl</td>
<td><a href="https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz" rel="nofollow">paddle.tgz</a></td>
</tr></tbody></table>
### From source
Users can also compile the C-API library from PaddlePaddle source code by compiling with the following compilation options:
<table>
<thead>
<tr>
<th>Options</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITH_C_API</td>
<td>ON</td>
</tr>
<tr>
<td>WITH_PYTHON</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_SWIG_PY</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_GOLANG</td>
<td>OFF(recommended)</td>
</tr>
<tr>
<td>WITH_GPU</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>WITH_MKL</td>
<td>ON/OFF</td>
</tr></tbody></table>
It is best to set up with recommended values to avoid linking with unnecessary libraries. Set other compilation options as you need.
Pull the latest following code snippet from github, and configure compilation options(replace PADDLE_ROOT with the installation path of the PaddlePaddle C-API inference library):
```shell
PADDLE_ROOT=/path/of/capi
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
-DWITH_GOLANG=OFF \
-DWITH_PYTHON=OFF \
-DWITH_MKL=OFF \
-DWITH_GPU=OFF \
..
```
After running the above code to generate Makefile , run: `make && make install`. After successful compilation, the dependencies required by C-API(includes: (1)PaddlePaddle inference library and header files; (2) Third-party libraries and header files) will be stored in the `PADDLE_ROOT` directory.
If the compilation is successful, see the following directory structure under `PADDLE_ROOT`(includes PaddlePaddle header files and libraries, and third-party libraries and header files(determined by the link methods if necessary)):
```text
├── include
│   └── paddle
│   ├── arguments.h
│   ├── capi.h
│   ├── capi_private.h
│   ├── config.h
│   ├── error.h
│   ├── gradient_machine.h
│   ├── main.h
│   ├── matrix.h
│   ├── paddle_capi.map
│   └── vector.h
├── lib
│   ├── libpaddle_capi_engine.a
│   ├── libpaddle_capi_layers.a
│   ├── libpaddle_capi_shared.so
│   └── libpaddle_capi_whole.a
└── third_party
├── gflags
│   ├── include
│   │   └── gflags
│   │   ├── gflags_completions.h
│   │   ├── gflags_declare.h
│   │   ...
│   └── lib
│   └── libgflags.a
├── glog
│   ├── include
│   │   └── glog
│   │   ├── config.h
│   │   ...
│   └── lib
│   └── libglog.a
├── openblas
│   ├── include
│   │   ├── cblas.h
│   │   ...
│   └── lib
│   ...
├── protobuf
│   ├── include
│   │   └── google
│   │   └── protobuf
│   │   ...
│   └── lib
│   └── libprotobuf-lite.a
└── zlib
├── include
│   ...
└── lib
...
```
### Linking Description:
There are three kinds of linking methods:
1. Linking with dynamic library `libpaddle_capi_shared.so`(This way is much more convenient and easier, **Without special requirements, it is recommended**), refer to the following:
1. Compiling with CPU version and using `OpenBLAS`; only need to link one library named `libpaddle_capi_shared.so` to develop prediction program through C-API.
1. Compiling with CPU version and using `MKL` lib, you need to link MKL library directly to develop prediction program through PaddlePaddle C-API, due to `MKL` has its own dynamic library.
1. Compiling with GPU version, CUDA library will be loaded dynamically on prediction program run-time, and also set CUDA library to  `LD_LIBRARY_PATH` environment variable.
2. Linking with static library `libpaddle_capi_whole.a`,refer to the following:
1. Specify `-Wl,--whole-archive` linking options.
1. Explicitly link third-party libraries such as `gflags``glog``libz``protobuf` .etc, you can find them under `PADDLE_ROOT/third_party` directory.
1. Use OpenBLAS library if compiling C-API,must explicitly link `libopenblas.a`.
1. Use MKL when compiling C-API, must explicitly link MKL dynamic library.
3. Linking with static library `libpaddle_capi_layers.a` and `libpaddle_capi_engine.a`,refer to the following:
1. This linking methods is mainly used for mobile prediction.
1. Split `libpaddle_capi_whole.a` into two static linking library at least to reduce the size of linking libraries.
1. Specify `-Wl,--whole-archive -lpaddle_capi_layers`  and `-Wl,--no-whole-archive -lpaddle_capi_engine` for linking.
1. The third-party dependencies need explicitly link same as method 2 above.
# Kubernetes Distributed # Distributed Training on Kubernetes
TBD We introduced how to create a PaddlePaddle Job with a single node on Kuberentes in the
previous document.
In this article, we will introduce how to create a PaddlePaddle job with multiple nodes
on Kubernetes cluster.
## Overall Architecture
Before creating a training job, the users need to slice the training data and deploy
the Python scripts along with it into the distributed file system
(We can use the different type of Kuberentes Volumes to mount different distributed
file systems). Before training starts, The program will copy the training data into the
Container and also save the models at the same path during training. The global architecture
is as follows:
![PaddlePaddle on Kubernetes Architecture](src/k8s-paddle-arch.png)
The above figure describes a distributed training architecture which contains 3 nodes, each
Pod mounts a folder of the distributed file system to save training data and models
by Kubernetes Volume. Kubernetes created 3 Pods for this training phase and scheduled these on
3 nodes, each Pod has a PaddlePaddle container. After the containers car created,
PaddlePaddle starts up the communication between PServer and Trainer and read training
data for this training job.
As the description above, we can start up a PaddlePaddle distributed training job on a
Kubernetes ready cluster with the following steps:
1. [Build PaddlePaddle Docker Image](#Build a Docker Image)
1. [Split training data and upload to the distributed file system](#Upload Training Data)
1. [Edit a YAML file and create a Kubernetes Job](#Create a Job)
1. [Check the output](#Check The Output)
We will introduce these steps as follows:
### Build a Docker Image
Training docker image needs to package the paddle pserver and paddle trainer runtimes, as well as two more processes before we can kick off the training:
- Copying the training data into container.
- Generating the initialization arguments for `Paddle PServer` and `Paddle Training` processes.
Since the paddlepaddle official docker image already has the runtimes we need, we'll take it as the base image and pack some additional scripts for the processes mentioned above to build our training image. for more detail, please find from the following link:
- https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile
```bash
$ cd doc/howto/usage/k8s/src/k8s_train
$ docker build -t [YOUR_REPO]/paddle:mypaddle .
```
And then upload the new Docker Image to a Docker hub:
```bash
docker push [YOUR_REPO]/paddle:mypaddle
```
**[NOTE]**, in the above command arguments, `[YOUR_REPO]` represents your Docker repository,
you need to use your repository instead of it. We will replace it with your respository name to
represent the Docker Image which built in this step.
### Prepare Training Data
We can download and split the training job by creating a Kubernetes Job, or custom your image
by editing [k8s_train](./src/k8s_train/).
Before creating a Job, we need to bind a [persistenVolumeClaim](https://kubernetes.io/docs/user-guide/persistent-volumes) by the different type of
the different file system, the generated dataset would be saved on this volume.
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: paddle-data
spec:
template:
metadata:
name: pi
spec:
hostNetwork: true
containers:
- name: paddle-data
image: paddlepaddle/paddle-tutorial:k8s_data
imagePullPolicy: Always
volumeMounts:
- mountPath: "/mnt"
name: nfs
env:
- name: OUT_DIR
value: /home/work/mfs/paddle-cluster-job
- name: SPLIT_COUNT
value: "3"
volumes:
- name: nfs
persistentVolumeClaim:
claimName: mfs
restartPolicy: Never
```
Create the Job with the following command:
```bash
> kubectl create -f xxx.yaml
```
If created successfully, you can see some information like this:
```base
[root@paddle-kubernetes-node0 nfsdir]$ tree -d
.
`-- paddle-cluster-job
|-- 0
| `-- data
|-- 1
| `-- data
|-- 2
| `-- data
|-- output
|-- quick_start
```
The `paddle-cluster-job` above is the job name for this training job; we need 3
PaddlePaddle training nodes and save the split training data in `paddle-cluster-job` path,
the folder `0`, `1` and `2` represents the `training_id` on each node, `quick_start` folder is used to store training data, `output` folder is used to store the models and logs.
### Create a Job
Kubernetes allow users to create objects with YAML files, and we can use a command-line tool
to create it.
The Job YAML file describes that which Docker Image would be used in this training job, how much nodes would be created, what's the startup arguments of `Paddle PServer/Trainer` process and what's the type of Volumes. You can find the details of the YAML filed in
[Kubernetes Job API](http://kubernetes.io/docs/api-reference/batch/v1/definitions/#_v1_job).
The following is an example for this training job:
```yaml
apiVersion: batch/v1
kind: Job
metadata:
name: paddle-cluster-job
spec:
parallelism: 3
completions: 3
template:
metadata:
name: paddle-cluster-job
spec:
volumes:
- name: jobpath
hostPath:
path: /home/work/mfs
containers:
- name: trainer
image: [YOUR_REPO]/paddle:mypaddle
command: ["bin/bash", "-c", "/root/start.sh"]
env:
- name: JOB_NAME
value: paddle-cluster-job
- name: JOB_PATH
value: /home/jobpath
- name: JOB_NAMESPACE
value: default
- name: TRAIN_CONFIG_DIR
value: recommendation
- name: CONF_PADDLE_NIC
value: eth0
- name: CONF_PADDLE_PORT
value: "7164"
- name: CONF_PADDLE_PORTS_NUM
value: "2"
- name: CONF_PADDLE_PORTS_NUM_SPARSE
value: "2"
- name: CONF_PADDLE_GRADIENT_NUM
value: "3"
volumeMounts:
- name: jobpath
mountPath: /home/jobpath
restartPolicy: Never
```
In the above YAML file:
- `metadata.name`, The job name.
- `parallelism`, Whether the Kubernetes Job would create `parallelism` Pods at the same time.
- `completions`, The Job would become the success status only when the number of successful Pod(the exit code is 0)
is equal to `completions`.
- `volumeMounts`, the name field `jobpath` is a key, the `mountPath` field represents
the path in the container, and we can define the `jobpath` in `volumes` filed, use `hostPath`
to configure the host path we want to mount.
- `env`, the environment variables in the Container, we pass some startup arguments by
this approach, some details are as following:
- JOB_PATH:the mount path in the container
- JOB_NAME:the job name
- TRAIN_CONFIG_DIR:the job path in the container, we can find the training data path by
combine with JOB_NAME.
- CONF_PADDLE_NIC: the argument `--nics` of `Paddle PServer` process, the network
device name.
- CONF_PADDLE_PORT: the argument `--port` of `Paddle PServer` process.
- CONF_PADDLE_PORTS_NUM: the argument `--ports_num` of `Paddle PServer`, the port number
for dense prameter update.
- CONF_PADDLE_PORTS_NUM_SPARSE:the argument `--ports_num_for_sparse` of `Paddle PServer`,
the port number for sparse parameter update.
- CONF_PADDLE_GRADIENT_NUM:the number of training node, the argument
`--num_gradient_servers` of `Paddle PServer` and `Paddle Trainer`.
You can find some details information at [here]
(http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cmd_parameter/detail_introduction_cn.html)。
We can use the command-line tool of Kubernetes to create a Job when we finish the YAML file:
```bash
kubectl create -f job.yaml
```
Upon successful creation, Kubernetes would create 3 Pods as PaddlePaddle training node,
pull the Docker image and begin to train.
### Checkout the Output
At the process of training, we can check the logs and the output models which is stored in
the `output` folder.
**NOTE**, `node_0`, `node_1` and `node_2` represent the
`trainer_id` of the PaddlePaddle training job rather than the node id of Kubernetes.
```bash
[root@paddle-kubernetes-node0 output]# tree -d
.
├── node_0
│   ├── server.log
│   └── train.log
├── node_1
│   ├── server.log
│   └── train.log
├── node_2
......
├── pass-00002
│   ├── done
│   ├── ___embedding_0__.w0
│   ├── ___embedding_1__.w0
......
```
We can checkout the status of each training Pod by viewing the logs:
```bash
[root@paddle-kubernetes-node0 node_0]# cat train.log
I1116 09:10:17.123121 50 Util.cpp:155] commandline:
/usr/local/bin/../opt/paddle/bin/paddle_trainer
--nics=eth0 --port=7164
--ports_num=2 --comment=paddle_process_by_paddle
--pservers=192.168.129.66,192.168.223.143,192.168.129.71
--ports_num_for_sparse=2 --config=./trainer_config.py
--trainer_count=4 --num_passes=10 --use_gpu=0
--log_period=50 --dot_period=10 --saving_period=1
--local=0 --trainer_id=0
--save_dir=/home/jobpath/paddle-cluster-job/output
I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions
I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done.
[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__square_error_cost_0__]
I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal
I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.681543 50 GradientMachine.cpp:134] Initing parameters..
I1116 09:10:18.012390 50 GradientMachine.cpp:141] Init parameters done.
I1116 09:10:18.018641 50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164
I1116 09:10:18.018950 50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165
I1116 09:10:18.019069 50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164
I1116 09:10:18.019492 50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165
I1116 09:10:18.019716 50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164
I1116 09:10:18.019836 50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165
```
## Some Additional Details
### Using Environment Variables
Usually we use the environment varialbes to configurate the PaddlePaddle Job which runs in
Kubernetes, `start_paddle.py` provides a start up script to convert the environment variable
to the start up arguments of PaddlePaddle process:
```bash
API = "/api/v1/namespaces/"
JOBSELECTOR = "labelSelector=job-name="
JOB_PATH = os.getenv("JOB_PATH") + "/" + os.getenv("JOB_NAME")
JOB_PATH_OUTPUT = JOB_PATH + "/output"
JOBNAME = os.getenv("JOB_NAME")
NAMESPACE = os.getenv("JOB_NAMESPACE")
PADDLE_NIC = os.getenv("CONF_PADDLE_NIC")
PADDLE_PORT = os.getenv("CONF_PADDLE_PORT")
PADDLE_PORTS_NUM = os.getenv("CONF_PADDLE_PORTS_NUM")
PADDLE_PORTS_NUM_SPARSE = os.getenv("CONF_PADDLE_PORTS_NUM_SPARSE")
PADDLE_SERVER_NUM = os.getenv("CONF_PADDLE_GRADIENT_NUM")
```
### Communication between Pods
At the begin of `start_paddle.py`, it would initializes and parses the arguments.
```python
parser = argparse.ArgumentParser(prog="start_paddle.py",
description='simple tool for k8s')
args, train_args_list = parser.parse_known_args()
train_args = refine_unknown_args(train_args_list)
train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
podlist = getPodList()
```
And then query the status of all the other Pods of this Job by the function `getPodList()`, and fetch `triner_id` by the function `getIdMap(podlist)` if all the Pods status is `RUNNING`.
```python
podlist = getPodList()
# need to wait until all pods are running
while not isPodAllRunning(podlist):
time.sleep(10)
podlist = getPodList()
idMap = getIdMap(podlist)
```
**NOTE**: `getPodList()` would prefetch all the Pods in the current namespace, if some
Pods are alreay running, it may cause some error. We will use [statfulesets](https://kubernetes.io/docs/concepts/abstractions/controllers/statefulsets) instead of
Kubernetes Pod or Replicaset in the future.
The function `getIdMap(podlist)` fetches IPs addresses of `podlist` and then sort them
to generate `trainer_id`.
```python
def getIdMap(podlist):
'''
generate tainer_id by ip
'''
ips = []
for pod in podlist["items"]:
ips.append(pod["status"]["podIP"])
ips.sort()
idMap = {}
for i in range(len(ips)):
idMap[ips[i]] = i
return idMap
```
After getting the `idMap`, we can generate the arguments of `Paddle PServer` and `Paddle Trainer`
so that we can start up them by `startPaddle(idMap, train_args_dict)`.
### Create Job
The main goal of `startPaddle` is generating the arguments of `Paddle PServer` and
`Paddle Trainer` processes. Take `Paddle Trainer` as an example, we parse the
environment variable and then get `PADDLE_NIC`, `PADDLE_PORT`, `PADDLE_PORTS_NUM` and etc...,
finally find `trainerId` from `idMap` according to its IP address.
```python
program = 'paddle train'
args = " --nics=" + PADDLE_NIC
args += " --port=" + str(PADDLE_PORT)
args += " --ports_num=" + str(PADDLE_PORTS_NUM)
args += " --comment=" + "paddle_process_by_paddle"
ip_string = ""
for ip in idMap.keys():
ip_string += (ip + ",")
ip_string = ip_string.rstrip(",")
args += " --pservers=" + ip_string
args_ext = ""
for key, value in train_args_dict.items():
args_ext += (' --' + key + '=' + value)
localIP = socket.gethostbyname(socket.gethostname())
trainerId = idMap[localIP]
args += " " + args_ext + " --trainer_id=" + \
str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT
```
.timestamp
*.o *.o
*.a *.a
.svn .svn
......
...@@ -7,9 +7,9 @@ cc_test(ddim_test SRCS ddim_test.cc DEPS ddim) ...@@ -7,9 +7,9 @@ cc_test(ddim_test SRCS ddim_test.cc DEPS ddim)
nv_test(dim_test SRCS dim_test.cu DEPS ddim) nv_test(dim_test SRCS dim_test.cu DEPS ddim)
if(WITH_GPU) if(WITH_GPU)
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS ddim place paddle_memory device_context framework_proto) nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS ddim place memory device_context framework_proto)
else() else()
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS ddim place paddle_memory device_context framework_proto) cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS ddim place memory device_context framework_proto)
endif() endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
...@@ -21,9 +21,9 @@ endif() ...@@ -21,9 +21,9 @@ endif()
cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
nv_test(mixed_vector_test SRCS mixed_vector_test.cu DEPS place paddle_memory device_context init) nv_test(mixed_vector_test SRCS mixed_vector_test.cu DEPS place memory device_context init)
cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio) cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio)
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor paddle_memory) cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory)
nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor init) nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor init)
cc_library(reader SRCS reader.cc DEPS lod_tensor ddim) cc_library(reader SRCS reader.cc DEPS lod_tensor ddim)
......
...@@ -13,11 +13,10 @@ See the License for the specific language governing permissions and ...@@ -13,11 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/block_desc.h"
#include <queue>
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/program_desc.h"
#include <queue>
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -147,52 +146,7 @@ void BlockDesc::RemoveOp(size_t s, size_t e) { ...@@ -147,52 +146,7 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) { if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) {
return; return;
} }
auto get_vars = [](std::deque<std::unique_ptr<OpDesc>>::iterator &op, ops_.erase(ops_.begin() + s, ops_.begin() + e);
std::vector<std::string> &v) {
auto in_names = (*op)->InputArgumentNames();
v.insert(v.end(), in_names.begin(), in_names.end());
auto out_names = (*op)->OutputArgumentNames();
v.insert(v.end(), out_names.begin(), out_names.end());
std::sort(v.begin(), v.end());
auto last = std::unique(v.begin(), v.end());
v.erase(last, v.end());
};
need_update_ = true;
for (size_t i = s; i < e; i++) {
// since remove op one by one, every time remove the first op.
auto op = ops_.begin() + s;
// collect input and output variables from current delete op
std::vector<std::string> cur_vars;
get_vars(op, cur_vars);
// remove current op
ops_.erase(ops_.begin() + s);
// collect input and output variables from other ops
std::vector<std::string> other_vars;
for (auto it = ops_.begin(); it != ops_.end(); it++) {
get_vars(it, other_vars);
}
// variables should be deleted
std::vector<std::string> delete_vars;
// delete_vars = cur_vars - cur_vars ^ other_input_vars
std::set_difference(cur_vars.begin(), cur_vars.end(), other_vars.begin(),
other_vars.end(),
std::inserter(delete_vars, delete_vars.end()));
// remove variables
for (size_t i = 0; i < delete_vars.size(); i++) {
auto name = delete_vars[i];
auto it = vars_.find(name);
PADDLE_ENFORCE(it != vars_.end(),
"%s is not in variable list, it should not be deleted",
name);
vars_.erase(it);
VLOG(3) << "deleting variable " << name;
}
}
} }
std::vector<OpDesc *> BlockDesc::AllOps() const { std::vector<OpDesc *> BlockDesc::AllOps() const {
......
...@@ -105,7 +105,7 @@ static void BuildVar(const std::string& param_name, ...@@ -105,7 +105,7 @@ static void BuildVar(const std::string& param_name,
TEST(Operator, CPUtoGPU) { TEST(Operator, CPUtoGPU) {
using namespace paddle::framework; using namespace paddle::framework;
using namespace paddle::platform; using namespace paddle::platform;
InitDevices(); InitDevices(true);
paddle::framework::Scope scope; paddle::framework::Scope scope;
paddle::platform::CPUPlace cpu_place; paddle::platform::CPUPlace cpu_place;
......
...@@ -5,6 +5,7 @@ cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod ...@@ -5,6 +5,7 @@ cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod
nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda) dynload_cuda)
cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry) cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(send_op_handle SRCS send_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base) cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph) cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph)
...@@ -15,7 +16,7 @@ else() ...@@ -15,7 +16,7 @@ else()
set(multi_devices_graph_builder_deps) set(multi_devices_graph_builder_deps)
endif() endif()
cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle ${multi_devices_graph_builder_deps}) scale_loss_grad_op_handle send_op_handle ${multi_devices_graph_builder_deps})
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto) cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto)
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context) simple_threadpool device_context)
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h" #include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" #include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
#include "paddle/fluid/framework/details/send_op_handle.h"
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -54,12 +55,37 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( ...@@ -54,12 +55,37 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
} }
} }
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result, OpDesc *op,
const platform::Place &p,
const size_t &i) const {
auto *op_handle = result->ops_.back().get();
op_handle->dev_ctxes_[p] = const_cast<platform::DeviceContext *>(
platform::DeviceContextPool::Instance().Get(p));
auto var_names = op->InputArgumentNames();
for (auto &each_var_name : var_names) {
VarHandle *var = CreateOrGetLatestVarHandle(result, each_var_name, p, i);
op_handle->AddInput(var);
}
var_names = op->OutputArgumentNames();
for (auto &each_var_name : var_names) {
CreateOpOutput(result, op_handle, each_var_name, p, i);
}
}
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
const ProgramDesc &program) const { const ProgramDesc &program) const {
auto graph = new SSAGraph(); auto graph = new SSAGraph();
SSAGraph &result = *graph; SSAGraph &result = *graph;
std::unordered_set<std::string> og_has_been_broadcast; std::unordered_set<std::string> og_has_been_broadcast;
result.vars_.resize(places_.size());
// We cannot invoke resize. It is a bug of GCC 4.8
result.vars_ = std::vector<
std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
places_.size());
bool is_forwarding = true; bool is_forwarding = true;
for (auto *op : program.Block(0).AllOps()) { for (auto *op : program.Block(0).AllOps()) {
...@@ -72,27 +98,28 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -72,27 +98,28 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
} }
} }
// append send op if program is distributed trainer main program.
// always use the first device
if (!is_forwarding && op->Type() == "send") {
auto &p = places_[0];
auto *s = local_scopes_[0];
// FIXME(wuyi): send op always copy from GPU 0
result.ops_.emplace_back(new SendOpHandle(*op, s, p));
// Create inputs for output on original place and no ssa output
// is created for send op.
CreateOpHandleIOs(&result, op, p, 0);
continue;
}
for (size_t i = 0; i < places_.size(); ++i) { for (size_t i = 0; i < places_.size(); ++i) {
auto &p = places_[i]; auto &p = places_[i];
auto *s = local_scopes_[i]; auto *s = local_scopes_[i];
result.ops_.emplace_back(new ComputationOpHandle(*op, s, p)); result.ops_.emplace_back(new ComputationOpHandle(*op, s, p));
auto *op_handle = result.ops_.back().get(); auto *op_handle = result.ops_.back().get();
op_handle->dev_ctxes_[p] = const_cast<platform::DeviceContext *>( CreateOpHandleIOs(&result, op, p, i);
platform::DeviceContextPool::Instance().Get(p));
auto var_names = op->InputArgumentNames();
for (auto &each_var_name : var_names) { auto var_names = op->OutputArgumentNames();
VarHandle *var =
CreateOrGetLatestVarHandle(&result, each_var_name, p, i);
op_handle->AddInput(var);
}
var_names = op->OutputArgumentNames();
for (auto &each_var_name : var_names) {
CreateOpOutput(&result, op_handle, each_var_name, p, i);
}
if (is_forwarding) { if (is_forwarding) {
if (var_names.size() == 1 && var_names[0] == loss_var_name_) { if (var_names.size() == 1 && var_names[0] == loss_var_name_) {
...@@ -147,15 +174,16 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -147,15 +174,16 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
if (vars.empty()) { // This device has no data. continue. if (vars.empty()) { // This device has no data. continue.
continue; continue;
} }
auto *prev_grad = &vars[vars.size() - 1]; auto &prev_grad = vars[vars.size() - 1];
op_handle->AddInput(prev_grad); op_handle->AddInput(prev_grad.get());
auto &var = vars[vars.size()]; vars.emplace_back(new VarHandle);
var.place_ = p; auto &var = vars.back();
var.name_ = og; var->place_ = p;
var.version_ = vars.size() - 1; var->name_ = og;
var->version_ = vars.size() - 1;
op_handle->AddOutput(&var); op_handle->AddOutput(var.get());
} }
#else #else
PADDLE_ENFORCE("Not implemented"); PADDLE_ENFORCE("Not implemented");
......
...@@ -14,6 +14,9 @@ ...@@ -14,6 +14,9 @@
#pragma once #pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/ssa_graph_builder.h" #include "paddle/fluid/framework/details/ssa_graph_builder.h"
namespace paddle { namespace paddle {
...@@ -41,6 +44,10 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { ...@@ -41,6 +44,10 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
std::unique_ptr<SSAGraph> Build(const ProgramDesc &program) const override; std::unique_ptr<SSAGraph> Build(const ProgramDesc &program) const override;
private:
void CreateOpHandleIOs(SSAGraph *result, OpDesc *op, const platform::Place &p,
const size_t &i) const;
private: private:
std::string loss_var_name_; std::string loss_var_name_;
const std::vector<platform::Place> &places_; const std::vector<platform::Place> &places_;
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/send_op_handle.h"
namespace paddle {
namespace framework {
namespace details {
SendOpHandle::SendOpHandle(const framework::OpDesc &op_desc,
const Scope *local_scope,
const platform::Place &place)
: op_(framework::OpRegistry::CreateOp(op_desc)),
local_scope_(local_scope),
place_(place) {}
void SendOpHandle::RunImpl() {
// Wait input done
for (auto *in : inputs_) {
auto &p = static_cast<VarHandle *>(in)->place_;
if (in->DebugString() == "dummy") { // HACK
continue;
}
in->generated_op_->Wait(dev_ctxes_[p]);
}
op_->Run(*local_scope_, place_);
}
std::string SendOpHandle::Name() const { return "send"; }
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
namespace paddle {
namespace framework {
namespace details {
struct SendOpHandle : public OpHandleBase {
std::unique_ptr<OperatorBase> op_;
const Scope* local_scope_;
const platform::Place& place_;
SendOpHandle(const framework::OpDesc& op_desc, const Scope* local_scope,
const platform::Place& place);
std::string Name() const override;
// Delay and buffer nccl_all_reduce together can significantly increase
// performance. Disable this feature by returning false.
bool IsMultiDeviceTransfer() override { return false; };
protected:
void RunImpl() override;
};
} // namespace details
} // namespace framework
} // namespace paddle
...@@ -16,6 +16,8 @@ ...@@ -16,6 +16,8 @@
#include <map> #include <map>
#include <string> #include <string>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/details/var_handle.h" #include "paddle/fluid/framework/details/var_handle.h"
...@@ -24,7 +26,9 @@ namespace framework { ...@@ -24,7 +26,9 @@ namespace framework {
namespace details { namespace details {
struct SSAGraph { struct SSAGraph {
std::vector<std::unordered_map<std::string, std::map<int, VarHandle>>> vars_; std::vector<
std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>
vars_;
// aux variables to represent dependency. Useful to resolve data hazard. // aux variables to represent dependency. Useful to resolve data hazard.
std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_; std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_;
std::vector<std::unique_ptr<OpHandleBase>> ops_; std::vector<std::unique_ptr<OpHandleBase>> ops_;
......
...@@ -27,8 +27,8 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(SSAGraph *graph) { ...@@ -27,8 +27,8 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(SSAGraph *graph) {
auto it_old = name_pair.second.rbegin(); auto it_old = name_pair.second.rbegin();
++it_old; ++it_old;
for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) { for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
auto *write_op = it_new->second.generated_op_; auto *write_op = (*it_new)->generated_op_;
auto &read_ops = it_old->second.pending_ops_; auto &read_ops = (*it_old)->pending_ops_;
for (auto *read_op : read_ops) { for (auto *read_op : read_ops) {
// Manually add a dependency var from read_op to write_op; // Manually add a dependency var from read_op to write_op;
...@@ -54,14 +54,15 @@ VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle( ...@@ -54,14 +54,15 @@ VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle(
auto &var_holder = var_holders[each_var_name]; auto &var_holder = var_holders[each_var_name];
VarHandle *var = nullptr; VarHandle *var = nullptr;
if (var_holder.empty()) { if (var_holder.empty()) {
var_holder.emplace_back(new VarHandle);
auto &init_var = var_holder[0]; auto &init_var = var_holder[0];
init_var.place_ = place; init_var->place_ = place;
init_var.name_ = each_var_name; init_var->name_ = each_var_name;
init_var.generated_op_ = nullptr; init_var->generated_op_ = nullptr;
init_var.version_ = 0; init_var->version_ = 0;
var = &init_var; var = init_var.get();
} else { } else {
var = &var_holder.rbegin()->second; var = var_holder.rbegin()->get();
} }
return var; return var;
} }
...@@ -72,11 +73,12 @@ void SSAGraphBuilder::CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle, ...@@ -72,11 +73,12 @@ void SSAGraphBuilder::CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle,
size_t place_offset) { size_t place_offset) {
auto &vars = graph->vars_[place_offset][each_var_name]; auto &vars = graph->vars_[place_offset][each_var_name];
size_t version = vars.size(); size_t version = vars.size();
auto &var = vars[version]; vars.emplace_back(new VarHandle());
var.version_ = version; auto &var = vars.back();
var.name_ = each_var_name; var->version_ = version;
var.place_ = place; var->name_ = each_var_name;
op_handle->AddOutput(&var); var->place_ = place;
op_handle->AddOutput(var.get());
} }
template <typename Callback> template <typename Callback>
...@@ -84,7 +86,7 @@ void IterAllVar(const SSAGraph &graph, Callback callback) { ...@@ -84,7 +86,7 @@ void IterAllVar(const SSAGraph &graph, Callback callback) {
for (auto &each : graph.vars_) { for (auto &each : graph.vars_) {
for (auto &pair1 : each) { for (auto &pair1 : each) {
for (auto &pair2 : pair1.second) { for (auto &pair2 : pair1.second) {
callback(pair2.second); callback(*pair2);
} }
} }
} }
......
...@@ -69,7 +69,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -69,7 +69,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
for (auto &var_map : graph_->vars_) { for (auto &var_map : graph_->vars_) {
for (auto &name_pair : var_map) { for (auto &name_pair : var_map) {
for (auto &version_pair : name_pair.second) { for (auto &version_pair : name_pair.second) {
InsertPendingVar(version_pair.second); InsertPendingVar(*version_pair);
} }
} }
} }
...@@ -95,7 +95,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -95,7 +95,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
for (auto &var_map : graph_->vars_) { for (auto &var_map : graph_->vars_) {
auto it = var_map.find(fetch_var_name); auto it = var_map.find(fetch_var_name);
if (it != var_map.end()) { if (it != var_map.end()) {
fetched_vars[fetch_var_name].push_back(&it->second.rbegin()->second); fetched_vars[fetch_var_name].push_back(it->second.rbegin()->get());
} }
} }
} }
......
...@@ -93,6 +93,43 @@ static void CheckTensorNANOrInf(const std::string& name, ...@@ -93,6 +93,43 @@ static void CheckTensorNANOrInf(const std::string& name,
"Tensor %s contains NAN", name); "Tensor %s contains NAN", name);
} }
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
int block_id) {
auto& global_block = pdesc.Block(block_id);
const Scope* ancestor_scope = scope;
while (ancestor_scope->parent()) {
ancestor_scope = ancestor_scope->parent();
}
if (ancestor_scope != scope) {
for (auto& var : global_block.AllVars()) {
if (var->Name() == framework::kEmptyVarName) {
continue;
}
if (var->Persistable()) {
auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
InitializeVariable(ptr, var->GetType());
VLOG(3) << "Create Variable " << var->Name()
<< " global, which pointer is " << ptr;
} else {
auto* ptr = scope->Var(var->Name());
InitializeVariable(ptr, var->GetType());
VLOG(3) << "Create Variable " << var->Name()
<< " locally, which pointer is " << ptr;
}
}
} else {
for (auto& var : global_block.AllVars()) {
auto* ptr = scope->Var(var->Name());
InitializeVariable(ptr, var->GetType());
VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
<< ptr;
}
}
}
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
bool create_local_scope, bool create_vars) { bool create_local_scope, bool create_vars) {
platform::RecordBlock b(block_id); platform::RecordBlock b(block_id);
...@@ -188,8 +225,8 @@ static bool has_fetch_operators( ...@@ -188,8 +225,8 @@ static bool has_fetch_operators(
void Executor::Run(const ProgramDesc& program, Scope* scope, void Executor::Run(const ProgramDesc& program, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets, std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets, std::map<std::string, LoDTensor*>& fetch_targets,
const std::string& feed_holder_name, bool create_vars, const std::string& feed_holder_name,
const std::string& fetch_holder_name, bool create_vars) { const std::string& fetch_holder_name) {
platform::RecordBlock b(kProgramId); platform::RecordBlock b(kProgramId);
bool has_feed_ops = bool has_feed_ops =
has_feed_operators(program.Block(0), feed_targets, feed_holder_name); has_feed_operators(program.Block(0), feed_targets, feed_holder_name);
...@@ -282,38 +319,13 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare( ...@@ -282,38 +319,13 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope, void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope, bool create_vars) { bool create_local_scope, bool create_vars) {
auto& block = ctx->prog_.Block(ctx->block_id_);
Scope* local_scope = scope; Scope* local_scope = scope;
if (create_vars) { if (create_vars) {
if (create_local_scope) { if (create_local_scope) {
local_scope = &scope->NewScope(); local_scope = &scope->NewScope();
for (auto& var : block.AllVars()) { }
if (var->Name() == framework::kEmptyVarName) { CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
continue; }
}
if (var->Persistable()) {
auto* ptr = scope->Var(var->Name());
InitializeVariable(ptr, var->GetType());
VLOG(3) << "Create Variable " << var->Name()
<< " global, which pointer is " << ptr;
} else {
auto* ptr = local_scope->Var(var->Name());
InitializeVariable(ptr, var->GetType());
VLOG(3) << "Create Variable " << var->Name()
<< " locally, which pointer is " << ptr;
}
}
} else {
for (auto& var : block.AllVars()) {
auto* ptr = local_scope->Var(var->Name());
InitializeVariable(ptr, var->GetType());
VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
<< ptr;
}
} // if (create_local_scope)
} // if (create_vars)
for (auto& op : ctx->ops_) { for (auto& op : ctx->ops_) {
VLOG(3) << place_ << " " << op->DebugStringEx(local_scope); VLOG(3) << place_ << " " << op->DebugStringEx(local_scope);
......
...@@ -54,9 +54,9 @@ class Executor { ...@@ -54,9 +54,9 @@ class Executor {
void Run(const ProgramDesc& program, Scope* scope, void Run(const ProgramDesc& program, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets, std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets, std::map<std::string, LoDTensor*>& fetch_targets,
bool create_vars = true,
const std::string& feed_holder_name = "feed", const std::string& feed_holder_name = "feed",
const std::string& fetch_holder_name = "fetch", const std::string& fetch_holder_name = "fetch");
bool create_vars = true);
static std::unique_ptr<ExecutorPrepareContext> Prepare( static std::unique_ptr<ExecutorPrepareContext> Prepare(
const ProgramDesc& program, int block_id); const ProgramDesc& program, int block_id);
...@@ -64,6 +64,8 @@ class Executor { ...@@ -64,6 +64,8 @@ class Executor {
static std::vector<std::shared_ptr<ExecutorPrepareContext>> Prepare( static std::vector<std::shared_ptr<ExecutorPrepareContext>> Prepare(
const ProgramDesc& program, const std::vector<int>& block_ids); const ProgramDesc& program, const std::vector<int>& block_ids);
void CreateVariables(const ProgramDesc& pdesc, Scope* scope, int block_id);
void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope, void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope = true, bool create_local_scope = true,
bool create_vars = true); bool create_vars = true);
......
...@@ -64,7 +64,7 @@ void InitP2P(int count) { ...@@ -64,7 +64,7 @@ void InitP2P(int count) {
#endif #endif
} }
void InitDevices() { void InitDevices(bool init_p2p) {
/*Init all avaiable devices by default */ /*Init all avaiable devices by default */
std::vector<platform::Place> places; std::vector<platform::Place> places;
...@@ -85,7 +85,9 @@ void InitDevices() { ...@@ -85,7 +85,9 @@ void InitDevices() {
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
places.emplace_back(platform::CUDAPlace(i)); places.emplace_back(platform::CUDAPlace(i));
} }
InitP2P(count); if (init_p2p) {
InitP2P(count);
}
platform::DeviceContextPool::Init(places); platform::DeviceContextPool::Init(places);
} }
......
...@@ -24,7 +24,7 @@ void InitGflags(std::vector<std::string> &argv); ...@@ -24,7 +24,7 @@ void InitGflags(std::vector<std::string> &argv);
void InitGLOG(const std::string &prog_name); void InitGLOG(const std::string &prog_name);
void InitDevices(); void InitDevices(bool init_p2p);
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -21,7 +21,7 @@ TEST(InitDevices, CPU) { ...@@ -21,7 +21,7 @@ TEST(InitDevices, CPU) {
using paddle::platform::DeviceContextPool; using paddle::platform::DeviceContextPool;
#ifndef PADDLE_WITH_CUDA #ifndef PADDLE_WITH_CUDA
InitDevices(); InitDevices(true);
DeviceContextPool& pool = DeviceContextPool::Instance(); DeviceContextPool& pool = DeviceContextPool::Instance();
ASSERT_EQ(pool.size(), 1U); ASSERT_EQ(pool.size(), 1U);
#endif #endif
...@@ -33,7 +33,7 @@ TEST(InitDevices, CUDA) { ...@@ -33,7 +33,7 @@ TEST(InitDevices, CUDA) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
int count = paddle::platform::GetCUDADeviceCount(); int count = paddle::platform::GetCUDADeviceCount();
InitDevices(); InitDevices(true);
DeviceContextPool& pool = DeviceContextPool::Instance(); DeviceContextPool& pool = DeviceContextPool::Instance();
ASSERT_EQ(pool.size(), 1U + static_cast<unsigned>(count)); ASSERT_EQ(pool.size(), 1U + static_cast<unsigned>(count));
#endif #endif
......
...@@ -12,9 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,9 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h" #include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
#include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h" #include "paddle/fluid/memory/memory.h"
...@@ -22,11 +27,6 @@ limitations under the License. */ ...@@ -22,11 +27,6 @@ limitations under the License. */
#include "paddle/fluid/recordio/scanner.h" #include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h" #include "paddle/fluid/recordio/writer.h"
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -294,7 +294,7 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor, ...@@ -294,7 +294,7 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx); TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
} }
void WriteToRecordIO(recordio::Writer &writer, void WriteToRecordIO(recordio::Writer *writer,
const std::vector<LoDTensor> &tensor, const std::vector<LoDTensor> &tensor,
const platform::DeviceContext &dev_ctx) { const platform::DeviceContext &dev_ctx) {
std::stringstream buffer; std::stringstream buffer;
...@@ -303,18 +303,20 @@ void WriteToRecordIO(recordio::Writer &writer, ...@@ -303,18 +303,20 @@ void WriteToRecordIO(recordio::Writer &writer,
for (auto &each : tensor) { for (auto &each : tensor) {
SerializeToStream(buffer, each, dev_ctx); SerializeToStream(buffer, each, dev_ctx);
} }
writer.Write(buffer.str()); writer->Write(buffer.str());
} }
std::vector<LoDTensor> ReadFromRecordIO( std::vector<LoDTensor> ReadFromRecordIO(
recordio::Scanner &scanner, const platform::DeviceContext &dev_ctx) { recordio::Scanner *scanner, const platform::DeviceContext &dev_ctx) {
std::istringstream sin(scanner.Next());
uint32_t sz;
sin.read(reinterpret_cast<char *>(&sz), sizeof(uint32_t));
std::vector<LoDTensor> result; std::vector<LoDTensor> result;
result.resize(sz); if (scanner->HasNext()) {
for (uint32_t i = 0; i < sz; ++i) { std::istringstream sin(scanner->Next());
DeserializeFromStream(sin, &result[i], dev_ctx); uint32_t sz;
sin.read(reinterpret_cast<char *>(&sz), sizeof(uint32_t));
result.resize(sz);
for (uint32_t i = 0; i < sz; ++i) {
DeserializeFromStream(sin, &result[i], dev_ctx);
}
} }
return result; return result;
} }
......
...@@ -15,6 +15,9 @@ limitations under the License. */ ...@@ -15,6 +15,9 @@ limitations under the License. */
#pragma once #pragma once
#include <memory> #include <memory>
#include <string>
#include <utility>
#include <vector>
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
#include <thrust/device_vector.h> #include <thrust/device_vector.h>
#include <thrust/host_vector.h> #include <thrust/host_vector.h>
...@@ -216,12 +219,12 @@ void SerializeToStream(std::ostream& os, const LoDTensor& tensor, ...@@ -216,12 +219,12 @@ void SerializeToStream(std::ostream& os, const LoDTensor& tensor,
void DeserializeFromStream(std::istream& is, LoDTensor* tensor, void DeserializeFromStream(std::istream& is, LoDTensor* tensor,
const platform::DeviceContext& dev_ctx); const platform::DeviceContext& dev_ctx);
extern void WriteToRecordIO(recordio::Writer& writer, extern void WriteToRecordIO(recordio::Writer* writer,
const std::vector<LoDTensor>& tensor, const std::vector<LoDTensor>& tensor,
const platform::DeviceContext& dev_ctx); const platform::DeviceContext& dev_ctx);
extern std::vector<LoDTensor> ReadFromRecordIO( extern std::vector<LoDTensor> ReadFromRecordIO(
recordio::Scanner& scanner, const platform::DeviceContext& dev_ctx); recordio::Scanner* scanner, const platform::DeviceContext& dev_ctx);
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -12,17 +12,17 @@ ...@@ -12,17 +12,17 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <algorithm> #include <algorithm>
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -240,8 +240,8 @@ TEST(LoDTensor, RecordIO) { ...@@ -240,8 +240,8 @@ TEST(LoDTensor, RecordIO) {
*platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); *platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
{ {
recordio::Writer writer(stream, recordio::Compressor::kSnappy); recordio::Writer writer(stream, recordio::Compressor::kSnappy);
WriteToRecordIO(writer, {tensor, tensor}, ctx); WriteToRecordIO(&writer, {tensor, tensor}, ctx);
WriteToRecordIO(writer, {tensor, tensor}, ctx); WriteToRecordIO(&writer, {tensor, tensor}, ctx);
writer.Flush(); writer.Flush();
} }
...@@ -254,11 +254,11 @@ TEST(LoDTensor, RecordIO) { ...@@ -254,11 +254,11 @@ TEST(LoDTensor, RecordIO) {
{ {
std::unique_ptr<std::istream> stream_ptr(stream); std::unique_ptr<std::istream> stream_ptr(stream);
recordio::Scanner scanner(std::move(stream_ptr)); recordio::Scanner scanner(std::move(stream_ptr));
auto tensors = ReadFromRecordIO(scanner, ctx); auto tensors = ReadFromRecordIO(&scanner, ctx);
ASSERT_EQ(tensors.size(), 2); ASSERT_EQ(tensors.size(), 2);
assert_tensor_ok(tensors[0]); assert_tensor_ok(tensors[0]);
assert_tensor_ok(tensors[1]); assert_tensor_ok(tensors[1]);
tensors = ReadFromRecordIO(scanner, ctx); tensors = ReadFromRecordIO(&scanner, ctx);
ASSERT_EQ(tensors.size(), 2); ASSERT_EQ(tensors.size(), 2);
assert_tensor_ok(tensors[0]); assert_tensor_ok(tensors[0]);
assert_tensor_ok(tensors[1]); assert_tensor_ok(tensors[1]);
......
...@@ -30,7 +30,7 @@ __global__ void test(size_t* a, int size) { ...@@ -30,7 +30,7 @@ __global__ void test(size_t* a, int size) {
} }
TEST(LoD, data) { TEST(LoD, data) {
paddle::framework::InitDevices(); paddle::framework::InitDevices(true);
paddle::framework::LoD lod{{0, 1, 2}}; paddle::framework::LoD lod{{0, 1, 2}};
lod.push_back({0, 2, 4, 5}); lod.push_back({0, 2, 4, 5});
...@@ -46,7 +46,7 @@ TEST(LoD, data) { ...@@ -46,7 +46,7 @@ TEST(LoD, data) {
} }
TEST(LoDTensor, LoDInGPU) { TEST(LoDTensor, LoDInGPU) {
paddle::framework::InitDevices(); paddle::framework::InitDevices(true);
paddle::framework::LoDTensor lod_tensor; paddle::framework::LoDTensor lod_tensor;
paddle::platform::CUDAPlace place(0); paddle::platform::CUDAPlace place(0);
......
...@@ -72,7 +72,7 @@ REGISTER_OP_WITHOUT_GRADIENT(test_operator, ...@@ -72,7 +72,7 @@ REGISTER_OP_WITHOUT_GRADIENT(test_operator,
paddle::framework::OpWithoutKernelCheckerMaker); paddle::framework::OpWithoutKernelCheckerMaker);
TEST(OperatorBase, all) { TEST(OperatorBase, all) {
paddle::framework::InitDevices(); paddle::framework::InitDevices(true);
paddle::framework::proto::OpDesc op_desc; paddle::framework::proto::OpDesc op_desc;
op_desc.set_type("test_operator"); op_desc.set_type("test_operator");
BuildVar("input", {"IN1"}, op_desc.add_inputs()); BuildVar("input", {"IN1"}, op_desc.add_inputs());
...@@ -198,7 +198,7 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel, ...@@ -198,7 +198,7 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel,
// test with single input // test with single input
TEST(OpKernel, all) { TEST(OpKernel, all) {
paddle::framework::InitDevices(); paddle::framework::InitDevices(true);
paddle::framework::proto::OpDesc op_desc; paddle::framework::proto::OpDesc op_desc;
op_desc.set_type("op_with_kernel"); op_desc.set_type("op_with_kernel");
BuildVar("x", {"IN1"}, op_desc.add_inputs()); BuildVar("x", {"IN1"}, op_desc.add_inputs());
...@@ -228,7 +228,7 @@ REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel, ...@@ -228,7 +228,7 @@ REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel,
TEST(OpKernel, multi_inputs) { TEST(OpKernel, multi_inputs) {
using namespace paddle::framework; using namespace paddle::framework;
paddle::framework::InitDevices(); paddle::framework::InitDevices(true);
proto::OpDesc op_desc; proto::OpDesc op_desc;
op_desc.set_type("op_multi_inputs_with_kernel"); op_desc.set_type("op_multi_inputs_with_kernel");
...@@ -269,7 +269,7 @@ class OperatorClone : public paddle::framework::OperatorBase { ...@@ -269,7 +269,7 @@ class OperatorClone : public paddle::framework::OperatorBase {
}; };
TEST(Operator, Clone) { TEST(Operator, Clone) {
paddle::framework::InitDevices(); paddle::framework::InitDevices(true);
OperatorClone a("ABC", paddle::framework::VariableNameMap{}, OperatorClone a("ABC", paddle::framework::VariableNameMap{},
paddle::framework::VariableNameMap{}, paddle::framework::VariableNameMap{},
paddle::framework::AttributeMap{}); paddle::framework::AttributeMap{});
......
...@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and ...@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h" #include "paddle/fluid/framework/parallel_executor.h"
#include "paddle/fluid/platform/profiler.h"
#include <string> #include <string>
#include <vector> #include <vector>
...@@ -24,6 +23,7 @@ limitations under the License. */ ...@@ -24,6 +23,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h" #include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" #include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -43,30 +43,40 @@ class ParallelExecutorPrivate { ...@@ -43,30 +43,40 @@ class ParallelExecutorPrivate {
#endif #endif
}; };
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
return member_->local_scopes_;
}
ParallelExecutor::ParallelExecutor( ParallelExecutor::ParallelExecutor(
size_t num_threads, bool use_event, size_t num_threads, bool use_event,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const ProgramDesc &startup_program, const ProgramDesc &main_program, const std::unordered_set<std::string> &bcast_vars,
const std::string &loss_var_name, Scope *scope, bool allow_op_delay) const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay)
: member_(new ParallelExecutorPrivate(places)) { : member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope; member_->global_scope_ = scope;
// Step 1. RunStartupProgram and Bcast the params to devs. // Step 1. Bcast the params to devs.
Executor exe(places[0]);
exe.Run(startup_program, scope, 0);
// Create local scopes // Create local scopes
for (size_t i = 0; i < member_->places_.size(); ++i) { if (local_scopes.empty()) {
member_->local_scopes_.push_back(&scope->NewScope()); for (size_t i = 0; i < member_->places_.size(); ++i) {
member_->local_scopes_.push_back(&scope->NewScope());
}
} else {
PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
for (size_t i = 0; i < member_->places_.size(); ++i) {
member_->local_scopes_.push_back(local_scopes[i]);
}
} }
// Bcast Parameters to all GPUs // Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_)); member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
#endif #endif
if (platform::is_gpu_place(places[0]) && if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
member_->local_scopes_.size() != 1) { // Is CUDA local_scopes.empty()) { // Is CUDA
BCastParamsToGPUs(startup_program); BCastParamsToGPUs(bcast_vars);
} }
// Startup Program has been run. All local scopes has correct parameters. // Startup Program has been run. All local scopes has correct parameters.
...@@ -99,48 +109,45 @@ ParallelExecutor::ParallelExecutor( ...@@ -99,48 +109,45 @@ ParallelExecutor::ParallelExecutor(
} }
void ParallelExecutor::BCastParamsToGPUs( void ParallelExecutor::BCastParamsToGPUs(
const ProgramDesc &startup_program) const { const std::unordered_set<std::string> &vars) const {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
auto *main_scope = member_->local_scopes_[0]; auto *main_scope = member_->local_scopes_[0];
for (auto *var_desc : startup_program.Block(0).AllVars()) { for (auto &var : vars) {
size_t idx = var_desc->Name().find("@GRAD"); auto *main_var = main_scope->FindVar(var);
if (idx != std::string::npos) continue; if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
if (var_desc->GetType() == proto::VarType::LOD_TENSOR) { continue;
auto &main_tensor = }
main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
auto &main_tensor = main_var->Get<LoDTensor>();
auto &dims = main_tensor.dims(); auto &dims = main_tensor.dims();
if (paddle::platform::is_gpu_place(main_tensor.place())) {
if (paddle::platform::is_gpu_place(main_tensor.place())) { size_t numel = main_tensor.numel();
size_t numel = main_tensor.numel(); ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); platform::NCCLGroupGuard guard;
platform::NCCLGroupGuard guard; for (size_t i = 0; i < member_->places_.size(); ++i) {
for (size_t i = 0; i < member_->places_.size(); ++i) { auto place = member_->places_[i];
auto place = member_->places_[i]; void *buffer;
void *buffer; if (i == 0) {
if (i == 0) { buffer = const_cast<void *>(main_tensor.data<void>());
buffer = const_cast<void *>(main_tensor.data<void>()); } else {
} else {
auto local_scope = member_->local_scopes_[i];
auto *t =
local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
t->Resize(dims);
buffer = t->mutable_data(place, main_tensor.type());
}
auto &nccl_ctx = member_->nccl_ctxs_->at(place);
platform::dynload::ncclBcast(buffer, numel, data_type, 0,
nccl_ctx.comm_, nccl_ctx.stream());
}
} else {
platform::CPUPlace cpu;
for (size_t i = 1; i < member_->places_.size(); ++i) {
auto local_scope = member_->local_scopes_[i]; auto local_scope = member_->local_scopes_[i];
auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>(); auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
t->Resize(dims); t->Resize(dims);
t->mutable_data(cpu, main_tensor.type()); buffer = t->mutable_data(place, main_tensor.type());
paddle::framework::TensorCopy(main_tensor, cpu, t);
} }
auto &nccl_ctx = member_->nccl_ctxs_->at(place);
platform::dynload::ncclBcast(buffer, numel, data_type, 0,
nccl_ctx.comm_, nccl_ctx.stream());
}
} else {
platform::CPUPlace cpu;
for (size_t i = 1; i < member_->places_.size(); ++i) {
auto local_scope = member_->local_scopes_[i];
auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
t->Resize(dims);
t->mutable_data(cpu, main_tensor.type());
paddle::framework::TensorCopy(main_tensor, cpu, t);
} }
} }
member_->nccl_ctxs_->WaitAll(); member_->nccl_ctxs_->WaitAll();
...@@ -165,12 +172,17 @@ void ParallelExecutor::SplitTensorToPlaces( ...@@ -165,12 +172,17 @@ void ParallelExecutor::SplitTensorToPlaces(
const std::unordered_map<std::string, LoDTensor> &feed_tensors) { const std::unordered_map<std::string, LoDTensor> &feed_tensors) {
for (auto it : feed_tensors) { for (auto it : feed_tensors) {
auto lod_tensors = it.second.SplitLoDTensor(member_->places_); auto lod_tensors = it.second.SplitLoDTensor(member_->places_);
PADDLE_ENFORCE_EQ(
member_->places_.size(), lod_tensors.size(),
"The number of samples of current batch is less than the count of "
"devices, currently, it is not allowed. (%d vs %d)",
member_->places_.size(), lod_tensors.size());
for (size_t j = 0; j < member_->places_.size(); ++j) { for (size_t j = 0; j < member_->places_.size(); ++j) {
// TODO(panxy0718): Do I need to delete this var? // TODO(panxy0718): Do I need to delete this var?
member_->local_scopes_[j] auto t =
->Var(it.first) member_->local_scopes_[j]->Var(it.first)->GetMutable<LoDTensor>();
->GetMutable<LoDTensor>() t->ShareDataWith(lod_tensors[j]);
->ShareDataWith(lod_tensors[j]); t->set_lod(lod_tensors[j].lod());
} }
} }
} }
......
...@@ -36,22 +36,25 @@ class ParallelExecutor { ...@@ -36,22 +36,25 @@ class ParallelExecutor {
explicit ParallelExecutor(size_t num_threads, bool use_event, explicit ParallelExecutor(size_t num_threads, bool use_event,
const std::vector<platform::Place>& places, const std::vector<platform::Place>& places,
const std::unordered_set<std::string>& params, const std::unordered_set<std::string>& params,
const ProgramDesc& startup_program, const std::unordered_set<std::string>& bcast_vars,
const ProgramDesc& main_program, const ProgramDesc& main_program,
const std::string& loss_var_name, Scope* scope, const std::string& loss_var_name, Scope* scope,
const std::vector<Scope*>& local_scopes,
bool allow_op_delay); bool allow_op_delay);
std::vector<Scope*>& GetLocalScopes();
void Run(const std::vector<std::string>& fetch_tensors, void Run(const std::vector<std::string>& fetch_tensors,
const std::string& fetched_var_name, const std::string& fetched_var_name,
const std::unordered_map<std::string, LoDTensor>& feed_tensors); const std::unordered_map<std::string, LoDTensor>& feed_tensors);
void BCastParamsToGPUs(const std::unordered_set<std::string>& vars) const;
private: private:
void SplitTensorToPlaces( void SplitTensorToPlaces(
const std::unordered_map<std::string, LoDTensor>& feed_tensors); const std::unordered_map<std::string, LoDTensor>& feed_tensors);
ParallelExecutorPrivate* member_; ParallelExecutorPrivate* member_;
void BCastParamsToGPUs(const ProgramDesc& startup_program) const;
}; };
} // namespace framework } // namespace framework
......
...@@ -85,9 +85,9 @@ ProgramDesc::ProgramDesc(const std::string &binary_str) { ...@@ -85,9 +85,9 @@ ProgramDesc::ProgramDesc(const std::string &binary_str) {
} }
const std::vector<std::string> ProgramDesc::GetFeedTargetNames() { const std::vector<std::string> ProgramDesc::GetFeedTargetNames() {
BlockDesc *global_block = blocks_[0].get(); auto &global_block = Block(0);
std::vector<std::string> feed_target_names; std::vector<std::string> feed_target_names;
for (auto *op : global_block->AllOps()) { for (auto *op : global_block.AllOps()) {
if (op->Type() == kFeedOpType) { if (op->Type() == kFeedOpType) {
feed_target_names.insert(feed_target_names.begin(), op->Output("Out")[0]); feed_target_names.insert(feed_target_names.begin(), op->Output("Out")[0]);
} }
...@@ -96,9 +96,9 @@ const std::vector<std::string> ProgramDesc::GetFeedTargetNames() { ...@@ -96,9 +96,9 @@ const std::vector<std::string> ProgramDesc::GetFeedTargetNames() {
} }
const std::vector<std::string> ProgramDesc::GetFetchTargetNames() { const std::vector<std::string> ProgramDesc::GetFetchTargetNames() {
BlockDesc *global_block = blocks_[0].get(); auto &global_block = Block(0);
std::vector<std::string> fetch_target_names; std::vector<std::string> fetch_target_names;
for (auto *op : global_block->AllOps()) { for (auto *op : global_block.AllOps()) {
if (op->Type() == kFetchOpType) { if (op->Type() == kFetchOpType) {
fetch_target_names.push_back(op->Input("X")[0]); fetch_target_names.push_back(op->Input("X")[0]);
} }
...@@ -106,5 +106,43 @@ const std::vector<std::string> ProgramDesc::GetFetchTargetNames() { ...@@ -106,5 +106,43 @@ const std::vector<std::string> ProgramDesc::GetFetchTargetNames() {
return fetch_target_names; return fetch_target_names;
} }
void ProgramDesc::SetFeedHolderName(const std::string &feed_holder_name) {
auto *global_block = MutableBlock(0);
int index = 0;
for (auto *op : global_block->AllOps()) {
if (op->Type() == kFeedOpType) {
// Unify the input's name of all feed_ops to feed_holder_name
global_block->RemoveVar(op->Input("X")[0]);
op->SetInput("X", {feed_holder_name});
op->SetAttr("col", {index});
op->CheckAttrs();
index++;
}
}
auto *feed_holder = global_block->Var(feed_holder_name);
feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
feed_holder->SetPersistable(true);
}
void ProgramDesc::SetFetchHolderName(const std::string &fetch_holder_name) {
auto *global_block = MutableBlock(0);
int index = 0;
for (auto *op : global_block->AllOps()) {
if (op->Type() == kFetchOpType) {
// Unify the output's name of all fetch_ops to fetch_holder_name
global_block->RemoveVar(op->Output("Out")[0]);
op->SetOutput("Out", {fetch_holder_name});
op->SetAttr("col", {index});
op->CheckAttrs();
index++;
}
}
auto *fetch_holder = global_block->Var(fetch_holder_name);
fetch_holder->SetType(proto::VarType::FETCH_LIST);
fetch_holder->SetPersistable(true);
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include <memory> #include <memory>
#include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/framework.pb.h"
...@@ -52,9 +53,26 @@ class ProgramDesc { ...@@ -52,9 +53,26 @@ class ProgramDesc {
proto::ProgramDesc *Proto(); proto::ProgramDesc *Proto();
// The output variable of feed_op is referenced as feed_target.
// This function is used to collect the output variable's name of all
// feed_ops.
const std::vector<std::string> GetFeedTargetNames(); const std::vector<std::string> GetFeedTargetNames();
// The input variable of fetch_op is referenced as fetch_target.
// This function is used to collect the input variable's name of all
// fetch_ops.
const std::vector<std::string> GetFetchTargetNames(); const std::vector<std::string> GetFetchTargetNames();
// The input variable of feed_op that holds input Tensor provided by users is
// referenced as feed_holder.
// This function is used to change or unify the feed_holder variables' name.
void SetFeedHolderName(const std::string &feed_holder_name);
// The output variable of fetch_op that holds output Tensor needed by users is
// referenced as fetch_holder.
// This function is used to change or unify the fetch_holder variables' name.
void SetFetchHolderName(const std::string &fetch_holder_name);
private: private:
proto::ProgramDesc desc_; proto::ProgramDesc desc_;
......
...@@ -22,7 +22,9 @@ FileReader::FileReader(const std::vector<DDim> &dims) : dims_(dims) {} ...@@ -22,7 +22,9 @@ FileReader::FileReader(const std::vector<DDim> &dims) : dims_(dims) {}
void FileReader::ReadNext(std::vector<LoDTensor> *out) { void FileReader::ReadNext(std::vector<LoDTensor> *out) {
ReadNextImpl(out); ReadNextImpl(out);
PADDLE_ENFORCE_EQ(out->size(), dims_.size()); if (out->empty()) {
return;
}
for (size_t i = 0; i < dims_.size(); ++i) { for (size_t i = 0; i < dims_.size(); ++i) {
auto &actual = out->at(i).dims(); auto &actual = out->at(i).dims();
auto &expect = dims_[i]; auto &expect = dims_[i];
......
...@@ -14,14 +14,13 @@ ...@@ -14,14 +14,13 @@
#pragma once #pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/place.h"
#include <memory>
#include <thread>
#include <vector>
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -31,8 +30,6 @@ class ReaderBase { ...@@ -31,8 +30,6 @@ class ReaderBase {
virtual void ReInit() = 0; virtual void ReInit() = 0;
virtual bool HasNext() const = 0;
virtual ~ReaderBase(); virtual ~ReaderBase();
}; };
...@@ -44,8 +41,6 @@ class DecoratedReader : public ReaderBase { ...@@ -44,8 +41,6 @@ class DecoratedReader : public ReaderBase {
void ReInit() override { reader_->ReInit(); } void ReInit() override { reader_->ReInit(); }
bool HasNext() const override { return reader_->HasNext(); }
protected: protected:
ReaderBase* reader_; ReaderBase* reader_;
}; };
...@@ -80,8 +75,6 @@ class ReaderHolder { ...@@ -80,8 +75,6 @@ class ReaderHolder {
reader_->ReInit(); reader_->ReInit();
} }
bool HasNext() const { return reader_->HasNext(); }
private: private:
std::unique_ptr<ReaderBase> reader_; std::unique_ptr<ReaderBase> reader_;
}; };
......
...@@ -15,7 +15,6 @@ limitations under the License. */ ...@@ -15,7 +15,6 @@ limitations under the License. */
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
#include <memory> // for unique_ptr #include <memory> // for unique_ptr
#include <mutex> // for call_once
#include <set> #include <set>
#include "glog/logging.h" #include "glog/logging.h"
#include "paddle/fluid/framework/threadpool.h" #include "paddle/fluid/framework/threadpool.h"
...@@ -39,6 +38,7 @@ Scope::~Scope() { ...@@ -39,6 +38,7 @@ Scope::~Scope() {
} }
Scope& Scope::NewScope() const { Scope& Scope::NewScope() const {
std::unique_lock<std::mutex> lock(mutex_);
kids_.push_back(new Scope(this)); kids_.push_back(new Scope(this));
return *kids_.back(); return *kids_.back();
} }
...@@ -92,6 +92,7 @@ std::vector<std::string> Scope::LocalVarNames() const { ...@@ -92,6 +92,7 @@ std::vector<std::string> Scope::LocalVarNames() const {
} }
void Scope::DeleteScope(Scope* scope) { void Scope::DeleteScope(Scope* scope) {
std::unique_lock<std::mutex> lock(mutex_);
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope); auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope); PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope);
this->kids_.erase(it); this->kids_.erase(it);
...@@ -103,7 +104,7 @@ void Scope::DeleteScope(Scope* scope) { ...@@ -103,7 +104,7 @@ void Scope::DeleteScope(Scope* scope) {
} }
} }
void Scope::EraseVars(std::vector<std::string>& var_names) { void Scope::EraseVars(const std::vector<std::string>& var_names) {
std::set<std::string> var_set(var_names.begin(), var_names.end()); std::set<std::string> var_set(var_names.begin(), var_names.end());
for (auto it = vars_.begin(); it != vars_.end();) { for (auto it = vars_.begin(); it != vars_.end();) {
if (var_set.find(it->first) != var_set.end()) { if (var_set.find(it->first) != var_set.end()) {
......
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include <list> #include <list>
#include <mutex> // NOLINT
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
...@@ -51,13 +52,13 @@ class Scope { ...@@ -51,13 +52,13 @@ class Scope {
/// Create a variable with a scope-unique name. /// Create a variable with a scope-unique name.
Variable* Var(std::string* name = nullptr); Variable* Var(std::string* name = nullptr);
void EraseVars(std::vector<std::string>& var_names); void EraseVars(const std::vector<std::string>& var_names);
/// Find a variable in the scope or any of its ancestors. Returns /// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find. /// nullptr if cannot find.
Variable* FindVar(const std::string& name) const; Variable* FindVar(const std::string& name) const;
const Scope& parent() const { return *parent_; } const Scope* parent() const { return parent_; }
/// Find the scope or an ancestor scope that contains the given variable. /// Find the scope or an ancestor scope that contains the given variable.
const Scope* FindScope(const Variable* var) const; const Scope* FindScope(const Variable* var) const;
...@@ -88,6 +89,9 @@ class Scope { ...@@ -88,6 +89,9 @@ class Scope {
Scope const* parent_{nullptr}; Scope const* parent_{nullptr};
DISABLE_COPY_AND_ASSIGN(Scope); DISABLE_COPY_AND_ASSIGN(Scope);
private:
mutable std::mutex mutex_;
}; };
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
set(FLUID_CORE_MODULES proto_desc paddle_memory lod_tensor executor prune init) set(FLUID_CORE_MODULES proto_desc memory lod_tensor executor prune init)
cc_library(paddle_fluid_api cc_library(paddle_fluid_api
SRCS io.cc SRCS io.cc
......
...@@ -24,7 +24,8 @@ function(inference_test TARGET_NAME) ...@@ -24,7 +24,8 @@ function(inference_test TARGET_NAME)
endforeach() endforeach()
endfunction(inference_test) endfunction(inference_test)
inference_test(fit_a_line) # This unittest is buggy!
#inference_test(fit_a_line)
inference_test(image_classification ARGS vgg resnet) inference_test(image_classification ARGS vgg resnet)
inference_test(label_semantic_roles) inference_test(label_semantic_roles)
inference_test(recognize_digits ARGS mlp conv) inference_test(recognize_digits ARGS mlp conv)
......
...@@ -12,6 +12,7 @@ limitations under the License. */ ...@@ -12,6 +12,7 @@ limitations under the License. */
#include "gflags/gflags.h" #include "gflags/gflags.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h" #include "paddle/fluid/inference/tests/test_helper.h"
#include "paddle/fluid/inference/tests/test_multi_thread_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model."); DEFINE_string(dirname, "", "Directory of the inference model.");
...@@ -26,32 +27,63 @@ TEST(inference, fit_a_line) { ...@@ -26,32 +27,63 @@ TEST(inference, fit_a_line) {
// 0. Call `paddle::framework::InitDevices()` initialize all the devices // 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc // In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle::framework::LoDTensor input; for (int num_threads : {1, 2}) {
// The second dim of the input tensor should be 13 std::vector<std::vector<paddle::framework::LoDTensor*>> cpu_feeds;
// The input data should be >= 0 cpu_feeds.resize(num_threads);
int64_t batch_size = 10; for (int i = 0; i < num_threads; ++i) {
SetupTensor<float>(&input, {batch_size, 13}, static_cast<float>(0), auto* input = new paddle::framework::LoDTensor();
static_cast<float>(10)); // The second dim of the input tensor should be 13
std::vector<paddle::framework::LoDTensor*> cpu_feeds; // The input data should be >= 0
cpu_feeds.push_back(&input); int64_t batch_size = 10;
SetupTensor<float>(input, {batch_size, 13}, static_cast<float>(0),
static_cast<float>(10));
cpu_feeds[i].push_back(input);
}
paddle::framework::LoDTensor output1; std::vector<std::vector<paddle::framework::LoDTensor*>> cpu_fetchs1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1; cpu_fetchs1.resize(num_threads);
cpu_fetchs1.push_back(&output1); for (int i = 0; i < num_threads; ++i) {
auto* output = new paddle::framework::LoDTensor();
cpu_fetchs1[i].push_back(output);
}
// Run inference on CPU // Run inference on CPU
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds, cpu_fetchs1); LOG(INFO) << "--- CPU Runs (num_threads: " << num_threads << "): ---";
LOG(INFO) << output1.dims(); if (num_threads == 1) {
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds[0],
cpu_fetchs1[0]);
} else {
TestMultiThreadInference<paddle::platform::CPUPlace>(
dirname, cpu_feeds, cpu_fetchs1, num_threads);
}
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
paddle::framework::LoDTensor output2; std::vector<std::vector<paddle::framework::LoDTensor*>> cpu_fetchs2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2; cpu_fetchs2.resize(num_threads);
cpu_fetchs2.push_back(&output2); for (int i = 0; i < num_threads; ++i) {
auto* output = new paddle::framework::LoDTensor();
cpu_fetchs2[i].push_back(output);
}
// Run inference on CUDA GPU // Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2); LOG(INFO) << "--- GPU Runs (num_threads: " << num_threads << "): ---";
LOG(INFO) << output2.dims(); if (num_threads == 1) {
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds[0],
cpu_fetchs2[0]);
} else {
TestMultiThreadInference<paddle::platform::CUDAPlace>(
dirname, cpu_feeds, cpu_fetchs2, num_threads);
}
CheckError<float>(output1, output2); for (int i = 0; i < num_threads; ++i) {
CheckError<float>(*cpu_fetchs1[i][0], *cpu_fetchs2[i][0]);
delete cpu_fetchs2[i][0];
}
#endif #endif
for (int i = 0; i < num_threads; ++i) {
delete cpu_feeds[i][0];
delete cpu_fetchs1[i][0];
}
} // num_threads-loop
} }
...@@ -46,8 +46,8 @@ TEST(inference, image_classification) { ...@@ -46,8 +46,8 @@ TEST(inference, image_classification) {
// Run inference on CPU // Run inference on CPU
LOG(INFO) << "--- CPU Runs: ---"; LOG(INFO) << "--- CPU Runs: ---";
TestInference<paddle::platform::CPUPlace, true>(dirname, cpu_feeds, TestInference<paddle::platform::CPUPlace, false, true>(
cpu_fetchs1, FLAGS_repeat); dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat);
LOG(INFO) << output1.dims(); LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -57,8 +57,8 @@ TEST(inference, image_classification) { ...@@ -57,8 +57,8 @@ TEST(inference, image_classification) {
// Run inference on CUDA GPU // Run inference on CUDA GPU
LOG(INFO) << "--- GPU Runs: ---"; LOG(INFO) << "--- GPU Runs: ---";
TestInference<paddle::platform::CUDAPlace, true>(dirname, cpu_feeds, TestInference<paddle::platform::CUDAPlace, false, true>(
cpu_fetchs2, FLAGS_repeat); dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat);
LOG(INFO) << output2.dims(); LOG(INFO) << output2.dims();
CheckError<float>(output1, output2); CheckError<float>(output1, output2);
......
...@@ -25,7 +25,8 @@ limitations under the License. */ ...@@ -25,7 +25,8 @@ limitations under the License. */
template <typename T> template <typename T>
void SetupTensor(paddle::framework::LoDTensor* input, void SetupTensor(paddle::framework::LoDTensor* input,
paddle::framework::DDim dims, T lower, T upper) { paddle::framework::DDim dims, T lower, T upper) {
std::mt19937 rng(100); // An arbitrarily chosen but fixed seed. static unsigned int seed = 100;
std::mt19937 rng(seed++);
std::uniform_real_distribution<double> uniform_dist(0, 1); std::uniform_real_distribution<double> uniform_dist(0, 1);
T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace()); T* input_ptr = input->mutable_data<T>(dims, paddle::platform::CPUPlace());
...@@ -88,7 +89,7 @@ void CheckError(const paddle::framework::LoDTensor& output1, ...@@ -88,7 +89,7 @@ void CheckError(const paddle::framework::LoDTensor& output1,
EXPECT_EQ(count, 0U) << "There are " << count << " different elements."; EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
} }
template <typename Place, bool PrepareContext = false> template <typename Place, bool CreateVars = true, bool PrepareContext = false>
void TestInference(const std::string& dirname, void TestInference(const std::string& dirname,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds, const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
const std::vector<paddle::framework::LoDTensor*>& cpu_fetchs, const std::vector<paddle::framework::LoDTensor*>& cpu_fetchs,
...@@ -166,6 +167,13 @@ void TestInference(const std::string& dirname, ...@@ -166,6 +167,13 @@ void TestInference(const std::string& dirname,
// 6. Run the inference program // 6. Run the inference program
{ {
if (!CreateVars) {
// If users don't want to create and destroy variables every time they
// run, they need to set `create_vars` to false and manually call
// `CreateVariables` before running.
executor.CreateVariables(*inference_program, scope, 0);
}
// Ignore the profiling results of the first run // Ignore the profiling results of the first run
std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx; std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
if (PrepareContext) { if (PrepareContext) {
...@@ -173,7 +181,8 @@ void TestInference(const std::string& dirname, ...@@ -173,7 +181,8 @@ void TestInference(const std::string& dirname,
executor.RunPreparedContext(ctx.get(), scope, feed_targets, executor.RunPreparedContext(ctx.get(), scope, feed_targets,
fetch_targets); fetch_targets);
} else { } else {
executor.Run(*inference_program, scope, feed_targets, fetch_targets); executor.Run(*inference_program, scope, feed_targets, fetch_targets,
CreateVars);
} }
// Enable the profiler // Enable the profiler
...@@ -191,7 +200,8 @@ void TestInference(const std::string& dirname, ...@@ -191,7 +200,8 @@ void TestInference(const std::string& dirname,
executor.RunPreparedContext(ctx.get(), scope, feed_targets, executor.RunPreparedContext(ctx.get(), scope, feed_targets,
fetch_targets); fetch_targets);
} else { } else {
executor.Run(*inference_program, scope, feed_targets, fetch_targets); executor.Run(*inference_program, scope, feed_targets, fetch_targets,
CreateVars);
} }
} }
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
void ThreadedRunInference(
const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program,
paddle::framework::Executor* executor, paddle::framework::Scope* scope,
const int thread_id,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
const std::vector<paddle::framework::LoDTensor*>& cpu_fetchs) {
auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>(
new paddle::framework::ProgramDesc(*inference_program));
std::string feed_holder_name = "feed_" + paddle::string::to_string(thread_id);
std::string fetch_holder_name =
"fetch_" + paddle::string::to_string(thread_id);
copy_program->SetFeedHolderName(feed_holder_name);
copy_program->SetFetchHolderName(fetch_holder_name);
// 3. Get the feed_target_names and fetch_target_names
const std::vector<std::string>& feed_target_names =
copy_program->GetFeedTargetNames();
const std::vector<std::string>& fetch_target_names =
copy_program->GetFetchTargetNames();
// 4. Prepare inputs: set up maps for feed targets
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
for (size_t i = 0; i < feed_target_names.size(); ++i) {
// Please make sure that cpu_feeds[i] is right for feed_target_names[i]
feed_targets[feed_target_names[i]] = cpu_feeds[i];
}
// 5. Define Tensor to get the outputs: set up maps for fetch targets
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
for (size_t i = 0; i < fetch_target_names.size(); ++i) {
fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
}
// 6. Run the inference program
executor->Run(*copy_program, scope, feed_targets, fetch_targets, true,
feed_holder_name, fetch_holder_name);
}
template <typename Place>
void TestMultiThreadInference(
const std::string& dirname,
const std::vector<std::vector<paddle::framework::LoDTensor*>>& cpu_feeds,
const std::vector<std::vector<paddle::framework::LoDTensor*>>& cpu_fetchs,
const int num_threads) {
// 1. Define place, executor, scope
auto place = Place();
auto executor = paddle::framework::Executor(place);
auto* scope = new paddle::framework::Scope();
// 2. Initialize the inference_program and load parameters
std::unique_ptr<paddle::framework::ProgramDesc> inference_program =
paddle::inference::Load(executor, *scope, dirname);
std::vector<std::thread*> threads;
for (int i = 0; i < num_threads; ++i) {
threads.push_back(new std::thread(
ThreadedRunInference, std::ref(inference_program), &executor, scope, i,
std::ref(cpu_feeds[i]), std::ref(cpu_fetchs[i])));
}
for (int i = 0; i < num_threads; ++i) {
threads[i]->join();
delete threads[i];
}
delete scope;
}
add_subdirectory(detail) add_subdirectory(detail)
cc_library(memory SRCS memory.cc DEPS place enforce) cc_library(malloc SRCS malloc.cc DEPS buddy_allocator place enforce)
cc_library(memcpy SRCS memcpy.cc DEPS place) cc_library(memcpy SRCS memcpy.cc DEPS place)
cc_library(paddle_memory cc_library(memory
DEPS DEPS
memory malloc
memcpy memcpy)
meta_data
meta_cache
memory_block
buddy_allocator
system_allocator)
cc_test(memory_test SRCS memory_test.cc DEPS place paddle_memory) cc_test(malloc_test SRCS malloc_test.cc DEPS malloc)
#if (WITH_GPU) #if (WITH_GPU)
# nv_test(pinned_memory_test SRCS pinned_memory_test.cu DEPS place paddle_memory) # nv_test(pinned_memory_test SRCS pinned_memory_test.cu DEPS place memory)
#endif() #endif()
cc_library(memory_block SRCS memory_block.cc memory_block_desc.cc meta_cache.cc)
if(${WITH_GPU}) if(${WITH_GPU})
nv_library(system_allocator SRCS system_allocator.cc DEPS gflags cpu_info gpu_info) nv_library(system_allocator SRCS system_allocator.cc DEPS gflags cpu_info gpu_info)
else(${WITH_GPU}) else(${WITH_GPU})
...@@ -6,10 +8,4 @@ endif(${WITH_GPU}) ...@@ -6,10 +8,4 @@ endif(${WITH_GPU})
cc_test(system_allocator_test SRCS system_allocator_test.cc DEPS system_allocator) cc_test(system_allocator_test SRCS system_allocator_test.cc DEPS system_allocator)
cc_library(meta_data SRCS meta_data.cc) cc_library(buddy_allocator SRCS buddy_allocator.cc DEPS memory_block system_allocator glog)
cc_library(meta_cache SRCS meta_cache.cc)
cc_library(memory_block SRCS memory_block.cc)
cc_library(buddy_allocator SRCS buddy_allocator.cc DEPS glog)
...@@ -46,7 +46,8 @@ inline size_t align(size_t size, size_t alignment) { ...@@ -46,7 +46,8 @@ inline size_t align(size_t size, size_t alignment) {
void* BuddyAllocator::Alloc(size_t unaligned_size) { void* BuddyAllocator::Alloc(size_t unaligned_size) {
// adjust allocation alignment // adjust allocation alignment
size_t size = align(unaligned_size + sizeof(Metadata), min_chunk_size_); size_t size =
align(unaligned_size + sizeof(MemoryBlock::Desc), min_chunk_size_);
// acquire the allocator lock // acquire the allocator lock
std::lock_guard<std::mutex> lock(mutex_); std::lock_guard<std::mutex> lock(mutex_);
...@@ -103,7 +104,7 @@ void BuddyAllocator::Free(void* p) { ...@@ -103,7 +104,7 @@ void BuddyAllocator::Free(void* p) {
return; return;
} }
block->mark_as_free(cache_); block->mark_as_free(&cache_);
total_used_ -= block->total_size(cache_); total_used_ -= block->total_size(cache_);
total_free_ += block->total_size(cache_); total_free_ += block->total_size(cache_);
...@@ -122,7 +123,7 @@ void BuddyAllocator::Free(void* p) { ...@@ -122,7 +123,7 @@ void BuddyAllocator::Free(void* p) {
right_buddy)); right_buddy));
// merge its right buddy to the block // merge its right buddy to the block
block->merge(cache_, right_buddy); block->merge(&cache_, right_buddy);
} }
} }
...@@ -139,7 +140,7 @@ void BuddyAllocator::Free(void* p) { ...@@ -139,7 +140,7 @@ void BuddyAllocator::Free(void* p) {
left_buddy->total_size(cache_), left_buddy)); left_buddy->total_size(cache_), left_buddy));
// merge the block to its left buddy // merge the block to its left buddy
left_buddy->merge(cache_, block); left_buddy->merge(&cache_, block);
block = left_buddy; block = left_buddy;
} }
} }
...@@ -163,13 +164,13 @@ size_t BuddyAllocator::Used() { return total_used_; } ...@@ -163,13 +164,13 @@ size_t BuddyAllocator::Used() { return total_used_; }
void* BuddyAllocator::SystemAlloc(size_t size) { void* BuddyAllocator::SystemAlloc(size_t size) {
size_t index = 0; size_t index = 0;
void* p = system_allocator_->Alloc(index, size); void* p = system_allocator_->Alloc(&index, size);
VLOG(10) << "Allocated " << p << " from system allocator."; VLOG(10) << "Allocated " << p << " from system allocator.";
if (p == nullptr) return nullptr; if (p == nullptr) return nullptr;
static_cast<MemoryBlock*>(p)->init(cache_, MemoryBlock::HUGE_CHUNK, index, static_cast<MemoryBlock*>(p)->init(&cache_, MemoryBlock::HUGE_CHUNK, index,
size, nullptr, nullptr); size, nullptr, nullptr);
return static_cast<MemoryBlock*>(p)->data(); return static_cast<MemoryBlock*>(p)->data();
...@@ -187,14 +188,14 @@ BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool() { ...@@ -187,14 +188,14 @@ BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool() {
// Allocate a new maximum sized block // Allocate a new maximum sized block
size_t index = 0; size_t index = 0;
void* p = system_allocator_->Alloc(index, max_chunk_size_); void* p = system_allocator_->Alloc(&index, max_chunk_size_);
if (p == nullptr) return pool_.end(); if (p == nullptr) return pool_.end();
VLOG(10) << "Creating and inserting new block " << p VLOG(10) << "Creating and inserting new block " << p
<< " from system allocator"; << " from system allocator";
static_cast<MemoryBlock*>(p)->init(cache_, MemoryBlock::FREE_CHUNK, index, static_cast<MemoryBlock*>(p)->init(&cache_, MemoryBlock::FREE_CHUNK, index,
max_chunk_size_, nullptr, nullptr); max_chunk_size_, nullptr, nullptr);
// gpu fallback allocation // gpu fallback allocation
...@@ -238,11 +239,11 @@ void* BuddyAllocator::SplitToAlloc(BuddyAllocator::PoolSet::iterator it, ...@@ -238,11 +239,11 @@ void* BuddyAllocator::SplitToAlloc(BuddyAllocator::PoolSet::iterator it,
VLOG(10) << "Split block (" << block << ", " << block->total_size(cache_) VLOG(10) << "Split block (" << block << ", " << block->total_size(cache_)
<< ") into"; << ") into";
block->split(cache_, size); block->split(&cache_, size);
VLOG(10) << "Left block (" << block << ", " << block->total_size(cache_) VLOG(10) << "Left block (" << block << ", " << block->total_size(cache_)
<< ")"; << ")";
block->set_type(cache_, MemoryBlock::ARENA_CHUNK); block->set_type(&cache_, MemoryBlock::ARENA_CHUNK);
// the rest of memory if exist // the rest of memory if exist
if (block->has_right_buddy(cache_)) { if (block->has_right_buddy(cache_)) {
......
...@@ -14,18 +14,18 @@ limitations under the License. */ ...@@ -14,18 +14,18 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/fluid/memory/detail/meta_cache.h" #include <mutex> // NOLINT
#include "paddle/fluid/memory/detail/meta_data.h" #include <set>
#include <tuple>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/memory/detail/system_allocator.h" #include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/assert.h" #include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cpu_info.h" #include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/platform/gpu_info.h"
#include <mutex>
#include <set>
#include <unordered_map>
#include <vector>
namespace paddle { namespace paddle {
namespace memory { namespace memory {
namespace detail { namespace detail {
......
...@@ -13,143 +13,142 @@ See the License for the specific language governing permissions and ...@@ -13,143 +13,142 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/memory/detail/memory_block.h" #include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/memory/detail/meta_cache.h"
#include "paddle/fluid/memory/detail/meta_data.h"
#include "paddle/fluid/platform/assert.h" #include "paddle/fluid/platform/assert.h"
namespace paddle { namespace paddle {
namespace memory { namespace memory {
namespace detail { namespace detail {
void MemoryBlock::init(MetadataCache& cache, Type t, size_t index, size_t size, void MemoryBlock::init(MetadataCache* cache, Type t, size_t index, size_t size,
void* left_buddy, void* right_buddy) { void* left_buddy, void* right_buddy) {
cache.store(this, Metadata(t, index, size - sizeof(Metadata), size, cache->save(
static_cast<MemoryBlock*>(left_buddy), this, MemoryBlock::Desc(t, index, size - sizeof(MemoryBlock::Desc), size,
static_cast<MemoryBlock*>(right_buddy))); static_cast<MemoryBlock*>(left_buddy),
static_cast<MemoryBlock*>(right_buddy)));
} }
MemoryBlock::Type MemoryBlock::type(MetadataCache& cache) const { MemoryBlock::Type MemoryBlock::type(const MetadataCache& cache) const {
return cache.load(this).type; return cache.load(this).type;
} }
size_t MemoryBlock::size(MetadataCache& cache) const { size_t MemoryBlock::size(const MetadataCache& cache) const {
return cache.load(this).size; return cache.load(this).size;
} }
size_t MemoryBlock::total_size(MetadataCache& cache) const { size_t MemoryBlock::index(const MetadataCache& cache) const {
return cache.load(this).index;
}
size_t MemoryBlock::total_size(const MetadataCache& cache) const {
return cache.load(this).total_size; return cache.load(this).total_size;
} }
MemoryBlock* MemoryBlock::left_buddy(MetadataCache& cache) const { bool MemoryBlock::has_left_buddy(const MetadataCache& cache) const {
return left_buddy(cache) != nullptr;
}
bool MemoryBlock::has_right_buddy(const MetadataCache& cache) const {
return right_buddy(cache) != nullptr;
}
MemoryBlock* MemoryBlock::left_buddy(const MetadataCache& cache) const {
return cache.load(this).left_buddy; return cache.load(this).left_buddy;
} }
MemoryBlock* MemoryBlock::right_buddy(MetadataCache& cache) const { MemoryBlock* MemoryBlock::right_buddy(const MetadataCache& cache) const {
return cache.load(this).right_buddy; return cache.load(this).right_buddy;
} }
void MemoryBlock::split(MetadataCache& cache, size_t size) { void MemoryBlock::split(MetadataCache* cache, size_t size) {
// make sure the split fits // make sure the split fits
PADDLE_ASSERT(total_size(cache) >= size); PADDLE_ASSERT(total_size(*cache) >= size);
// bail out if there is no room for another partition // bail out if there is no room for another partition
if (total_size(cache) - size <= sizeof(Metadata)) { if (total_size(*cache) - size <= sizeof(MemoryBlock::Desc)) {
return; return;
} }
// find the position of the split // find the position of the split
void* right_partition = reinterpret_cast<uint8_t*>(this) + size; void* right_partition = reinterpret_cast<uint8_t*>(this) + size;
size_t remaining_size = total_size(cache) - size; size_t remaining_size = total_size(*cache) - size;
// Add the new block as a buddy // Add the new block as a buddy
auto metadata = cache.load(this); auto metadata = cache->load(this);
// Write the metadata for the new block // Write the metadata for the new block
auto new_block_right_buddy = metadata.right_buddy; auto new_block_right_buddy = metadata.right_buddy;
cache.store( cache->save(static_cast<MemoryBlock*>(right_partition),
static_cast<MemoryBlock*>(right_partition), MemoryBlock::Desc(FREE_CHUNK, index(*cache),
Metadata(FREE_CHUNK, index(cache), remaining_size - sizeof(Metadata), remaining_size - sizeof(MemoryBlock::Desc),
remaining_size, this, new_block_right_buddy)); remaining_size, this, new_block_right_buddy));
metadata.right_buddy = static_cast<MemoryBlock*>(right_partition); metadata.right_buddy = static_cast<MemoryBlock*>(right_partition);
metadata.size = size - sizeof(Metadata); metadata.size = size - sizeof(MemoryBlock::Desc);
metadata.total_size = size; metadata.total_size = size;
cache.store(this, metadata); cache->save(this, metadata);
// Write metadata for the new block's right buddy // Write metadata for the new block's right buddy
if (new_block_right_buddy != nullptr) { if (new_block_right_buddy != nullptr) {
auto buddy_metadata = cache.load(new_block_right_buddy); auto buddy_metadata = cache->load(new_block_right_buddy);
buddy_metadata.left_buddy = static_cast<MemoryBlock*>(right_partition); buddy_metadata.left_buddy = static_cast<MemoryBlock*>(right_partition);
cache.store(new_block_right_buddy, buddy_metadata); cache->save(new_block_right_buddy, buddy_metadata);
} }
} }
void MemoryBlock::merge(MetadataCache& cache, MemoryBlock* right_buddy) { void MemoryBlock::merge(MetadataCache* cache, MemoryBlock* right_buddy) {
// only free blocks can be merged // only free blocks can be merged
PADDLE_ASSERT(type(cache) == FREE_CHUNK); PADDLE_ASSERT(type(*cache) == FREE_CHUNK);
PADDLE_ASSERT(right_buddy->type(cache) == FREE_CHUNK); PADDLE_ASSERT(right_buddy->type(*cache) == FREE_CHUNK);
auto metadata = cache.load(this); auto metadata = cache->load(this);
// link this->buddy's buddy // link this->buddy's buddy
metadata.right_buddy = right_buddy->right_buddy(cache); metadata.right_buddy = right_buddy->right_buddy(*cache);
// link buddy's buddy -> this // link buddy's buddy -> this
if (metadata.right_buddy != nullptr) { if (metadata.right_buddy != nullptr) {
auto buddy_metadata = cache.load(metadata.right_buddy); auto buddy_metadata = cache->load(metadata.right_buddy);
buddy_metadata.left_buddy = this; buddy_metadata.left_buddy = this;
cache.store(metadata.right_buddy, buddy_metadata); cache->save(metadata.right_buddy, buddy_metadata);
} }
metadata.size += right_buddy->total_size(cache); metadata.size += right_buddy->total_size(*cache);
metadata.total_size += right_buddy->total_size(cache); metadata.total_size += right_buddy->total_size(*cache);
cache.store(this, metadata); cache->save(this, metadata);
cache.store(right_buddy, Metadata(INVALID_CHUNK, 0, 0, 0, nullptr, nullptr)); cache->save(right_buddy,
MemoryBlock::Desc(INVALID_CHUNK, 0, 0, 0, nullptr, nullptr));
} }
void MemoryBlock::mark_as_free(MetadataCache& cache) { void MemoryBlock::mark_as_free(MetadataCache* cache) {
// check for double free or corruption // check for double free or corruption
PADDLE_ASSERT(type(cache) != FREE_CHUNK); PADDLE_ASSERT(type(*cache) != FREE_CHUNK);
PADDLE_ASSERT(type(cache) != INVALID_CHUNK); PADDLE_ASSERT(type(*cache) != INVALID_CHUNK);
set_type(cache, FREE_CHUNK); set_type(cache, FREE_CHUNK);
} }
void MemoryBlock::set_type(MetadataCache& cache, Type t) { void MemoryBlock::set_type(MetadataCache* cache, Type t) {
auto metadata = cache.load(this); auto metadata = cache->load(this);
metadata.type = t; metadata.type = t;
cache->save(this, metadata);
cache.store(this, metadata);
}
bool MemoryBlock::has_left_buddy(MetadataCache& cache) const {
return left_buddy(cache) != nullptr;
}
bool MemoryBlock::has_right_buddy(MetadataCache& cache) const {
return right_buddy(cache) != nullptr;
}
size_t MemoryBlock::index(MetadataCache& cache) const {
return cache.load(this).index;
} }
void* MemoryBlock::data() const { void* MemoryBlock::data() const {
return const_cast<Metadata*>(reinterpret_cast<const Metadata*>(this)) + 1; return const_cast<MemoryBlock::Desc*>(
reinterpret_cast<const MemoryBlock::Desc*>(this)) +
1;
} }
MemoryBlock* MemoryBlock::metadata() const { MemoryBlock* MemoryBlock::metadata() const {
return const_cast<MemoryBlock*>(reinterpret_cast<const MemoryBlock*>( return const_cast<MemoryBlock*>(reinterpret_cast<const MemoryBlock*>(
reinterpret_cast<const Metadata*>(this) - 1)); reinterpret_cast<const MemoryBlock::Desc*>(this) - 1));
} }
} // namespace detail } // namespace detail
......
...@@ -11,21 +11,21 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,21 +11,21 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <cstddef> #include <cstdint>
#include <unordered_map>
namespace paddle { namespace paddle {
namespace memory { namespace memory {
namespace detail { namespace detail {
// Forward Declarations // Forward declaration.
class MetadataCache; class MetadataCache;
/*! \brief A class used to interpret the contents of a memory block */ // MemoryBlock represents Each allocated memory block, which contains
class MemoryBlock { // MemoryBlock::Desc and the payload.
public: struct MemoryBlock {
enum Type { enum Type {
FREE_CHUNK, // memory is free and idle FREE_CHUNK, // memory is free and idle
ARENA_CHUNK, // memory is being occupied ARENA_CHUNK, // memory is being occupied
...@@ -33,57 +33,96 @@ class MemoryBlock { ...@@ -33,57 +33,96 @@ class MemoryBlock {
INVALID_CHUNK // memory is invalid INVALID_CHUNK // memory is invalid
}; };
public: // init saves the MemoryBlock::Desc of the memory block in a MetadataCache.
void init(MetadataCache& cache, Type t, size_t index, size_t size, // If it is a CPU memory block, the MetadataCache writes the
// MemoryBlock::Desc to the beginning of the block; or, if it is a GPU memory
// block, the MetadataCache writes the Meatadata to a std::map in
// the CPU.
void init(MetadataCache* cache, Type t, size_t index, size_t size,
void* left_buddy, void* right_buddy); void* left_buddy, void* right_buddy);
public: // All these accessors returns fields in the MemoryBlock::Desc of the memory
/*! \brief The type of the allocation */ // block. They all need a MetadataCache instance as their first
Type type(MetadataCache& cache) const; // parameter because they read the MemoryBlock::Desc from the cache.
Type type(const MetadataCache& cache) const;
/*! \brief The size of the data region */ size_t size(const MetadataCache& cache) const;
size_t size(MetadataCache& cache) const; size_t index(const MetadataCache& cache) const;
size_t total_size(const MetadataCache& cache) const;
bool has_left_buddy(const MetadataCache& cache) const;
bool has_right_buddy(const MetadataCache& cache) const;
MemoryBlock* left_buddy(const MetadataCache& cache) const;
MemoryBlock* right_buddy(const MetadataCache& cache) const;
/*! \brief An index to track the allocator */ // Split the allocation into left/right blocks.
size_t index(MetadataCache& cache) const; void split(MetadataCache* cache, size_t size);
/*! \brief The total size of the block */ // Merge left and right blocks together.
size_t total_size(MetadataCache& cache) const; void merge(MetadataCache* cache, MemoryBlock* right_buddy);
/*! \brief Check the left buddy of the block */ // Mark the allocation as free.
bool has_left_buddy(MetadataCache& cache) const; void mark_as_free(MetadataCache* cache);
/*! \brief Check the right buddy of the block */ // Change the type of the allocation.
bool has_right_buddy(MetadataCache& cache) const; void set_type(MetadataCache* cache, Type t);
/*! \brief Get the left buddy */
MemoryBlock* left_buddy(MetadataCache& cache) const;
/*! \brief Get the right buddy */
MemoryBlock* right_buddy(MetadataCache& cache) const;
public:
/*! \brief Split the allocation into left/right blocks */
void split(MetadataCache& cache, size_t size);
/*! \brief Merge left and right blocks together */
void merge(MetadataCache& cache, MemoryBlock* right_buddy);
/*! \brief Mark the allocation as free */
void mark_as_free(MetadataCache& cache);
/*! \brief Change the type of the allocation */
void set_type(MetadataCache& cache, Type t);
public:
/*! \brief Get a pointer to the memory block's data */
void* data() const; void* data() const;
/*! \brief Get a pointer to the memory block's metadata */
MemoryBlock* metadata() const; MemoryBlock* metadata() const;
// MemoryBlock::Desc describes a MemoryBlock.
struct Desc {
Desc(MemoryBlock::Type t, size_t i, size_t s, size_t ts, MemoryBlock* l,
MemoryBlock* r);
Desc();
// Updates guard_begin and guard_end by hashes of the Metadata object.
void update_guards();
// Checks that guard_begin and guard_end are hashes of the Metadata object.
bool check_guards() const;
// TODO(gangliao): compress this
size_t guard_begin = 0;
MemoryBlock::Type type = MemoryBlock::INVALID_CHUNK;
size_t index = 0;
size_t size = 0;
size_t total_size = 0;
MemoryBlock* left_buddy = nullptr;
MemoryBlock* right_buddy = nullptr;
size_t guard_end = 0;
};
};
// A cache for accessing memory block meta-data that may be expensive
// to access directly. This class exists to unify the
// MemoryBlock::Desc format between GPU and CPU allocations. It should
// be removed when the CPU can access all GPU allocations directly via
// UVM.
class MetadataCache {
public: public:
static size_t overhead(); explicit MetadataCache(bool uses_gpu);
// Disable copying and assignment.
MetadataCache(const MetadataCache&) = delete;
MetadataCache& operator=(const MetadataCache&) = delete;
// Returns the MemoryBlock::Desc for a memory block. When MetadataCache is
// used to manage CPU memory, the MemoryBlock::Desc resides at the beginning
// of the memory block; when used to manage GPU memory, the
// Meatadata resides in CPU memory indexed by cache_.
MemoryBlock::Desc load(const MemoryBlock* memory_block) const;
// Saves the MemoryBlock::Desc of a memory block into the cache. For CPU
// memory block, writes the MemoryBlock::Desc to the beginning of the memory
// block; whereas for GPU memory, writes it to cache_.
void save(MemoryBlock* memory_block, const MemoryBlock::Desc& meta_data);
// For GPU memory block, erases its MemoryBlock::Desc from cache_.
void invalidate(MemoryBlock* memory_block);
private:
typedef std::unordered_map<const MemoryBlock*, MemoryBlock::Desc> MetadataMap;
MetadataMap cache_;
bool uses_gpu_;
}; };
} // namespace detail } // namespace detail
......
...@@ -12,16 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,16 +12,16 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/memory/detail/meta_data.h"
#include <functional> #include <functional>
#include "paddle/fluid/memory/detail/memory_block.h"
namespace paddle { namespace paddle {
namespace memory { namespace memory {
namespace detail { namespace detail {
Metadata::Metadata(MemoryBlock::Type t, size_t i, size_t s, size_t ts, MemoryBlock::Desc::Desc(MemoryBlock::Type t, size_t i, size_t s, size_t ts,
MemoryBlock* l, MemoryBlock* r) MemoryBlock* l, MemoryBlock* r)
: type(t), : type(t),
index(i), index(i),
size(s), size(s),
...@@ -29,7 +29,7 @@ Metadata::Metadata(MemoryBlock::Type t, size_t i, size_t s, size_t ts, ...@@ -29,7 +29,7 @@ Metadata::Metadata(MemoryBlock::Type t, size_t i, size_t s, size_t ts,
left_buddy(l), left_buddy(l),
right_buddy(r) {} right_buddy(r) {}
Metadata::Metadata() MemoryBlock::Desc::Desc()
: type(MemoryBlock::INVALID_CHUNK), : type(MemoryBlock::INVALID_CHUNK),
index(0), index(0),
size(0), size(0),
...@@ -37,32 +37,36 @@ Metadata::Metadata() ...@@ -37,32 +37,36 @@ Metadata::Metadata()
left_buddy(nullptr), left_buddy(nullptr),
right_buddy(nullptr) {} right_buddy(nullptr) {}
namespace {
template <class T> template <class T>
inline void hash_combine(std::size_t& seed, const T& v) { inline void hash_combine(std::size_t* seed, const T& v) {
std::hash<T> hasher; std::hash<T> hasher;
seed ^= hasher(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2); (*seed) ^= hasher(v) + 0x9e3779b9 + ((*seed) << 6) + ((*seed) >> 2);
} }
inline size_t hash(const Metadata* metadata, size_t initial_seed) { inline size_t hash(const MemoryBlock::Desc& metadata, size_t initial_seed) {
size_t seed = initial_seed; size_t seed = initial_seed;
hash_combine(seed, (size_t)metadata->type); hash_combine(&seed, static_cast<size_t>(metadata.type));
hash_combine(seed, metadata->index); hash_combine(&seed, metadata.index);
hash_combine(seed, metadata->size); hash_combine(&seed, metadata.size);
hash_combine(seed, metadata->total_size); hash_combine(&seed, metadata.total_size);
hash_combine(seed, metadata->left_buddy); hash_combine(&seed, metadata.left_buddy);
hash_combine(seed, metadata->right_buddy); hash_combine(&seed, metadata.right_buddy);
return seed; return seed;
} }
void Metadata::update_guards() { } // namespace
guard_begin = hash(this, 1);
guard_end = hash(this, 2); void MemoryBlock::Desc::update_guards() {
guard_begin = hash(*this, 1);
guard_end = hash(*this, 2);
} }
bool Metadata::check_guards() const { bool MemoryBlock::Desc::check_guards() const {
return guard_begin == hash(this, 1) && guard_end == hash(this, 2); return guard_begin == hash(*this, 1) && guard_end == hash(*this, 2);
} }
} // namespace detail } // namespace detail
......
...@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/memory/detail/meta_cache.h"
#include "glog/logging.h" #include "glog/logging.h"
#include "paddle/fluid/memory/detail/memory_block.h" #include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/platform/assert.h" #include "paddle/fluid/platform/assert.h"
...@@ -23,29 +22,28 @@ namespace detail { ...@@ -23,29 +22,28 @@ namespace detail {
MetadataCache::MetadataCache(bool uses_gpu) : uses_gpu_(uses_gpu) {} MetadataCache::MetadataCache(bool uses_gpu) : uses_gpu_(uses_gpu) {}
Metadata MetadataCache::load(const MemoryBlock* block) { MemoryBlock::Desc MetadataCache::load(const MemoryBlock* block) const {
if (uses_gpu_) { if (uses_gpu_) {
auto existing_metadata = cache_.find(block); auto existing_desc = cache_.find(block);
PADDLE_ASSERT(existing_metadata->second.check_guards()); PADDLE_ASSERT(existing_desc->second.check_guards());
return existing_metadata->second; return existing_desc->second;
} else { } else {
auto* meta = reinterpret_cast<const Metadata*>(block); auto* desc = reinterpret_cast<const MemoryBlock::Desc*>(block);
VLOG(10) << "Load MetaData type=" << meta->type; VLOG(10) << "Load MemoryBlock::Desc type=" << desc->type;
PADDLE_ASSERT(meta->check_guards()); PADDLE_ASSERT(desc->check_guards());
return *reinterpret_cast<const Metadata*>(block); return *reinterpret_cast<const MemoryBlock::Desc*>(block);
} }
} }
void MetadataCache::store(MemoryBlock* block, void MetadataCache::save(MemoryBlock* block,
const Metadata& original_metadata) { const MemoryBlock::Desc& original_desc) {
auto metadata = original_metadata; auto desc = original_desc;
desc.update_guards();
metadata.update_guards();
if (uses_gpu_) { if (uses_gpu_) {
cache_[block] = metadata; cache_[block] = desc;
} else { } else {
*reinterpret_cast<Metadata*>(block) = metadata; *reinterpret_cast<MemoryBlock::Desc*>(block) = desc;
} }
} }
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/memory/detail/meta_data.h"
#include <unordered_map>
namespace paddle {
namespace memory {
namespace detail {
/**
* \brief A cache for accessing memory block meta-data that may be expensive
* to access directly.
*
* \note This class exists to unify the metadata format between GPU and CPU
* allocations. It should be removed when the CPU can access all GPU
* allocations directly via UVM.
*/
class MetadataCache {
public:
explicit MetadataCache(bool uses_gpu);
public:
/*! \brief Load the associated metadata for the specified memory block. */
Metadata load(const MemoryBlock* memory_block);
/*! \brief Store the associated metadata for the specified memory block. */
void store(MemoryBlock* memory_block, const Metadata& meta_data);
/*! \brief Indicate that the specified metadata will no longer be used. */
void invalidate(MemoryBlock* memory_block);
public:
MetadataCache(const MetadataCache&) = delete;
MetadataCache& operator=(const MetadataCache&) = delete;
private:
bool uses_gpu_;
private:
typedef std::unordered_map<const MemoryBlock*, Metadata> MetadataMap;
private:
MetadataMap cache_;
};
} // namespace detail
} // namespace memory
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/memory/detail/memory_block.h"
#include <stddef.h>
namespace paddle {
namespace memory {
namespace detail {
class Metadata {
public:
Metadata(MemoryBlock::Type t, size_t i, size_t s, size_t ts, MemoryBlock* l,
MemoryBlock* r);
Metadata();
public:
/*! \brief Update the guards when metadata is changed */
void update_guards();
/*! \brief Check consistency to previous modification */
bool check_guards() const;
public:
// TODO(gangliao): compress this
// clang-format off
size_t guard_begin = 0;
MemoryBlock::Type type = MemoryBlock::INVALID_CHUNK;
size_t index = 0;
size_t size = 0;
size_t total_size = 0;
MemoryBlock* left_buddy = nullptr;
MemoryBlock* right_buddy = nullptr;
size_t guard_end = 0;
// clang-format on
};
} // namespace detail
} // namespace memory
} // namespace paddle
...@@ -13,16 +13,16 @@ See the License for the specific language governing permissions and ...@@ -13,16 +13,16 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/memory/detail/system_allocator.h" #include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gpu_info.h"
#include <stdlib.h> // for malloc and free #include <stdlib.h> // for malloc and free
#include <sys/mman.h> // for mlock and munlock #include <sys/mman.h> // for mlock and munlock
#include <algorithm> // for std::max #include <algorithm> // for std::max
#include "gflags/gflags.h" #include "gflags/gflags.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gpu_info.h"
// If use_pinned_memory is true, CPUAllocator calls mlock, which // If use_pinned_memory is true, CPUAllocator calls mlock, which
// returns pinned and locked memory as staging areas for data exchange // returns pinned and locked memory as staging areas for data exchange
...@@ -35,13 +35,13 @@ namespace paddle { ...@@ -35,13 +35,13 @@ namespace paddle {
namespace memory { namespace memory {
namespace detail { namespace detail {
void* CPUAllocator::Alloc(size_t& index, size_t size) { void* CPUAllocator::Alloc(size_t* index, size_t size) {
// According to http://www.cplusplus.com/reference/cstdlib/malloc/, // According to http://www.cplusplus.com/reference/cstdlib/malloc/,
// malloc might not return nullptr if size is zero, but the returned // malloc might not return nullptr if size is zero, but the returned
// pointer shall not be dereferenced -- so we make it nullptr. // pointer shall not be dereferenced -- so we make it nullptr.
if (size <= 0) return nullptr; if (size <= 0) return nullptr;
index = 0; // unlock memory *index = 0; // unlock memory
void* p; void* p;
...@@ -56,7 +56,7 @@ void* CPUAllocator::Alloc(size_t& index, size_t size) { ...@@ -56,7 +56,7 @@ void* CPUAllocator::Alloc(size_t& index, size_t size) {
if (p != nullptr) { if (p != nullptr) {
if (FLAGS_use_pinned_memory) { if (FLAGS_use_pinned_memory) {
index = 1; *index = 1;
mlock(p, size); // lock memory mlock(p, size); // lock memory
} }
} }
...@@ -75,7 +75,7 @@ bool CPUAllocator::UseGpu() const { return false; } ...@@ -75,7 +75,7 @@ bool CPUAllocator::UseGpu() const { return false; }
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
void* GPUAllocator::Alloc(size_t& index, size_t size) { void* GPUAllocator::Alloc(size_t* index, size_t size) {
// CUDA documentation doesn't explain if cudaMalloc returns nullptr // CUDA documentation doesn't explain if cudaMalloc returns nullptr
// if size is 0. We just make sure it does. // if size is 0. We just make sure it does.
if (size <= 0) return nullptr; if (size <= 0) return nullptr;
...@@ -93,7 +93,7 @@ void* GPUAllocator::Alloc(size_t& index, size_t size) { ...@@ -93,7 +93,7 @@ void* GPUAllocator::Alloc(size_t& index, size_t size) {
} }
if (result == cudaSuccess) { if (result == cudaSuccess) {
index = 0; *index = 0;
gpu_alloc_size_ += size; gpu_alloc_size_ += size;
return p; return p;
} else { } else {
...@@ -133,7 +133,7 @@ bool GPUAllocator::UseGpu() const { return true; } ...@@ -133,7 +133,7 @@ bool GPUAllocator::UseGpu() const { return true; }
// PINNED memory allows direct DMA transfers by the GPU to and from system // PINNED memory allows direct DMA transfers by the GPU to and from system
// memory. It’s locked to a physical address. // memory. It’s locked to a physical address.
void* CUDAPinnedAllocator::Alloc(size_t& index, size_t size) { void* CUDAPinnedAllocator::Alloc(size_t* index, size_t size) {
if (size <= 0) return nullptr; if (size <= 0) return nullptr;
// NOTE: here, we use CUDAPinnedMaxAllocSize as the maximum memory size // NOTE: here, we use CUDAPinnedMaxAllocSize as the maximum memory size
...@@ -154,7 +154,7 @@ void* CUDAPinnedAllocator::Alloc(size_t& index, size_t size) { ...@@ -154,7 +154,7 @@ void* CUDAPinnedAllocator::Alloc(size_t& index, size_t size) {
cudaError_t result = cudaMallocHost(&p, size); cudaError_t result = cudaMallocHost(&p, size);
if (result == cudaSuccess) { if (result == cudaSuccess) {
index = 1; // PINNED memory *index = 1; // PINNED memory
cuda_pinnd_alloc_size_ += size; cuda_pinnd_alloc_size_ += size;
return p; return p;
} else { } else {
......
...@@ -29,14 +29,14 @@ namespace detail { ...@@ -29,14 +29,14 @@ namespace detail {
class SystemAllocator { class SystemAllocator {
public: public:
virtual ~SystemAllocator() {} virtual ~SystemAllocator() {}
virtual void* Alloc(size_t& index, size_t size) = 0; virtual void* Alloc(size_t* index, size_t size) = 0;
virtual void Free(void* p, size_t size, size_t index) = 0; virtual void Free(void* p, size_t size, size_t index) = 0;
virtual bool UseGpu() const = 0; virtual bool UseGpu() const = 0;
}; };
class CPUAllocator : public SystemAllocator { class CPUAllocator : public SystemAllocator {
public: public:
virtual void* Alloc(size_t& index, size_t size); virtual void* Alloc(size_t* index, size_t size);
virtual void Free(void* p, size_t size, size_t index); virtual void Free(void* p, size_t size, size_t index);
virtual bool UseGpu() const; virtual bool UseGpu() const;
}; };
...@@ -46,7 +46,7 @@ class GPUAllocator : public SystemAllocator { ...@@ -46,7 +46,7 @@ class GPUAllocator : public SystemAllocator {
public: public:
explicit GPUAllocator(int gpu_id) : gpu_id_(gpu_id) {} explicit GPUAllocator(int gpu_id) : gpu_id_(gpu_id) {}
virtual void* Alloc(size_t& index, size_t size); virtual void* Alloc(size_t* index, size_t size);
virtual void Free(void* p, size_t size, size_t index); virtual void Free(void* p, size_t size, size_t index);
virtual bool UseGpu() const; virtual bool UseGpu() const;
...@@ -58,7 +58,7 @@ class GPUAllocator : public SystemAllocator { ...@@ -58,7 +58,7 @@ class GPUAllocator : public SystemAllocator {
class CUDAPinnedAllocator : public SystemAllocator { class CUDAPinnedAllocator : public SystemAllocator {
public: public:
virtual void* Alloc(size_t& index, size_t size); virtual void* Alloc(size_t* index, size_t size);
virtual void Free(void* p, size_t size, size_t index); virtual void Free(void* p, size_t size, size_t index);
virtual bool UseGpu() const; virtual bool UseGpu() const;
......
...@@ -22,11 +22,11 @@ limitations under the License. */ ...@@ -22,11 +22,11 @@ limitations under the License. */
DECLARE_bool(use_pinned_memory); DECLARE_bool(use_pinned_memory);
void TestAllocator(paddle::memory::detail::SystemAllocator& a, size_t size) { void TestAllocator(paddle::memory::detail::SystemAllocator* a, size_t size) {
bool freed = false; bool freed = false;
{ {
size_t index; size_t index;
void* p = a.Alloc(index, size); void* p = a->Alloc(&index, size);
if (size > 0) { if (size > 0) {
EXPECT_NE(p, nullptr); EXPECT_NE(p, nullptr);
} else { } else {
...@@ -36,7 +36,7 @@ void TestAllocator(paddle::memory::detail::SystemAllocator& a, size_t size) { ...@@ -36,7 +36,7 @@ void TestAllocator(paddle::memory::detail::SystemAllocator& a, size_t size) {
int* i = static_cast<int*>(p); int* i = static_cast<int*>(p);
std::shared_ptr<int> ptr(i, [&](void* p) { std::shared_ptr<int> ptr(i, [&](void* p) {
freed = true; freed = true;
a.Free(p, size, index); a->Free(p, size, index);
}); });
} }
EXPECT_TRUE(freed); EXPECT_TRUE(freed);
...@@ -45,21 +45,21 @@ void TestAllocator(paddle::memory::detail::SystemAllocator& a, size_t size) { ...@@ -45,21 +45,21 @@ void TestAllocator(paddle::memory::detail::SystemAllocator& a, size_t size) {
TEST(CPUAllocator, NoLockMem) { TEST(CPUAllocator, NoLockMem) {
FLAGS_use_pinned_memory = false; FLAGS_use_pinned_memory = false;
paddle::memory::detail::CPUAllocator a; paddle::memory::detail::CPUAllocator a;
TestAllocator(a, 2048); TestAllocator(&a, 2048);
TestAllocator(a, 0); TestAllocator(&a, 0);
} }
TEST(CPUAllocator, LockMem) { TEST(CPUAllocator, LockMem) {
FLAGS_use_pinned_memory = true; FLAGS_use_pinned_memory = true;
paddle::memory::detail::CPUAllocator a; paddle::memory::detail::CPUAllocator a;
TestAllocator(a, 2048); TestAllocator(&a, 2048);
TestAllocator(a, 0); TestAllocator(&a, 0);
} }
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
TEST(GPUAllocator, Alloc) { TEST(GPUAllocator, Alloc) {
paddle::memory::detail::GPUAllocator a(0); paddle::memory::detail::GPUAllocator a(0);
TestAllocator(a, 2048); TestAllocator(&a, 2048);
TestAllocator(a, 0); TestAllocator(&a, 0);
} }
#endif #endif
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/memory/memory.h" #include "paddle/fluid/memory/malloc.h"
#include "glog/logging.h" #include "glog/logging.h"
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace memory {
/**
* \brief Allocate memory block in one place.
*
* \param[in] place Allocation place (CPU or GPU).
* \param[in] size Allocation size.
*
* \return Allocated memory block address.
*
* \note If return nullptr, it indicates memory allocation failed
* because insufficient memory in current system. When Alloc
* function is invoked, you must check the returned memory
* address is valid or not.
*/
template <typename Place>
void* Alloc(Place place, size_t size);
/**
* \brief Free memory block in one place.
*
* \param[in] place Allocation place (CPU or GPU).
* \param[in] ptr Memory block address to free.
*
*/
template <typename Place>
void Free(Place place, void* ptr);
/**
* \brief Total size of used memory in one place.
*
* \param[in] place Allocation place (CPU or GPU).
*
*/
template <typename Place>
size_t Used(Place place);
struct Usage : public boost::static_visitor<size_t> {
size_t operator()(const platform::CPUPlace& cpu) const;
size_t operator()(const platform::CUDAPlace& gpu) const;
size_t operator()(const platform::CUDAPinnedPlace& cuda_pinned) const;
};
size_t memory_usage(const platform::Place& p);
/**
* \brief Free memory block in one place.
*
* \note In some cases, custom deleter is used to
* deallocate the memory automatically for
* std::unique_ptr<T> in tensor.h.
*
*/
template <typename T, typename Place>
class PODDeleter {
static_assert(std::is_pod<T>::value, "T must be POD");
public:
explicit PODDeleter(Place place) : place_(place) {}
void operator()(T* ptr) { Free(place_, static_cast<void*>(ptr)); }
private:
Place place_;
};
/**
* \brief Free memory block in one place does not meet POD
*
* \note In some cases, custom deleter is used to
* deallocate the memory automatically for
* std::unique_ptr<T> in tensor.h.
*
*/
template <typename T, typename Place>
class PlainDeleter {
public:
explicit PlainDeleter(Place place) : place_(place) {}
void operator()(T* ptr) { Free(place_, reinterpret_cast<void*>(ptr)); }
private:
Place place_;
};
} // namespace memory
} // namespace paddle
...@@ -12,13 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,13 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/memory/memory.h" #include "paddle/fluid/memory/malloc.h"
#include <unordered_map> #include <unordered_map>
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "paddle/fluid/memory/detail/memory_block.h" #include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/memory/detail/meta_data.h"
#include "paddle/fluid/platform/cpu_info.h" #include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/place.h"
...@@ -28,7 +27,7 @@ inline bool is_aligned(void const *p) { ...@@ -28,7 +27,7 @@ inline bool is_aligned(void const *p) {
} }
size_t align(size_t size, paddle::platform::CPUPlace place) { size_t align(size_t size, paddle::platform::CPUPlace place) {
size += sizeof(paddle::memory::detail::Metadata); size += sizeof(paddle::memory::detail::MemoryBlock::Desc);
size_t alignment = paddle::platform::CpuMinChunkSize(); size_t alignment = paddle::platform::CpuMinChunkSize();
size_t remaining = size % alignment; size_t remaining = size % alignment;
return remaining == 0 ? size : size + (alignment - remaining); return remaining == 0 ? size : size + (alignment - remaining);
...@@ -86,7 +85,7 @@ TEST(BuddyAllocator, CPUMultAlloc) { ...@@ -86,7 +85,7 @@ TEST(BuddyAllocator, CPUMultAlloc) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
size_t align(size_t size, paddle::platform::CUDAPlace place) { size_t align(size_t size, paddle::platform::CUDAPlace place) {
size += sizeof(paddle::memory::detail::Metadata); size += sizeof(paddle::memory::detail::MemoryBlock::Desc);
size_t alignment = paddle::platform::GpuMinChunkSize(); size_t alignment = paddle::platform::GpuMinChunkSize();
size_t remaining = size % alignment; size_t remaining = size % alignment;
return remaining == 0 ? size : size + (alignment - remaining); return remaining == 0 ? size : size + (alignment - remaining);
...@@ -142,7 +141,7 @@ TEST(BuddyAllocator, GPUMultAlloc) { ...@@ -142,7 +141,7 @@ TEST(BuddyAllocator, GPUMultAlloc) {
} }
size_t align(size_t size, paddle::platform::CUDAPinnedPlace place) { size_t align(size_t size, paddle::platform::CUDAPinnedPlace place) {
size += sizeof(paddle::memory::detail::Metadata); size += sizeof(paddle::memory::detail::MemoryBlock::Desc);
size_t alignment = paddle::platform::CUDAPinnedMinChunkSize(); size_t alignment = paddle::platform::CUDAPinnedMinChunkSize();
size_t remaining = size % alignment; size_t remaining = size % alignment;
return remaining == 0 ? size : size + (alignment - remaining); return remaining == 0 ? size : size + (alignment - remaining);
......
...@@ -14,91 +14,5 @@ limitations under the License. */ ...@@ -14,91 +14,5 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/fluid/platform/place.h" #include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
namespace paddle {
namespace memory {
/**
* \brief Allocate memory block in one place.
*
* \param[in] place Allocation place (CPU or GPU).
* \param[in] size Allocation size.
*
* \return Allocated memory block address.
*
* \note If return nullptr, it indicates memory allocation failed
* because insufficient memory in current system. When Alloc
* function is invoked, you must check the returned memory
* address is valid or not.
*/
template <typename Place>
void* Alloc(Place place, size_t size);
/**
* \brief Free memory block in one place.
*
* \param[in] place Allocation place (CPU or GPU).
* \param[in] ptr Memory block address to free.
*
*/
template <typename Place>
void Free(Place place, void* ptr);
/**
* \brief Total size of used memory in one place.
*
* \param[in] place Allocation place (CPU or GPU).
*
*/
template <typename Place>
size_t Used(Place place);
struct Usage : public boost::static_visitor<size_t> {
size_t operator()(const platform::CPUPlace& cpu) const;
size_t operator()(const platform::CUDAPlace& gpu) const;
size_t operator()(const platform::CUDAPinnedPlace& cuda_pinned) const;
};
size_t memory_usage(const platform::Place& p);
/**
* \brief Free memory block in one place.
*
* \note In some cases, custom deleter is used to
* deallocate the memory automatically for
* std::unique_ptr<T> in tensor.h.
*
*/
template <typename T, typename Place>
class PODDeleter {
static_assert(std::is_pod<T>::value, "T must be POD");
public:
explicit PODDeleter(Place place) : place_(place) {}
void operator()(T* ptr) { Free(place_, static_cast<void*>(ptr)); }
private:
Place place_;
};
/**
* \brief Free memory block in one place does not meet POD
*
* \note In some cases, custom deleter is used to
* deallocate the memory automatically for
* std::unique_ptr<T> in tensor.h.
*
*/
template <typename T, typename Place>
class PlainDeleter {
public:
explicit PlainDeleter(Place place) : place_(place) {}
void operator()(T* ptr) { Free(place_, reinterpret_cast<void*>(ptr)); }
private:
Place place_;
};
} // namespace memory
} // namespace paddle
...@@ -15,7 +15,6 @@ limitations under the License. */ ...@@ -15,7 +15,6 @@ limitations under the License. */
#include <unordered_map> #include <unordered_map>
#include "paddle/fluid/memory/detail/memory_block.h" #include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/memory/detail/meta_data.h"
#include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h" #include "paddle/fluid/memory/memory.h"
......
...@@ -263,7 +263,7 @@ cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) ...@@ -263,7 +263,7 @@ cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor)
cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor) cc_test(beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor)
cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_search_op) cc_test(beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_search_op)
cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory) cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory)
cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op) cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op)
cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op) cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op)
nv_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context) nv_test(nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context)
......
...@@ -13,8 +13,8 @@ ...@@ -13,8 +13,8 @@
limitations under the License. */ limitations under the License. */
#include "mkldnn.hpp" #include "mkldnn.hpp"
#include "mkldnn_activation_op.h"
#include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mkldnn_activation_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -40,18 +40,24 @@ void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm, ...@@ -40,18 +40,24 @@ void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
const T *dst_data = dst->template mutable_data<T>(ctx.GetPlace()); const T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());
// get memory dim // get memory dim
PADDLE_ENFORCE(src->dims().size() == 4, PADDLE_ENFORCE(src->dims().size() == 2 || src->dims().size() == 4,
"Input dim must be with 4, i.e. NCHW"); "Input dim must be with 2 or 4");
std::vector<int> src_tz = framework::vectorize2int(src->dims()); std::vector<int> src_tz = framework::vectorize2int(src->dims());
// create memory description // create memory description
// TODO(kbinias-intel): support more formats auto data_md = src_tz.size() == 2
auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32, ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw); mkldnn::memory::format::nc)
: platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw);
// create memory primitives // create memory primitives
auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)src_data); auto src_memory =
auto dst_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)dst_data); mkldnn::memory({data_md, mkldnn_engine},
static_cast<void *>(const_cast<float *>(src_data)));
auto dst_memory =
mkldnn::memory({data_md, mkldnn_engine},
static_cast<void *>(const_cast<float *>(dst_data)));
auto forward_desc = mkldnn::eltwise_forward::desc( auto forward_desc = mkldnn::eltwise_forward::desc(
mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta); mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);
...@@ -91,15 +97,21 @@ void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm, ...@@ -91,15 +97,21 @@ void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
std::vector<int> src_tz = framework::vectorize2int(x->dims()); std::vector<int> src_tz = framework::vectorize2int(x->dims());
// create memory description // create memory description
auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32, auto data_md = src_tz.size() == 2
mkldnn::memory::format::nchw); ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nc)
: platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw);
// create memory primitives // create memory primitives
auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)src); auto src_memory = mkldnn::memory(
{data_md, mkldnn_engine}, static_cast<void *>(const_cast<float *>(src)));
auto diff_src_memory = auto diff_src_memory =
mkldnn::memory({data_md, mkldnn_engine}, (void *)diff_src); mkldnn::memory({data_md, mkldnn_engine},
static_cast<void *>(const_cast<float *>(diff_src)));
auto diff_dst_memory = auto diff_dst_memory =
mkldnn::memory({data_md, mkldnn_engine}, (void *)diff_dst); mkldnn::memory({data_md, mkldnn_engine},
static_cast<void *>(const_cast<float *>(diff_dst)));
auto backward_desc = auto backward_desc =
mkldnn::eltwise_backward::desc(algorithm, data_md, data_md, alpha, beta); mkldnn::eltwise_backward::desc(algorithm, data_md, data_md, alpha, beta);
......
...@@ -662,14 +662,3 @@ REGISTER_OP(swish, ops::ActivationOp, ops::SwishOpMaker, swish_grad, ...@@ -662,14 +662,3 @@ REGISTER_OP(swish, ops::ActivationOp, ops::SwishOpMaker, swish_grad,
ops::grad_functor<double>>); ops::grad_functor<double>>);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL);
REGISTER_OP_CPU_KERNEL(relu,
ops::ActivationKernel<paddle::platform::CPUDeviceContext,
ops::ReluFunctor<float>>,
ops::ActivationKernel<paddle::platform::CPUDeviceContext,
ops::ReluFunctor<double>>);
REGISTER_OP_CPU_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
ops::ReluGradFunctor<float>>,
ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
ops::ReluGradFunctor<double>>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...@@ -17,31 +14,19 @@ limitations under the License. */ ...@@ -17,31 +14,19 @@ limitations under the License. */
#include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators; namespace ops = paddle::operators;
namespace plat = paddle::platform;
#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, functor, grad_functor) \
REGISTER_OP_CUDA_KERNEL( \ #define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, functor, grad_functor) \
act_type, ops::ActivationKernel<paddle::platform::CUDADeviceContext, \ REGISTER_OP_CUDA_KERNEL( \
ops::functor<float>>, \ act_type, \
ops::ActivationKernel<paddle::platform::CUDADeviceContext, \ ops::ActivationKernel<plat::CUDADeviceContext, ops::functor<float>>, \
ops::functor<double>>); \ ops::ActivationKernel<plat::CUDADeviceContext, ops::functor<double>>, \
REGISTER_OP_CUDA_KERNEL( \ ops::ActivationKernel<plat::CUDADeviceContext, \
act_type##_grad, \ ops::functor<plat::float16>>); \
ops::ActivationGradKernel<paddle::platform::CUDADeviceContext, \ REGISTER_OP_CUDA_KERNEL( \
ops::grad_functor<float>>, \ act_type##_grad, ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::ActivationGradKernel<paddle::platform::CUDADeviceContext, \ ops::grad_functor<float>>, \
ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::grad_functor<double>>); ops::grad_functor<double>>);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL);
REGISTER_OP_CUDA_KERNEL(
relu, ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<float>>,
ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<double>>,
ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<paddle::platform::float16>>);
REGISTER_OP_CUDA_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::CUDADeviceContext,
ops::ReluGradFunctor<float>>,
ops::ActivationGradKernel<paddle::platform::CUDADeviceContext,
ops::ReluGradFunctor<double>>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...@@ -13,9 +10,13 @@ See the License for the specific language governing permissions and ...@@ -13,9 +10,13 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/platform/float16.h"
#ifdef PADDLE_WITH_MKLDNN #ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/mkldnn_helper.h"
...@@ -336,11 +337,25 @@ struct Sine { ...@@ -336,11 +337,25 @@ struct Sine {
HOSTDEVICE T operator()(const T& val) const { return sin(val); } HOSTDEVICE T operator()(const T& val) const { return sin(val); }
}; };
template <>
struct Sine<platform::float16> {
HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
return platform::float16(sin(static_cast<float>(val)));
}
};
template <typename T> template <typename T>
struct Cosine { struct Cosine {
HOSTDEVICE T operator()(const T& val) const { return cos(val); } HOSTDEVICE T operator()(const T& val) const { return cos(val); }
}; };
template <>
struct Cosine<platform::float16> {
HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
return platform::float16(cos(static_cast<float>(val)));
}
};
// cosine'(x) = -sin(x) // cosine'(x) = -sin(x)
template <typename T> template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> { struct CosGradFunctor : public BaseActivationFunctor<T> {
...@@ -824,6 +839,7 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> { ...@@ -824,6 +839,7 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> {
__macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \ __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \
__macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \ __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
__macro(exp, ExpFunctor, ExpGradFunctor); \ __macro(exp, ExpFunctor, ExpGradFunctor); \
__macro(relu, ReluFunctor, ReluGradFunctor); \
__macro(tanh, TanhFunctor, TanhGradFunctor); \ __macro(tanh, TanhFunctor, TanhGradFunctor); \
__macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \ __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \
__macro(sqrt, SqrtFunctor, SqrtGradFunctor); \ __macro(sqrt, SqrtFunctor, SqrtGradFunctor); \
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/adagrad_op.h" #include "paddle/fluid/operators/adagrad_op.h"
#include <vector>
#include <cmath> #include <cmath>
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <string>
#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
......
...@@ -13,6 +13,8 @@ ...@@ -13,6 +13,8 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/operators/assign_value_op.h" #include "paddle/fluid/operators/assign_value_op.h"
#include <string>
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/auc_op.h" #include "paddle/fluid/operators/auc_op.h"
#include <string>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
...@@ -40,7 +42,7 @@ class AucKernel : public framework::OpKernel<T> { ...@@ -40,7 +42,7 @@ class AucKernel : public framework::OpKernel<T> {
std::vector<float> thresholds_list; std::vector<float> thresholds_list;
thresholds_list.reserve(num_thresholds); thresholds_list.reserve(num_thresholds);
for (int i = 1; i < num_thresholds - 1; i++) { for (int i = 1; i < num_thresholds - 1; i++) {
thresholds_list[i] = (float)i / (num_thresholds - 1); thresholds_list[i] = static_cast<float>(i) / (num_thresholds - 1);
} }
const float kEpsilon = 1e-7; const float kEpsilon = 1e-7;
thresholds_list[0] = 0.0f - kEpsilon; thresholds_list[0] = 0.0f - kEpsilon;
...@@ -105,11 +107,12 @@ class AucKernel : public framework::OpKernel<T> { ...@@ -105,11 +107,12 @@ class AucKernel : public framework::OpKernel<T> {
float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace()); float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace()); float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
for (int i = 0; i < num_thresholds; i++) { for (int i = 0; i < num_thresholds; i++) {
tp_rate_data[i] = tp_rate_data[i] = (static_cast<float>(tp_data[i]) + epsilon) /
((float)tp_data[i] + epsilon) / (tp_data[i] + fn_data[i] + epsilon); (tp_data[i] + fn_data[i] + epsilon);
fp_rate_data[i] = (float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon); fp_rate_data[i] =
rec_rate_data[i] = static_cast<float>(fp_data[i]) / (fp_data[i] + tn_data[i] + epsilon);
((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon); rec_rate_data[i] = (static_cast<float>(tp_data[i]) + epsilon) /
(tp_data[i] + fp_data[i] + epsilon);
} }
*auc_data = 0.0f; *auc_data = 0.0f;
if (curve == "ROC") { if (curve == "ROC") {
......
...@@ -19,15 +19,15 @@ namespace operators { ...@@ -19,15 +19,15 @@ namespace operators {
template <> template <>
void GetAccumulators<paddle::platform::CPUDeviceContext>( void GetAccumulators<paddle::platform::CPUDeviceContext>(
const framework::ExecutionContext& ctx, int64_t& num_updates_, const framework::ExecutionContext& ctx, int64_t* num_updates_,
int64_t& num_accumulates_, int64_t& old_num_accumulates_) { int64_t* num_accumulates_, int64_t* old_num_accumulates_) {
auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates"); auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates"); auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
auto* in_num_updates = ctx.Input<Tensor>("in_num_updates"); auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
old_num_accumulates_ = in_old_num_accumulates->data<int64_t>()[0]; *old_num_accumulates_ = in_old_num_accumulates->data<int64_t>()[0];
num_accumulates_ = in_num_accumulates->data<int64_t>()[0]; *num_accumulates_ = in_num_accumulates->data<int64_t>()[0];
num_updates_ = in_num_updates->data<int64_t>()[0]; *num_updates_ = in_num_updates->data<int64_t>()[0];
} }
template <> template <>
......
...@@ -19,18 +19,18 @@ namespace paddle { ...@@ -19,18 +19,18 @@ namespace paddle {
namespace operators { namespace operators {
template <> template <>
void GetAccumulators<paddle::platform::CUDADeviceContext>( void GetAccumulators<paddle::platform::CUDADeviceContext>(
const framework::ExecutionContext& ctx, int64_t& num_updates_, const framework::ExecutionContext& ctx, int64_t* num_updates_,
int64_t& num_accumulates_, int64_t& old_num_accumulates_) { int64_t* num_accumulates_, int64_t* old_num_accumulates_) {
auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates"); auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates"); auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
auto* in_num_updates = ctx.Input<Tensor>("in_num_updates"); auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
auto stream = ctx.cuda_device_context().stream(); auto stream = ctx.cuda_device_context().stream();
memory::Copy(platform::CPUPlace(), &old_num_accumulates_, memory::Copy(platform::CPUPlace(), old_num_accumulates_,
platform::CUDAPlace(), in_old_num_accumulates->data<int64_t>(), platform::CUDAPlace(), in_old_num_accumulates->data<int64_t>(),
sizeof(int64_t), stream); sizeof(int64_t), stream);
memory::Copy(platform::CPUPlace(), &num_accumulates_, platform::CUDAPlace(), memory::Copy(platform::CPUPlace(), num_accumulates_, platform::CUDAPlace(),
in_num_accumulates->data<int64_t>(), sizeof(int64_t), stream); in_num_accumulates->data<int64_t>(), sizeof(int64_t), stream);
memory::Copy(platform::CPUPlace(), &num_updates_, platform::CUDAPlace(), memory::Copy(platform::CPUPlace(), num_updates_, platform::CUDAPlace(),
in_num_updates->data<int64_t>(), sizeof(int64_t), stream); in_num_updates->data<int64_t>(), sizeof(int64_t), stream);
} }
......
...@@ -29,8 +29,8 @@ using EigenVector = framework::EigenVector<T, MajorType, IndexType>; ...@@ -29,8 +29,8 @@ using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename DeviceContext> template <typename DeviceContext>
void GetAccumulators(const framework::ExecutionContext& ctx, void GetAccumulators(const framework::ExecutionContext& ctx,
int64_t& num_updates, int64_t& num_accumulates, int64_t* num_updates, int64_t* num_accumulates,
int64_t& old_num_accumulates); int64_t* old_num_accumulates);
template <typename DeviceContext> template <typename DeviceContext>
void SetAccumulators(const framework::ExecutionContext& ctx, void SetAccumulators(const framework::ExecutionContext& ctx,
...@@ -47,8 +47,8 @@ class AverageAccumulatesKernel : public framework::OpKernel<T> { ...@@ -47,8 +47,8 @@ class AverageAccumulatesKernel : public framework::OpKernel<T> {
int64_t num_updates = 0; int64_t num_updates = 0;
int64_t num_accumulates = 0; int64_t num_accumulates = 0;
int64_t old_num_accumulates = 0; int64_t old_num_accumulates = 0;
GetAccumulators<DeviceContext>(ctx, num_updates, num_accumulates, GetAccumulators<DeviceContext>(ctx, &num_updates, &num_accumulates,
old_num_accumulates); &old_num_accumulates);
// Get attrs // Get attrs
float average_window = ctx.Attr<float>("average_window"); float average_window = ctx.Attr<float>("average_window");
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h" #include "paddle/fluid/operators/batch_norm_op.h"
#include <string>
#include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/data_layout.h"
namespace paddle { namespace paddle {
......
...@@ -13,9 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,9 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h" #include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/framework/data_layout.h"
#include <cfloat> #include <cfloat>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h" #include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/float16.h"
......
...@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
......
...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <string>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/compare_op.h" #include "paddle/fluid/operators/compare_op.h"
#include <string>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
namespace paddle { namespace paddle {
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/concat_op.h" #include "paddle/fluid/operators/concat_op.h"
#include <string>
#include <vector> #include <vector>
namespace paddle { namespace paddle {
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <string>
#include <vector> #include <vector>
#include "glog/logging.h" #include "glog/logging.h"
#include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/ddim.h"
......
...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/conv_transpose_op.h" #include "paddle/fluid/operators/conv_transpose_op.h"
#include <string>
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/im2col.h"
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <limits>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
......
...@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h" #include "paddle/fluid/operators/strided_memcpy.h"
......
...@@ -5,5 +5,5 @@ if(WITH_DISTRIBUTE) ...@@ -5,5 +5,5 @@ if(WITH_DISTRIBUTE)
set_source_files_properties(serde_test.cc grpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(serde_test.cc grpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(serde_test SRCS serde_test.cc variable_response.cc DEPS grpc++_unsecure grpc_unsecure gpr cc_test(serde_test SRCS serde_test.cc variable_response.cc DEPS grpc++_unsecure grpc_unsecure gpr
cares zlib protobuf sendrecvop_grpc) cares zlib protobuf sendrecvop_grpc)
cc_test(grpc_server_test SRCS grpc_server_test.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf) cc_test(grpc_server_test SRCS grpc_server_test.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_table_op)
endif() endif()
...@@ -65,9 +65,8 @@ bool RPCClient::AsyncSendVariable(const std::string& ep, ...@@ -65,9 +65,8 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
} }
void ProcGetResponse(const VarHandle& var_h, void ProcGetResponse(const VarHandle& var_h,
// const sendrecv::VariableMessage& ret_msg) {
const ::grpc::ByteBuffer& ret_msg) { const ::grpc::ByteBuffer& ret_msg) {
framework::Variable* outvar = NULL; framework::Variable* outvar = nullptr;
DeserializeFromByteBuffer(ret_msg, *var_h.ctx, var_h.scope, &outvar); DeserializeFromByteBuffer(ret_msg, *var_h.ctx, var_h.scope, &outvar);
} }
...@@ -138,7 +137,7 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep, ...@@ -138,7 +137,7 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep,
auto* var = p_scope->FindVar(in_var_name_val); auto* var = p_scope->FindVar(in_var_name_val);
::grpc::ByteBuffer req; ::grpc::ByteBuffer req;
SerializeToByteBuffer(in_var_name_val, var, *p_ctx, &req); SerializeToByteBuffer(in_var_name_val, var, *p_ctx, &req, out_var_name_val);
// var handle // var handle
VarHandle var_h; VarHandle var_h;
......
...@@ -138,39 +138,48 @@ class RequestPrefetch final : public RequestBase { ...@@ -138,39 +138,48 @@ class RequestPrefetch final : public RequestBase {
framework::Scope* scope, framework::Scope* scope,
const platform::DeviceContext* dev_ctx, const platform::DeviceContext* dev_ctx,
framework::Executor* executor, framework::Executor* executor,
framework::ProgramDesc* program, int blkid) framework::ProgramDesc* program,
framework::ExecutorPrepareContext* prefetch_ctx)
: RequestBase(service, cq, dev_ctx), : RequestBase(service, cq, dev_ctx),
responder_(&ctx_), responder_(&ctx_),
scope_(scope), scope_(scope),
executor_(executor), executor_(executor),
program_(program), program_(program),
blkid_(blkid) { prefetch_ctx_(prefetch_ctx) {
request_.reset(new VariableResponse(scope, dev_ctx_));
int method_id = static_cast<int>(detail::GrpcMethod::kPrefetchVariable); int method_id = static_cast<int>(detail::GrpcMethod::kPrefetchVariable);
service_->RequestAsyncUnary(method_id, &ctx_, &request_, &responder_, cq_, service_->RequestAsyncUnary(method_id, &ctx_, request_.get(), &responder_,
cq_, this); cq_, cq_, this);
} }
virtual ~RequestPrefetch() {} virtual ~RequestPrefetch() {}
virtual std::string GetReqName() { return request_.varname(); } virtual std::string GetReqName() { return request_->Varname(); }
virtual void Process() { virtual void Process() {
// prefetch process... // prefetch process...
::grpc::ByteBuffer reply; ::grpc::ByteBuffer reply;
// TODO(Yancey1989): execute the Block which containers prefetch ops
VLOG(3) << "RequestPrefetch Process in"; std::string var_name = request_->OutVarname();
auto var_desc = program_->Block(0).FindVar(var_name);
framework::Scope* local_scope = &scope_->NewScope();
auto* var = local_scope->FindVar(var_name);
InitializeVariable(var, var_desc->GetType());
executor_->RunPreparedContext(prefetch_ctx_, scope_, false, false);
SerializeToByteBuffer(var_name, var, *dev_ctx_, &reply);
responder_.Finish(reply, ::grpc::Status::OK, this); responder_.Finish(reply, ::grpc::Status::OK, this);
status_ = FINISH; status_ = FINISH;
} }
protected: protected:
sendrecv::VariableMessage request_; std::shared_ptr<VariableResponse> request_;
ServerAsyncResponseWriter<::grpc::ByteBuffer> responder_; ServerAsyncResponseWriter<::grpc::ByteBuffer> responder_;
framework::Scope* scope_; framework::Scope* scope_;
framework::Executor* executor_; framework::Executor* executor_;
framework::ProgramDesc* program_; framework::ProgramDesc* program_;
framework::ExecutorPrepareContext* prefetch_ctx_;
int blkid_; int blkid_;
}; };
...@@ -268,7 +277,7 @@ void AsyncGRPCServer::TryToRegisterNewPrefetchOne() { ...@@ -268,7 +277,7 @@ void AsyncGRPCServer::TryToRegisterNewPrefetchOne() {
} }
RequestPrefetch* prefetch = RequestPrefetch* prefetch =
new RequestPrefetch(&service_, cq_prefetch_.get(), scope_, dev_ctx_, new RequestPrefetch(&service_, cq_prefetch_.get(), scope_, dev_ctx_,
executor_, program_, prefetch_blk_id_); executor_, program_, prefetch_ctx_);
VLOG(4) << "Create RequestPrefetch status:" << prefetch->Status(); VLOG(4) << "Create RequestPrefetch status:" << prefetch->Status();
} }
......
...@@ -63,6 +63,10 @@ class AsyncGRPCServer final { ...@@ -63,6 +63,10 @@ class AsyncGRPCServer final {
void SetExecutor(framework::Executor *executor) { executor_ = executor; } void SetExecutor(framework::Executor *executor) { executor_ = executor; }
void SetPrefetchPreparedCtx(framework::ExecutorPrepareContext *prepared) {
prefetch_ctx_ = prepared;
}
int GetSelectedPort() { return selected_port_; } int GetSelectedPort() { return selected_port_; }
const ReceivedMessage Get() { return this->var_recv_queue_.Pop(); } const ReceivedMessage Get() { return this->var_recv_queue_.Pop(); }
...@@ -111,6 +115,7 @@ class AsyncGRPCServer final { ...@@ -111,6 +115,7 @@ class AsyncGRPCServer final {
std::unique_ptr<std::thread> t_prefetch_; std::unique_ptr<std::thread> t_prefetch_;
int prefetch_blk_id_; int prefetch_blk_id_;
framework::ExecutorPrepareContext *prefetch_ctx_;
framework::ProgramDesc *program_; framework::ProgramDesc *program_;
framework::Executor *executor_; framework::Executor *executor_;
int selected_port_; int selected_port_;
......
...@@ -20,43 +20,121 @@ limitations under the License. */ ...@@ -20,43 +20,121 @@ limitations under the License. */
#include "paddle/fluid/operators/detail/grpc_client.h" #include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/detail/grpc_server.h" #include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace framework = paddle::framework; namespace framework = paddle::framework;
namespace platform = paddle::platform; namespace platform = paddle::platform;
namespace detail = paddle::operators::detail; namespace detail = paddle::operators::detail;
USE_OP(lookup_table);
std::unique_ptr<detail::AsyncGRPCServer> rpc_service_; std::unique_ptr<detail::AsyncGRPCServer> rpc_service_;
framework::BlockDesc* AppendPrefetchBlcok(framework::ProgramDesc* program) {
auto root_block = program->MutableBlock(0);
auto* block = program->AppendBlock(*root_block);
framework::VariableNameMap input({{"W", {"w"}}, {"Ids", {"ids"}}});
framework::VariableNameMap output({{"Output", {"out"}}});
auto op = block->AppendOp();
op->SetType("lookup_table");
op->SetInput("W", {"w"});
op->SetInput("Ids", {"ids"});
op->SetOutput("Out", {"out"});
auto& out = *root_block->Var("out");
out.SetType(framework::proto::VarType::SELECTED_ROWS);
out.SetShape({10, 10});
return block;
}
void CreateVarsOnScope(framework::Scope* scope, platform::CPUPlace* place) {
auto w_var = scope->Var("w");
w_var->GetMutable<framework::SelectedRows>();
auto out_var = scope->Var("out");
out_var->GetMutable<framework::SelectedRows>();
auto ids_var = scope->Var("ids");
ids_var->GetMutable<framework::SelectedRows>();
}
void InitTensorsOnClient(framework::Scope* scope, platform::CPUPlace* place,
int64_t rows_numel) {
CreateVarsOnScope(scope, place);
auto ids_var = scope->Var("ids")->GetMutable<framework::SelectedRows>();
auto rows = ids_var->mutable_rows();
for (int64_t i = 0; i < rows_numel; ++i) rows->push_back(i * 2);
ids_var->mutable_value()->Resize({rows_numel, 1});
ids_var->mutable_value()->mutable_data<float>(*place);
}
void InitTensorsOnServer(framework::Scope* scope, platform::CPUPlace* place,
int64_t rows_numel) {
CreateVarsOnScope(scope, place);
auto w = scope->Var("w")->GetMutable<framework::SelectedRows>();
auto rows = w->mutable_rows();
for (int64_t i = 0; i < rows_numel; ++i) rows->push_back(i);
auto w_value = w->mutable_value();
w_value->Resize({rows_numel, 10});
auto ptr = w_value->mutable_data<float>(*place);
for (int64_t i = 0; i < w_value->numel(); ++i) {
ptr[i] = static_cast<float>(i / 10);
}
}
void StartServer(const std::string& endpoint) { void StartServer(const std::string& endpoint) {
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint)); rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
framework::ProgramDesc program;
framework::Scope scope;
platform::CPUPlace place;
framework::Executor exe(place);
platform::CPUDeviceContext ctx(place);
auto* block = AppendPrefetchBlcok(&program);
auto prepared = exe.Prepare(program, block->ID());
InitTensorsOnServer(&scope, &place, 10);
rpc_service_->SetProgram(&program);
rpc_service_->SetPrefetchPreparedCtx(prepared.get());
rpc_service_->SetDevCtx(&ctx);
rpc_service_->SetScope(&scope);
rpc_service_->SetExecutor(&exe);
rpc_service_->RunSyncUpdate(); rpc_service_->RunSyncUpdate();
} }
TEST(PREFETCH, CPU) { TEST(PREFETCH, CPU) {
// start up a server instance backend // start up a server instance backend
// TODO(Yancey1989): Need to start a server with optimize blocks and
// prefetch blocks.
std::thread server_thread(StartServer, "127.0.0.1:8889"); std::thread server_thread(StartServer, "127.0.0.1:8889");
sleep(2);
framework::Scope scope; framework::Scope scope;
platform::CPUPlace place; platform::CPUPlace place;
platform::CPUDeviceContext ctx(place); platform::CPUDeviceContext ctx(place);
// create var on local scope // create var on local scope
std::string in_var_name("in"); int64_t rows_numel = 5;
InitTensorsOnClient(&scope, &place, rows_numel);
std::string in_var_name("ids");
std::string out_var_name("out"); std::string out_var_name("out");
auto* in_var = scope.Var(in_var_name);
auto* in_tensor = in_var->GetMutable<framework::LoDTensor>();
in_tensor->Resize({10, 10});
VLOG(3) << "before mutable_data";
in_tensor->mutable_data<int>(place);
scope.Var(out_var_name);
VLOG(3) << "before fetch";
detail::RPCClient client; detail::RPCClient client;
client.AsyncPrefetchVariable("127.0.0.1:8889", ctx, scope, in_var_name, client.AsyncPrefetchVariable("127.0.0.1:8889", ctx, scope, in_var_name,
out_var_name); out_var_name);
client.Wait(); client.Wait();
auto var = scope.Var(out_var_name);
auto value = var->GetMutable<framework::SelectedRows>()->value();
auto ptr = value.mutable_data<float>(place);
rpc_service_->ShutDown(); rpc_service_->ShutDown();
server_thread.join(); server_thread.join();
rpc_service_.reset(nullptr); rpc_service_.reset(nullptr);
for (int64_t i = 0; i < rows_numel; ++i) {
EXPECT_EQ(ptr[0 + i * value.dims()[1]], static_cast<float>(i * 2));
}
} }
...@@ -21,7 +21,7 @@ service SendRecvService { ...@@ -21,7 +21,7 @@ service SendRecvService {
rpc SendVariable(VariableMessage) returns (VoidMessage) {} rpc SendVariable(VariableMessage) returns (VoidMessage) {}
// Argument VariableMessage for GetVariable should only contain varname. // Argument VariableMessage for GetVariable should only contain varname.
rpc GetVariable(VariableMessage) returns (VariableMessage) {} rpc GetVariable(VariableMessage) returns (VariableMessage) {}
// Prefetch variable by Ids // pre-fetch variable by given variable name and Ids
rpc PrefetchVariable(VariableMessage) returns (VariableMessage) {} rpc PrefetchVariable(VariableMessage) returns (VariableMessage) {}
} }
...@@ -67,6 +67,8 @@ message VariableMessage { ...@@ -67,6 +67,8 @@ message VariableMessage {
bytes serialized = 8; bytes serialized = 8;
// selected_rows data // selected_rows data
bytes rows = 9; bytes rows = 9;
// Look up table block execution output variable name.
string out_varname = 10;
} }
message VoidMessage {} message VoidMessage {}
...@@ -30,11 +30,9 @@ namespace detail { ...@@ -30,11 +30,9 @@ namespace detail {
void SerializeToByteBuffer(const std::string& name, framework::Variable* var, void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
const platform::DeviceContext& ctx, const platform::DeviceContext& ctx,
::grpc::ByteBuffer* msg) { ::grpc::ByteBuffer* msg,
const std::string& out_name) {
using VarMsg = sendrecv::VariableMessage; using VarMsg = sendrecv::VariableMessage;
sendrecv::VariableMessage request;
std::string header;
request.AppendToString(&header);
// When using GPU, need to free the copied CPU buffer // When using GPU, need to free the copied CPU buffer
// when the ByteBuffer destroies // when the ByteBuffer destroies
// TODO(typhoonzero): add unref here, if we have dependent // TODO(typhoonzero): add unref here, if we have dependent
...@@ -52,6 +50,9 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, ...@@ -52,6 +50,9 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
e.WriteUint64(VarMsg::kTypeFieldNumber, 1); e.WriteUint64(VarMsg::kTypeFieldNumber, 1);
} }
if (!out_name.empty()) {
e.WriteString(VarMsg::kOutVarnameFieldNumber, out_name);
}
switch (framework::ToVarType(var->Type())) { switch (framework::ToVarType(var->Type())) {
case framework::proto::VarType_Type_LOD_TENSOR: { case framework::proto::VarType_Type_LOD_TENSOR: {
auto tensor = var->Get<framework::LoDTensor>(); auto tensor = var->Get<framework::LoDTensor>();
......
...@@ -46,7 +46,8 @@ typedef void (*DestroyCallback)(void*); ...@@ -46,7 +46,8 @@ typedef void (*DestroyCallback)(void*);
void SerializeToByteBuffer(const std::string& name, framework::Variable* var, void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
const platform::DeviceContext& ctx, const platform::DeviceContext& ctx,
::grpc::ByteBuffer* msg); ::grpc::ByteBuffer* msg,
const std::string& out_varname = std::string());
void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg, void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
const platform::DeviceContext& ctx, const platform::DeviceContext& ctx,
......
...@@ -107,7 +107,7 @@ void RunSerdeTestSelectedRows(platform::Place place) { ...@@ -107,7 +107,7 @@ void RunSerdeTestSelectedRows(platform::Place place) {
for (int i = 0; i < tensor_numel; ++i) { for (int i = 0; i < tensor_numel; ++i) {
EXPECT_FLOAT_EQ(tensor_data2[i], 32.7); EXPECT_FLOAT_EQ(tensor_data2[i], 32.7);
} }
for (int64_t i = 0; i < rows2->size(); ++i) { for (size_t i = 0; i < rows2->size(); ++i) {
EXPECT_EQ(rows_data2[i], i); EXPECT_EQ(rows_data2[i], i);
} }
EXPECT_EQ(slr2->height(), 1000); EXPECT_EQ(slr2->height(), 1000);
......
...@@ -416,6 +416,20 @@ int VariableResponse::Parse(Source* source) { ...@@ -416,6 +416,20 @@ int VariableResponse::Parse(Source* source) {
} }
break; break;
} }
case sendrecv::VariableMessage::kOutVarnameFieldNumber: {
uint32_t length;
if ((wt != WIRETYPE_LENGTH_DELIMITED) || !input.ReadVarint32(&length)) {
return tag;
}
std::string temp;
if (!input.ReadString(&temp, length)) {
return tag;
}
meta_.set_out_varname(temp);
break;
}
default: { default: {
// Unknown tag, return unknown error. // Unknown tag, return unknown error.
......
...@@ -55,6 +55,7 @@ class VariableResponse { ...@@ -55,6 +55,7 @@ class VariableResponse {
int Parse(const ::grpc::ByteBuffer& byte_buffer); int Parse(const ::grpc::ByteBuffer& byte_buffer);
inline std::string Varname() { return meta_.varname(); } inline std::string Varname() { return meta_.varname(); }
inline std::string OutVarname() { return meta_.out_varname(); }
// should call parse first. // should call parse first.
framework::Variable* GetVar() { return scope_->FindVar(meta_.varname()); } framework::Variable* GetVar() { return scope_->FindVar(meta_.varname()); }
......
...@@ -13,14 +13,15 @@ See the License for the specific language governing permissions and ...@@ -13,14 +13,15 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h" #include "paddle/fluid/platform/transform.h"
#ifdef __NVCC__ #ifdef __NVCC__
#include <cuda.h>
#include <thrust/iterator/iterator_adaptor.h> #include <thrust/iterator/iterator_adaptor.h>
#include "paddle/fluid/platform/cuda_helper.h"
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024; constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
#endif #endif
...@@ -43,35 +44,35 @@ namespace operators { ...@@ -43,35 +44,35 @@ namespace operators {
*/ */
inline void get_mid_dims(const framework::DDim& x_dims, inline void get_mid_dims(const framework::DDim& x_dims,
const framework::DDim& y_dims, const int axis, const framework::DDim& y_dims, const int axis,
int& pre, int& n, int& post) { int* pre, int* n, int* post) {
pre = 1; *pre = 1;
n = 1; *n = 1;
post = 1; *post = 1;
for (int i = 0; i < axis; ++i) { for (int i = 0; i < axis; ++i) {
pre *= x_dims[i]; (*pre) *= x_dims[i];
} }
for (int i = 0; i < y_dims.size(); ++i) { for (int i = 0; i < y_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i], PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
"Broadcast dimension mismatch."); "Broadcast dimension mismatch.");
n *= y_dims[i]; (*n) *= y_dims[i];
} }
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) { for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
post *= x_dims[i]; (*post) *= x_dims[i];
} }
} }
inline void trim_trailing_singular_dims(framework::DDim& dims) { inline void trim_trailing_singular_dims(framework::DDim* dims) {
// Remove trailing dimensions of size 1 for y // Remove trailing dimensions of size 1 for y
auto actual_dims_size = dims.size(); auto actual_dims_size = dims->size();
for (; actual_dims_size != 0; --actual_dims_size) { for (; actual_dims_size != 0; --actual_dims_size) {
if (dims[actual_dims_size - 1] != 1) break; if ((*dims)[actual_dims_size - 1] != 1) break;
} }
if (actual_dims_size != dims.size()) { if (actual_dims_size != dims->size()) {
auto actual_dims = framework::vectorize(dims); auto actual_dims = framework::vectorize(*dims);
actual_dims.resize(actual_dims_size); actual_dims.resize(actual_dims_size);
dims = framework::make_ddim(actual_dims); *dims = framework::make_ddim(actual_dims);
} }
} }
...@@ -159,7 +160,7 @@ class RowwiseTransformIterator<T, platform::CUDADeviceContext> ...@@ -159,7 +160,7 @@ class RowwiseTransformIterator<T, platform::CUDADeviceContext>
RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
super_t; super_t;
HOSTDEVICE RowwiseTransformIterator(const T* x, int n) HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
: super_t(x), begin_(x), n_(n){}; : super_t(x), begin_(x), n_(n) {}
friend class thrust::iterator_core_access; friend class thrust::iterator_core_access;
private: private:
...@@ -179,7 +180,7 @@ class MidWiseTransformIterator<T, platform::CUDADeviceContext> ...@@ -179,7 +180,7 @@ class MidWiseTransformIterator<T, platform::CUDADeviceContext>
MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
super_t; super_t;
HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post) HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
: super_t(x), begin_(x), n_(n), post_(post){}; : super_t(x), begin_(x), n_(n), post_(post) {}
friend class thrust::iterator_core_access; friend class thrust::iterator_core_access;
private: private:
...@@ -333,6 +334,55 @@ static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out, ...@@ -333,6 +334,55 @@ static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
} }
} }
#ifdef __NVCC__ #ifdef __NVCC__
// __shfl_down has been deprecated as of CUDA 9.0.
#if CUDA_VERSION < 9000
template <typename T>
__forceinline__ __device__ T __shfl_down_sync(unsigned, T val, int delta) {
return __shfl_down(val, delta);
}
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif
template <typename T>
__device__ T reduceSum(T val, int tid, int len) {
// TODO(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
__shared__ T shm[32];
const int warpSize = 32;
unsigned mask = 0u;
CREATE_SHFL_MASK(mask, tid < len);
for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += __shfl_down_sync(mask, val, offset);
if (tid < warpSize) shm[tid] = 0;
__syncthreads();
if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
}
CREATE_SHFL_MASK(mask, tid < warpSize);
if (tid < warpSize) {
val = shm[tid];
for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += __shfl_down_sync(mask, val, offset);
}
return val;
}
template <typename T, typename DX_OP, typename DY_OP> template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel( static __global__ void ElemwiseGradBroadcast1CUDAKernel(
const T* x, const T* y, const T* out, const T* dout, int h, int w, const T* x, const T* y, const T* out, const T* dout, int h, int w,
...@@ -355,7 +405,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel( ...@@ -355,7 +405,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel(
if (dy) { if (dy) {
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h; h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
val = platform::reduceSum(val, tid, h); val = reduceSum(val, tid, h);
if (threadIdx.x == 0) { if (threadIdx.x == 0) {
dy[j] = val; dy[j] = val;
} }
...@@ -432,7 +482,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel( ...@@ -432,7 +482,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel(
if (dy) { if (dy) {
int h = pre * post; int h = pre * post;
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h; h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
val = platform::reduceSum(val, tid, h); val = reduceSum(val, tid, h);
if (threadIdx.x == 0) { if (threadIdx.x == 0) {
dy[j] = val; dy[j] = val;
} }
...@@ -472,11 +522,11 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx, ...@@ -472,11 +522,11 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
auto y_dim = y.dims(); auto y_dim = y.dims();
axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis); axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis);
trim_trailing_singular_dims(y_dim); trim_trailing_singular_dims(&y_dim);
axis = (y_dim.size() == 0) ? x_dim.size() : axis; axis = (y_dim.size() == 0) ? x_dim.size() : axis;
int pre, n, post; int pre, n, post;
get_mid_dims(x_dim, y_dim, axis, pre, n, post); get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
if (post == 1) { if (post == 1) {
int h = pre; int h = pre;
int w = n; int w = n;
...@@ -514,7 +564,7 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx, ...@@ -514,7 +564,7 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
} }
} }
} }
}; }
template <typename DeviceContext, typename T, typename functor, template <typename DeviceContext, typename T, typename functor,
typename broadcastfunctor, typename broadcast2functor> typename broadcastfunctor, typename broadcast2functor>
...@@ -543,11 +593,11 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx, ...@@ -543,11 +593,11 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
} }
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
trim_trailing_singular_dims(y_dims); trim_trailing_singular_dims(&y_dims);
axis = (y_dims.size() == 0) ? x_dims.size() : axis; axis = (y_dims.size() == 0) ? x_dims.size() : axis;
int pre, n, post; int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post); get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
if (post == 1) { if (post == 1) {
broadcastfunctor f; broadcastfunctor f;
...@@ -582,11 +632,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx, ...@@ -582,11 +632,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)"); "Axis should be in range [0, x_dims)");
trim_trailing_singular_dims(y_dims); trim_trailing_singular_dims(&y_dims);
axis = (y_dims.size() == 0) ? x_dims.size() : axis; axis = (y_dims.size() == 0) ? x_dims.size() : axis;
int pre, n, post; int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post); get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
if (post == 1) { if (post == 1) {
functor.RunRowWise(n, pre); functor.RunRowWise(n, pre);
return; return;
......
...@@ -56,11 +56,11 @@ class GoOp : public framework::OperatorBase { ...@@ -56,11 +56,11 @@ class GoOp : public framework::OperatorBase {
// TODO(varunarora): Consider moving this root scope lookup to scope.h. // TODO(varunarora): Consider moving this root scope lookup to scope.h.
const framework::Scope *root_scope = &scope; const framework::Scope *root_scope = &scope;
const framework::Scope *parent_scope = &(root_scope->parent()); const framework::Scope *parent_scope = root_scope->parent();
while (parent_scope != nullptr) { while (parent_scope != nullptr) {
root_scope = parent_scope; root_scope = parent_scope;
parent_scope = &(parent_scope->parent()); parent_scope = parent_scope->parent();
} }
framework::BlockDesc *block = Attr<framework::BlockDesc *>(kBlock); framework::BlockDesc *block = Attr<framework::BlockDesc *>(kBlock);
......
...@@ -14,6 +14,8 @@ limitations under the License. */ ...@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once #pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
...@@ -35,7 +37,7 @@ class LoDResetKernel : public framework::OpKernel<T> { ...@@ -35,7 +37,7 @@ class LoDResetKernel : public framework::OpKernel<T> {
if (lod_t->lod().size() > 0) { if (lod_t->lod().size() > 0) {
auto y_lod = lod_t->lod(); auto y_lod = lod_t->lod();
auto last_level = y_lod[y_lod.size() - 1]; auto last_level = y_lod[y_lod.size() - 1];
PADDLE_ENFORCE_EQ(last_level.back(), in->dims()[0], PADDLE_ENFORCE_EQ((int64_t)(last_level.back()), in->dims()[0],
"Last value of `Y`'s last level LoD should be equal " "Last value of `Y`'s last level LoD should be equal "
"to the first dimension of `X`"); "to the first dimension of `X`");
out->set_lod(y_lod); out->set_lod(y_lod);
......
...@@ -39,13 +39,14 @@ void gemm<platform::CUDADeviceContext, float16>( ...@@ -39,13 +39,14 @@ void gemm<platform::CUDADeviceContext, float16>(
cublasOperation_t cuTransB = cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
float h_alpha = static_cast<float>(alpha);
float h_beta = static_cast<float>(beta);
// TODO(kexinzhao): add processing code for compute capability < 53 case // TODO(kexinzhao): add processing code for compute capability < 53 case
PADDLE_ENFORCE_GE(context.GetComputeCapability(), 53, PADDLE_ENFORCE_GE(context.GetComputeCapability(), 53,
"cublas fp16 gemm requires GPU compute capability >= 53"); "cublas fp16 gemm requires GPU compute capability >= 53");
#if CUDA_VERSION >= 8000
float h_alpha = static_cast<float>(alpha);
float h_beta = static_cast<float>(beta);
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT; cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT;
#if CUDA_VERSION >= 9000 #if CUDA_VERSION >= 9000
if (context.GetComputeCapability() >= 70) { if (context.GetComputeCapability() >= 70) {
...@@ -56,7 +57,7 @@ void gemm<platform::CUDADeviceContext, float16>( ...@@ -56,7 +57,7 @@ void gemm<platform::CUDADeviceContext, float16>(
PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(context.cublas_handle(), PADDLE_ENFORCE(platform::dynload::cublasSetMathMode(context.cublas_handle(),
CUBLAS_DEFAULT_MATH)); CUBLAS_DEFAULT_MATH));
} }
#endif #endif // CUDA_VERSION >= 9000
// cublasHgemm does true FP16 computation which is slow for non-Volta // cublasHgemm does true FP16 computation which is slow for non-Volta
// GPUs. So use cublasGemmEx instead which does pesudo FP16 computation: // GPUs. So use cublasGemmEx instead which does pesudo FP16 computation:
...@@ -66,6 +67,18 @@ void gemm<platform::CUDADeviceContext, float16>( ...@@ -66,6 +67,18 @@ void gemm<platform::CUDADeviceContext, float16>(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B, context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, B,
CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N, CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &h_beta, C, CUDA_R_16F, N,
CUDA_R_32F, algo)); CUDA_R_32F, algo));
#else
// CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
const half h_alpha = static_cast<const half>(alpha);
const half h_beta = static_cast<const half>(beta);
const half* h_A = reinterpret_cast<const half*>(A);
const half* h_B = reinterpret_cast<const half*>(B);
half* h_C = reinterpret_cast<half*>(C);
PADDLE_ENFORCE(platform::dynload::cublasHgemm(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, h_B, ldb,
h_A, lda, &h_beta, h_C, N));
#endif // CUDA_VERSION >= 8000
} }
template <> template <>
......
...@@ -66,13 +66,7 @@ class ReadOp : public framework::OperatorBase { ...@@ -66,13 +66,7 @@ class ReadOp : public framework::OperatorBase {
std::vector<std::string> out_arg_names = Outputs("Out"); std::vector<std::string> out_arg_names = Outputs("Out");
std::vector<framework::LoDTensor> ins; std::vector<framework::LoDTensor> ins;
reader->ReadNext(&ins); reader->ReadNext(&ins);
if (ins.empty()) { PADDLE_ENFORCE(!ins.empty(), "There is no next data.");
reader->ReInit();
reader->ReadNext(&ins);
PADDLE_ENFORCE(
!ins.empty(),
"Reader can not read the next data even it has been re-initialized.");
}
PADDLE_ENFORCE_EQ(ins.size(), out_arg_names.size()); PADDLE_ENFORCE_EQ(ins.size(), out_arg_names.size());
for (size_t i = 0; i < ins.size(); ++i) { for (size_t i = 0; i < ins.size(); ++i) {
auto* out = auto* out =
......
...@@ -22,5 +22,6 @@ reader_library(create_batch_reader_op SRCS create_batch_reader_op.cc) ...@@ -22,5 +22,6 @@ reader_library(create_batch_reader_op SRCS create_batch_reader_op.cc)
reader_library(create_recordio_file_reader_op SRCS create_recordio_file_reader_op.cc) reader_library(create_recordio_file_reader_op SRCS create_recordio_file_reader_op.cc)
reader_library(create_double_buffer_reader_op SRCS create_double_buffer_reader_op.cc) reader_library(create_double_buffer_reader_op SRCS create_double_buffer_reader_op.cc)
reader_library(create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc) reader_library(create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc)
reader_library(create_threaded_reader_op SRCS create_threaded_reader_op.cc)
# Export local libraries to parent # Export local libraries to parent
set(READER_LIBRARY ${LOCAL_READER_LIBS} PARENT_SCOPE) set(READER_LIBRARY ${LOCAL_READER_LIBS} PARENT_SCOPE)
...@@ -63,13 +63,14 @@ class DoubleBufferReader : public framework::DecoratedReader { ...@@ -63,13 +63,14 @@ class DoubleBufferReader : public framework::DecoratedReader {
StartPrefetcher(); StartPrefetcher();
} }
bool HasNext() const override;
void ReadNext(std::vector<framework::LoDTensor>* out) override; void ReadNext(std::vector<framework::LoDTensor>* out) override;
void ReInit() override; void ReInit() override;
~DoubleBufferReader() { EndPrefetcher(); } ~DoubleBufferReader() { EndPrefetcher(); }
private: private:
bool HasNext() const;
void StartPrefetcher() { void StartPrefetcher() {
channel_ = framework::MakeChannel<Item>(kChannelSize); channel_ = framework::MakeChannel<Item>(kChannelSize);
prefetcher_ = std::thread([this] { PrefetchThreadFunc(); }); prefetcher_ = std::thread([this] { PrefetchThreadFunc(); });
...@@ -109,7 +110,9 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase { ...@@ -109,7 +110,9 @@ class CreateDoubleBufferReaderOp : public framework::OperatorBase {
auto place_str = Attr<std::string>("place"); auto place_str = Attr<std::string>("place");
platform::Place place; platform::Place place;
if (place_str == "CPU") { if (place_str == "AUTO") {
place = dev_place;
} else if (place_str == "CPU") {
place = platform::CPUPlace(); place = platform::CPUPlace();
} else { } else {
std::istringstream sin(place_str); std::istringstream sin(place_str);
...@@ -140,28 +143,22 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase { ...@@ -140,28 +143,22 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase {
enum_range.insert(string::Sprintf("CUDA:%d", i)); enum_range.insert(string::Sprintf("CUDA:%d", i));
} }
enum_range.insert("CPU"); enum_range.insert("CPU");
AddAttr<std::string>("place", "The double buffer place, default is CPU") enum_range.insert("AUTO");
.SetDefault("CPU") AddAttr<std::string>("place", "The double buffer place")
.SetDefault("AUTO")
.InEnum({enum_range}); .InEnum({enum_range});
} }
}; };
bool DoubleBufferReader::HasNext() const {
while (!channel_->IsClosed() && !channel_->CanReceive()) {
}
return channel_->CanReceive();
}
void DoubleBufferReader::ReadNext(std::vector<framework::LoDTensor>* out) { void DoubleBufferReader::ReadNext(std::vector<framework::LoDTensor>* out) {
if (!HasNext()) { out->clear();
PADDLE_THROW("There is no next data!"); if (HasNext()) {
} Item batch;
channel_->Receive(&batch);
Item batch; *out = batch.payloads_;
channel_->Receive(&batch); if (batch.ctx_) {
*out = batch.payloads_; batch.ctx_->Wait();
if (batch.ctx_) { }
batch.ctx_->Wait();
} }
} }
...@@ -171,16 +168,26 @@ void DoubleBufferReader::ReInit() { ...@@ -171,16 +168,26 @@ void DoubleBufferReader::ReInit() {
StartPrefetcher(); StartPrefetcher();
} }
bool DoubleBufferReader::HasNext() const {
while (!channel_->IsClosed() && !channel_->CanReceive()) {
}
return channel_->CanReceive();
}
void DoubleBufferReader::PrefetchThreadFunc() { void DoubleBufferReader::PrefetchThreadFunc() {
VLOG(5) << "A new prefetch thread starts."; VLOG(5) << "A new prefetch thread starts.";
std::vector<std::vector<framework::LoDTensor>> cpu_tensor_cache(kCacheSize); std::vector<std::vector<framework::LoDTensor>> cpu_tensor_cache(kCacheSize);
std::vector<std::vector<framework::LoDTensor>> gpu_tensor_cache(kCacheSize); std::vector<std::vector<framework::LoDTensor>> gpu_tensor_cache(kCacheSize);
size_t cached_tensor_id = 0; size_t cached_tensor_id = 0;
while (reader_->HasNext()) { while (true) {
Item batch; Item batch;
auto& cpu_batch = cpu_tensor_cache[cached_tensor_id]; auto& cpu_batch = cpu_tensor_cache[cached_tensor_id];
reader_->ReadNext(&cpu_batch); reader_->ReadNext(&cpu_batch);
if (cpu_batch.empty()) {
// The underlying reader have no next data.
break;
}
if (platform::is_gpu_place(place_)) { if (platform::is_gpu_place(place_)) {
auto& gpu_batch = gpu_tensor_cache[cached_tensor_id]; auto& gpu_batch = gpu_tensor_cache[cached_tensor_id];
auto* gpu_ctx = ctxs_[cached_tensor_id].get(); auto* gpu_ctx = ctxs_[cached_tensor_id].get();
......
...@@ -25,22 +25,12 @@ class MultiPassReader : public framework::DecoratedReader { ...@@ -25,22 +25,12 @@ class MultiPassReader : public framework::DecoratedReader {
: DecoratedReader(reader), pass_num_(pass_num), pass_count_(0) {} : DecoratedReader(reader), pass_num_(pass_num), pass_count_(0) {}
void ReadNext(std::vector<framework::LoDTensor>* out) override { void ReadNext(std::vector<framework::LoDTensor>* out) override {
if (!HasNext()) {
PADDLE_THROW("There is no next data!");
}
reader_->ReadNext(out); reader_->ReadNext(out);
} if (out->empty()) {
bool HasNext() const override {
if (reader_->HasNext()) {
return true;
} else {
++pass_count_; ++pass_count_;
if (pass_count_ >= pass_num_) { if (pass_count_ < pass_num_) {
return false;
} else {
reader_->ReInit(); reader_->ReInit();
return true; reader_->ReadNext(out);
} }
} }
} }
......
...@@ -52,8 +52,6 @@ class RandomDataGenerator : public framework::ReaderBase { ...@@ -52,8 +52,6 @@ class RandomDataGenerator : public framework::ReaderBase {
void ReInit() override { return; } void ReInit() override { return; }
bool HasNext() const override { return true; }
private: private:
float min_; float min_;
float max_; float max_;
...@@ -74,7 +72,7 @@ class CreateRandomDataGeneratorOp : public framework::OperatorBase { ...@@ -74,7 +72,7 @@ class CreateRandomDataGeneratorOp : public framework::OperatorBase {
const auto& ranks = Attr<std::vector<int>>("ranks"); const auto& ranks = Attr<std::vector<int>>("ranks");
PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty()); PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty());
PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0), PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0),
int(shape_concat.size()), static_cast<int>(shape_concat.size()),
"The accumulate of all ranks should be equal to the " "The accumulate of all ranks should be equal to the "
"shape concat's length."); "shape concat's length.");
std::vector<framework::DDim> shapes = RestoreShapes(shape_concat, ranks); std::vector<framework::DDim> shapes = RestoreShapes(shape_concat, ranks);
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <mutex>
#include <thread>
#include "paddle/fluid/operators/reader/reader_op_registry.h" #include "paddle/fluid/operators/reader/reader_op_registry.h"
#include "paddle/fluid/recordio/scanner.h" #include "paddle/fluid/recordio/scanner.h"
...@@ -35,17 +33,15 @@ class RecordIOFileReader : public framework::FileReader { ...@@ -35,17 +33,15 @@ class RecordIOFileReader : public framework::FileReader {
LOG(INFO) << "Creating file reader" << filename; LOG(INFO) << "Creating file reader" << filename;
} }
bool HasNext() const override { return scanner_.HasNext(); }
void ReInit() override { scanner_.Reset(); } void ReInit() override { scanner_.Reset(); }
protected: protected:
void ReadNextImpl(std::vector<framework::LoDTensor>* out) override { void ReadNextImpl(std::vector<framework::LoDTensor>* out) override {
if (ThreadSafe) { if (ThreadSafe) {
std::lock_guard<std::mutex> guard(*mutex_); std::lock_guard<std::mutex> guard(*mutex_);
*out = framework::ReadFromRecordIO(scanner_, dev_ctx_); *out = framework::ReadFromRecordIO(&scanner_, dev_ctx_);
} else { } else {
*out = framework::ReadFromRecordIO(scanner_, dev_ctx_); *out = framework::ReadFromRecordIO(&scanner_, dev_ctx_);
} }
} }
...@@ -66,7 +62,7 @@ class CreateRecordIOReaderOp : public framework::OperatorBase { ...@@ -66,7 +62,7 @@ class CreateRecordIOReaderOp : public framework::OperatorBase {
const auto& ranks = Attr<std::vector<int>>("ranks"); const auto& ranks = Attr<std::vector<int>>("ranks");
PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty()); PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty());
PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0), PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0),
int(shape_concat.size()), static_cast<int>(shape_concat.size()),
"The accumulate of all ranks should be equal to the " "The accumulate of all ranks should be equal to the "
"shape concat's length."); "shape concat's length.");
std::string filename = Attr<std::string>("filename"); std::string filename = Attr<std::string>("filename");
......
...@@ -30,35 +30,33 @@ class ShuffleReader : public framework::DecoratedReader { ...@@ -30,35 +30,33 @@ class ShuffleReader : public framework::DecoratedReader {
std::random_device device; std::random_device device;
seed_ = device(); seed_ = device();
} }
ReadIntoBuffers(); ReloadBuffer();
} }
void ReadNext(std::vector<framework::LoDTensor>* out) override { void ReadNext(std::vector<framework::LoDTensor>* out) override {
if (!HasNext()) { out->clear();
PADDLE_THROW("There is no next data!");
}
if (iteration_pos_ >= buffer_.size()) { if (iteration_pos_ >= buffer_.size()) {
VLOG(10) << "Resetting shuffle buffer"; VLOG(10) << "Resetting shuffle buffer";
ReadIntoBuffers(); ReloadBuffer();
if (buffer_.empty()) {
return;
}
} }
*out = buffer_[iteration_pos_++]; *out = buffer_[iteration_pos_++];
} }
bool HasNext() const override {
return iteration_pos_ < buffer_.size() || reader_->HasNext();
}
private: private:
void ReadIntoBuffers() { void ReloadBuffer() {
buffer_.clear(); buffer_.clear();
buffer_.reserve(buffer_size_); buffer_.reserve(buffer_size_);
iteration_pos_ = 0; iteration_pos_ = 0;
for (size_t i = 0; i < buffer_size_; ++i) { for (size_t i = 0; i < buffer_size_; ++i) {
if (!reader_->HasNext()) { std::vector<framework::LoDTensor> ins;
reader_->ReadNext(&ins);
if (ins.empty()) {
break; break;
} }
buffer_.emplace_back(); buffer_.emplace_back(ins);
reader_->ReadNext(&buffer_.back());
} }
std::mt19937 g(seed_); std::mt19937 g(seed_);
std::shuffle(buffer_.begin(), buffer_.end(), g); std::shuffle(buffer_.begin(), buffer_.end(), g);
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace paddle {
namespace operators {
namespace reader {
class ThreadedReader : public framework::DecoratedReader {
public:
ThreadedReader(ReaderBase* reader, bool safe_mode)
: DecoratedReader(reader), safe_mode_(safe_mode) {}
void ReadNext(std::vector<framework::LoDTensor>* out) override {
std::lock_guard<std::mutex> lock(mutex_);
reader_->ReadNext(out);
}
void ReInit() override {
if (safe_mode_) {
PADDLE_THROW(
"ThreadedReader::ReInit() is disabled when 'safe_mode' is true.");
}
VLOG(5) << "ThreadedReader::ReInit() is invoked! It might be buggy in "
"multi-thread environment.";
reader_->ReInit();
}
private:
bool safe_mode_;
std::mutex mutex_;
};
class CreateThreadedReaderOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {
auto* out = detail::Ref(scope.FindVar(Output("Out")))
.GetMutable<framework::ReaderHolder>();
if (out->Get() != nullptr) {
return;
}
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>();
bool safe_mode = Attr<bool>("safe_mode");
out->Reset(new ThreadedReader(underlying_reader.Get(), safe_mode));
}
};
class CreateThreadedReaderOpMaker : public DecoratedReaderMakerBase {
public:
CreateThreadedReaderOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: DecoratedReaderMakerBase(op_proto, op_checker) {
AddAttr<bool>("safe_mode",
"When 'safe_mode' is true, 'ReInit()' is disabled to avoid "
"unexpected bugs in multi-thread environment.")
.SetDefault(true);
AddComment(R"DOC(
CreateThreadedReader Operator
This operator creates a threaded reader. A threaded reader's
'ReadNext()' can be invoked by several threads at the same
time.
When the attribute 'safe_mode' is true, the threaded reader's
'ReInit()' is disabled to avoid unexpected bugs in multi-thread
environment.
)DOC");
}
};
} // namespace reader
} // namespace operators
} // namespace paddle
namespace reader = paddle::operators::reader;
REGISTER_DECORATED_READER_OPERATOR(create_threaded_reader,
reader::CreateThreadedReaderOp,
reader::CreateThreadedReaderOpMaker);
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <thread> // NOLINT
#include "paddle/fluid/framework/channel.h" #include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h" #include "paddle/fluid/operators/reader/reader_op_registry.h"
...@@ -19,38 +21,23 @@ namespace paddle { ...@@ -19,38 +21,23 @@ namespace paddle {
namespace operators { namespace operators {
namespace reader { namespace reader {
class MultipleReader : public framework::ReaderBase { class MultiFileReader : public framework::ReaderBase {
public: public:
class ThreadBufferMap { MultiFileReader(const std::vector<std::string>& file_names,
public: const std::vector<framework::DDim>& dims, size_t thread_num,
std::vector<framework::LoDTensor>& operator[]( size_t buffer_size)
const std::thread::id& thread_id) { : file_names_(file_names), dims_(dims), buffer_size_(buffer_size) {
std::lock_guard<std::mutex> lock(mutex_);
return buffer_[thread_id];
}
void Clear() { buffer_.clear(); }
private:
std::mutex mutex_;
std::unordered_map<std::thread::id, std::vector<framework::LoDTensor>>
buffer_;
};
MultipleReader(const std::vector<std::string>& file_names,
const std::vector<framework::DDim>& dims, size_t thread_num)
: file_names_(file_names), dims_(dims) {
prefetchers_.resize(thread_num); prefetchers_.resize(thread_num);
StartNewScheduler(); StartNewScheduler();
} }
void ReadNext(std::vector<framework::LoDTensor>* out) override; void ReadNext(std::vector<framework::LoDTensor>* out) override;
bool HasNext() const override;
void ReInit() override; void ReInit() override;
~MultipleReader() { EndScheduler(); } ~MultiFileReader() { EndScheduler(); }
private: private:
bool HasNext();
void StartNewScheduler(); void StartNewScheduler();
void EndScheduler(); void EndScheduler();
void ScheduleThreadFunc(); void ScheduleThreadFunc();
...@@ -60,39 +47,36 @@ class MultipleReader : public framework::ReaderBase { ...@@ -60,39 +47,36 @@ class MultipleReader : public framework::ReaderBase {
std::vector<framework::DDim> dims_; std::vector<framework::DDim> dims_;
std::thread scheduler_; std::thread scheduler_;
std::vector<std::thread> prefetchers_; std::vector<std::thread> prefetchers_;
size_t buffer_size_;
framework::Channel<size_t>* waiting_file_idx_; framework::Channel<size_t>* waiting_file_idx_;
framework::Channel<size_t>* available_thread_idx_; framework::Channel<size_t>* available_thread_idx_;
framework::Channel<std::vector<framework::LoDTensor>>* buffer_; framework::Channel<std::vector<framework::LoDTensor>>* buffer_;
mutable ThreadBufferMap thread_buffer_map_;
}; };
void MultipleReader::ReadNext(std::vector<framework::LoDTensor>* out) { void MultiFileReader::ReadNext(std::vector<framework::LoDTensor>* out) {
if (!HasNext()) { out->clear();
PADDLE_THROW("There is no next data!"); if (HasNext()) {
buffer_->Receive(out);
} }
auto& thread_local_buffer = thread_buffer_map_[std::this_thread::get_id()];
*out = thread_local_buffer;
thread_local_buffer.clear();
}
bool MultipleReader::HasNext() const {
auto& thread_local_buffer = thread_buffer_map_[std::this_thread::get_id()];
return thread_local_buffer.empty() ? buffer_->Receive(&thread_local_buffer)
: true;
} }
void MultipleReader::ReInit() { void MultiFileReader::ReInit() {
EndScheduler(); EndScheduler();
thread_buffer_map_.Clear();
StartNewScheduler(); StartNewScheduler();
} }
void MultipleReader::StartNewScheduler() { bool MultiFileReader::HasNext() {
while (!buffer_->IsClosed() && !buffer_->CanReceive()) {
}
return buffer_->CanReceive();
}
void MultiFileReader::StartNewScheduler() {
size_t thread_num = prefetchers_.size(); size_t thread_num = prefetchers_.size();
waiting_file_idx_ = framework::MakeChannel<size_t>(file_names_.size()); waiting_file_idx_ = framework::MakeChannel<size_t>(file_names_.size());
available_thread_idx_ = framework::MakeChannel<size_t>(thread_num); available_thread_idx_ = framework::MakeChannel<size_t>(thread_num);
buffer_ = buffer_ =
framework::MakeChannel<std::vector<framework::LoDTensor>>(thread_num); framework::MakeChannel<std::vector<framework::LoDTensor>>(buffer_size_);
for (size_t i = 0; i < file_names_.size(); ++i) { for (size_t i = 0; i < file_names_.size(); ++i) {
waiting_file_idx_->Send(&i); waiting_file_idx_->Send(&i);
...@@ -105,7 +89,7 @@ void MultipleReader::StartNewScheduler() { ...@@ -105,7 +89,7 @@ void MultipleReader::StartNewScheduler() {
scheduler_ = std::thread([this] { ScheduleThreadFunc(); }); scheduler_ = std::thread([this] { ScheduleThreadFunc(); });
} }
void MultipleReader::EndScheduler() { void MultiFileReader::EndScheduler() {
available_thread_idx_->Close(); available_thread_idx_->Close();
buffer_->Close(); buffer_->Close();
waiting_file_idx_->Close(); waiting_file_idx_->Close();
...@@ -117,8 +101,8 @@ void MultipleReader::EndScheduler() { ...@@ -117,8 +101,8 @@ void MultipleReader::EndScheduler() {
delete waiting_file_idx_; delete waiting_file_idx_;
} }
void MultipleReader::ScheduleThreadFunc() { void MultiFileReader::ScheduleThreadFunc() {
VLOG(5) << "MultipleReader schedule thread starts."; VLOG(5) << "MultiFileReader schedule thread starts.";
size_t completed_thread_num = 0; size_t completed_thread_num = 0;
size_t thread_idx; size_t thread_idx;
while (available_thread_idx_->Receive(&thread_idx)) { while (available_thread_idx_->Receive(&thread_idx)) {
...@@ -150,17 +134,20 @@ void MultipleReader::ScheduleThreadFunc() { ...@@ -150,17 +134,20 @@ void MultipleReader::ScheduleThreadFunc() {
p.join(); p.join();
} }
} }
VLOG(5) << "MultipleReader schedule thread terminates."; VLOG(5) << "MultiFileReader schedule thread terminates.";
} }
void MultipleReader::PrefetchThreadFunc(std::string file_name, void MultiFileReader::PrefetchThreadFunc(std::string file_name,
size_t thread_idx) { size_t thread_idx) {
VLOG(5) << "The prefetch thread of file '" << file_name << "' starts."; VLOG(5) << "The prefetch thread of file '" << file_name << "' starts.";
std::unique_ptr<framework::ReaderBase> reader = std::unique_ptr<framework::ReaderBase> reader =
CreateReaderByFileName(file_name, dims_); CreateReaderByFileName(file_name, dims_);
while (reader->HasNext()) { while (true) {
std::vector<framework::LoDTensor> ins; std::vector<framework::LoDTensor> ins;
reader->ReadNext(&ins); reader->ReadNext(&ins);
if (ins.empty()) {
break;
}
try { try {
buffer_->Send(&ins); buffer_->Send(&ins);
} catch (paddle::platform::EnforceNotMet e) { } catch (paddle::platform::EnforceNotMet e) {
...@@ -197,11 +184,13 @@ class OpenFilesOp : public framework::OperatorBase { ...@@ -197,11 +184,13 @@ class OpenFilesOp : public framework::OperatorBase {
const auto& file_names = Attr<std::vector<std::string>>("file_names"); const auto& file_names = Attr<std::vector<std::string>>("file_names");
PADDLE_ENFORCE(!file_names.empty(), "No file to be read!"); PADDLE_ENFORCE(!file_names.empty(), "No file to be read!");
const size_t thread_num = Attr<int>("thread_num"); const size_t thread_num = Attr<int>("thread_num");
const size_t buffer_size = Attr<int>("buffer_size");
auto* out = scope.FindVar(Output("Out")) auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>(); ->template GetMutable<framework::ReaderHolder>();
out->Reset(new MultipleReader( out->Reset(new MultiFileReader(file_names,
file_names, RestoreShapes(shape_concat, ranks), thread_num)); RestoreShapes(shape_concat, ranks),
thread_num, buffer_size));
} }
}; };
...@@ -212,11 +201,12 @@ class OpenFilesOpMaker : public FileReaderMakerBase { ...@@ -212,11 +201,12 @@ class OpenFilesOpMaker : public FileReaderMakerBase {
AddAttr<std::vector<std::string>>("file_names", "Files to be read."); AddAttr<std::vector<std::string>>("file_names", "Files to be read.");
AddAttr<int>("thread_num", "The maximal concurrent prefetch thread number.") AddAttr<int>("thread_num", "The maximal concurrent prefetch thread number.")
.GreaterThan(0); .GreaterThan(0);
AddAttr<int>("buffer_size", "The size of prefetch buffer.").GreaterThan(0);
AddComment(R"DOC( AddComment(R"DOC(
OpenFiles Operator OpenFiles Operator
An OpenFilesOp creates a MultipleReader, which is able to An OpenFilesOp creates a MultiFileReader, which is able to
read data multi-threaded from multiple files. read data multi-threaded from multiple files.
)DOC"); )DOC");
} }
......
...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/spp_op.h" #include "paddle/fluid/operators/spp_op.h"
#include <string>
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h" #include "paddle/fluid/operators/math/pooling.h"
......
...@@ -10,6 +10,8 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/sum_op.h" #include "paddle/fluid/operators/sum_op.h"
#include <algorithm>
#include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/var_type_inference.h" #include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/detail/safe_ref.h"
......
...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
......
...@@ -15,6 +15,8 @@ limitations under the License. */ ...@@ -15,6 +15,8 @@ limitations under the License. */
#pragma once #pragma once
#include <algorithm> #include <algorithm>
#include <iostream> #include <iostream>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/transpose_op.h" #include "paddle/fluid/operators/transpose_op.h"
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
......
...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/unpool_op.h" #include "paddle/fluid/operators/unpool_op.h"
#include <string>
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -14,6 +14,8 @@ limitations under the License. */ ...@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once #pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/unpooling.h" #include "paddle/fluid/operators/math/unpooling.h"
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_padding.h" #include "paddle/fluid/operators/math/sequence_padding.h"
......
...@@ -42,12 +42,12 @@ ENDIF() ...@@ -42,12 +42,12 @@ ENDIF()
# memcpy depends on device_context, here add deps individually for # memcpy depends on device_context, here add deps individually for
# avoiding cycle dependencies # avoiding cycle dependencies
cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator cc_library(device_context SRCS device_context.cc DEPS malloc
system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS}) place eigen3 ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS})
nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_info) nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_info)
nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda) nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda)
nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context) nv_test(transform_test SRCS transform_test.cu DEPS memory place device_context)
cc_library(device_tracer SRCS device_tracer.cc DEPS boost profiler_proto ${GPU_CTX_DEPS}) cc_library(device_tracer SRCS device_tracer.cc DEPS boost profiler_proto ${GPU_CTX_DEPS})
cc_library(profiler SRCS profiler.cc DEPS device_context device_tracer) cc_library(profiler SRCS profiler.cc DEPS device_context device_tracer)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <mutex>
namespace paddle {
namespace platform {
/*
The current implementation of std::call_once has a bug described in
https://stackoverflow.com/questions/41717579/stdcall-once-hangs-on-second-call-after-callable-threw-on-first-call.
This is likely caused by a deeper bug of pthread_once, which is discussed in
https://patchwork.ozlabs.org/patch/482350/
This wrap is a hack to avoid this bug.
*/
template <typename Callable, typename... Args>
inline void call_once(std::once_flag& flag, Callable&& f, Args&&... args) {
bool good = true;
std::exception ex;
try {
std::call_once(flag,
[&](Args&&... args) {
try {
f(args...);
} catch (const std::exception& e) {
ex = e;
good = false;
} catch (...) {
ex = std::runtime_error("excption caught in call_once");
good = false;
}
},
args...);
} catch (std::system_error& x) {
throw std::runtime_error("call once failed");
}
if (!good) {
throw std::exception(ex);
}
}
} // namespace platform
} // namespace paddle
...@@ -33,22 +33,26 @@ constexpr int PADDLE_CUDA_NUM_THREADS = 512; ...@@ -33,22 +33,26 @@ constexpr int PADDLE_CUDA_NUM_THREADS = 512;
USE_CUDA_ATOMIC(Add, float); USE_CUDA_ATOMIC(Add, float);
USE_CUDA_ATOMIC(Add, int); USE_CUDA_ATOMIC(Add, int);
USE_CUDA_ATOMIC(Add, unsigned int); USE_CUDA_ATOMIC(Add, unsigned int);
USE_CUDA_ATOMIC(Add, unsigned long long int); // CUDA API uses unsigned long long int, we cannot use uint64_t here.
// It because unsigned long long int is not necessarily uint64_t
USE_CUDA_ATOMIC(Add, unsigned long long int); // NOLINT
CUDA_ATOMIC_WRAPPER(Add, int64_t) { CUDA_ATOMIC_WRAPPER(Add, int64_t) {
static_assert(sizeof(int64_t) == sizeof(long long int), // Here, we check long long int must be int64_t.
static_assert(sizeof(int64_t) == sizeof(long long int), // NOLINT
"long long should be int64"); "long long should be int64");
return CudaAtomicAdd(reinterpret_cast<unsigned long long int*>(address), return CudaAtomicAdd(
static_cast<unsigned long long int>(val)); reinterpret_cast<unsigned long long int*>(address), // NOLINT
static_cast<unsigned long long int>(val)); // NOLINT
} }
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600 #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600
USE_CUDA_ATOMIC(Add, double); USE_CUDA_ATOMIC(Add, double);
#else #else
CUDA_ATOMIC_WRAPPER(Add, double) { CUDA_ATOMIC_WRAPPER(Add, double) {
unsigned long long int* address_as_ull = unsigned long long int* address_as_ull = // NOLINT
reinterpret_cast<unsigned long long int*>(address); reinterpret_cast<unsigned long long int*>(address); // NOLINT
unsigned long long int old = *address_as_ull, assumed; unsigned long long int old = *address_as_ull, assumed; // NOLINT
do { do {
assumed = old; assumed = old;
...@@ -62,53 +66,5 @@ CUDA_ATOMIC_WRAPPER(Add, double) { ...@@ -62,53 +66,5 @@ CUDA_ATOMIC_WRAPPER(Add, double) {
} }
#endif #endif
// __shfl_down has been deprecated as of CUDA 9.0.
#if CUDA_VERSION < 9000
template <typename T>
__forceinline__ __device__ T __shfl_down_sync(unsigned, T val, int delta) {
return __shfl_down(val, delta);
}
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif
template <typename T>
__device__ T reduceSum(T val, int tid, int len) {
// TODO(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
__shared__ T shm[32];
const int warpSize = 32;
unsigned mask = 0u;
CREATE_SHFL_MASK(mask, tid < len);
for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += __shfl_down_sync(mask, val, offset);
if (tid < warpSize) shm[tid] = 0;
__syncthreads();
if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
}
CREATE_SHFL_MASK(mask, tid < warpSize);
if (tid < warpSize) {
val = shm[tid];
for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += __shfl_down_sync(mask, val, offset);
}
return val;
}
} // namespace platform } // namespace platform
} // namespace paddle } // namespace paddle
...@@ -8,10 +8,14 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -8,10 +8,14 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
#include <string>
#include <unordered_set> #include <unordered_set>
#include <vector>
#include "paddle/fluid/memory/memory.h" #include "paddle/fluid/memory/memory.h"
namespace paddle { namespace paddle {
namespace platform { namespace platform {
......
...@@ -8,11 +8,12 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -8,11 +8,12 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <memory> #include <memory>
#include <string>
#include <unordered_map> #include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/dynload/cublas.h" #include "paddle/fluid/platform/dynload/cublas.h"
......
...@@ -11,11 +11,12 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,11 +11,12 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "gtest/gtest.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
#include <vector>
#include "glog/logging.h" #include "glog/logging.h"
#include "gtest/gtest.h"
TEST(Device, Init) { TEST(Device, Init) {
using paddle::platform::DeviceContext; using paddle::platform::DeviceContext;
......
...@@ -11,15 +11,19 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,15 +11,19 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/platform/device_tracer.h" #include "paddle/fluid/platform/device_tracer.h"
#include <google/protobuf/text_format.h>
#include <deque>
#include <fstream> #include <fstream>
#include <map> #include <map>
#include <mutex> #include <mutex> // NOLINT
#include <numeric> #include <numeric>
#include <thread> #include <string>
#include <thread> // NOLINT
#include <vector>
#include "glog/logging.h" #include "glog/logging.h"
#include "google/protobuf/text_format.h"
#include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/string/printf.h" #include "paddle/fluid/string/printf.h"
...@@ -123,7 +127,7 @@ void DisableActivity() { ...@@ -123,7 +127,7 @@ void DisableActivity() {
void CUPTIAPI bufferRequested(uint8_t **buffer, size_t *size, void CUPTIAPI bufferRequested(uint8_t **buffer, size_t *size,
size_t *maxNumRecords) { size_t *maxNumRecords) {
uint8_t *buf = (uint8_t *)malloc(kBufSize + kAlignSize); uint8_t *buf = reinterpret_cast<uint8_t *>(malloc(kBufSize + kAlignSize));
*size = kBufSize; *size = kBufSize;
*buffer = ALIGN_BUFFER(buf, kAlignSize); *buffer = ALIGN_BUFFER(buf, kAlignSize);
*maxNumRecords = 0; *maxNumRecords = 0;
......
...@@ -11,8 +11,10 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,8 +11,10 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <string>
#include "paddle/fluid/platform/dynload/cupti.h" #include "paddle/fluid/platform/dynload/cupti.h"
#include "paddle/fluid/platform/profiler.pb.h" #include "paddle/fluid/platform/profiler.pb.h"
......
...@@ -28,6 +28,10 @@ CUBLAS_BLAS_ROUTINE_EACH(DEFINE_WRAP); ...@@ -28,6 +28,10 @@ CUBLAS_BLAS_ROUTINE_EACH(DEFINE_WRAP);
CUBLAS_BLAS_ROUTINE_EACH_R2(DEFINE_WRAP); CUBLAS_BLAS_ROUTINE_EACH_R2(DEFINE_WRAP);
#endif #endif
#ifdef CUBLAS_BLAS_ROUTINE_EACH_R3
CUBLAS_BLAS_ROUTINE_EACH_R3(DEFINE_WRAP);
#endif
} // namespace dynload } // namespace dynload
} // namespace platform } // namespace platform
} // namespace paddle } // namespace paddle
...@@ -71,7 +71,6 @@ extern void *cublas_dso_handle; ...@@ -71,7 +71,6 @@ extern void *cublas_dso_handle;
__macro(cublasDgemm_v2); \ __macro(cublasDgemm_v2); \
__macro(cublasHgemm); \ __macro(cublasHgemm); \
__macro(cublasSgemmEx); \ __macro(cublasSgemmEx); \
__macro(cublasGemmEx); \
__macro(cublasSgeam_v2); \ __macro(cublasSgeam_v2); \
__macro(cublasDgeam_v2); \ __macro(cublasDgeam_v2); \
__macro(cublasCreate_v2); \ __macro(cublasCreate_v2); \
...@@ -83,11 +82,6 @@ extern void *cublas_dso_handle; ...@@ -83,11 +82,6 @@ extern void *cublas_dso_handle;
__macro(cublasDgemmBatched); \ __macro(cublasDgemmBatched); \
__macro(cublasCgemmBatched); \ __macro(cublasCgemmBatched); \
__macro(cublasZgemmBatched); \ __macro(cublasZgemmBatched); \
__macro(cublasSgemmStridedBatched); \
__macro(cublasDgemmStridedBatched); \
__macro(cublasCgemmStridedBatched); \
__macro(cublasZgemmStridedBatched); \
__macro(cublasHgemmStridedBatched); \
__macro(cublasSgetrfBatched); \ __macro(cublasSgetrfBatched); \
__macro(cublasSgetriBatched); \ __macro(cublasSgetriBatched); \
__macro(cublasDgetrfBatched); \ __macro(cublasDgetrfBatched); \
...@@ -95,10 +89,24 @@ extern void *cublas_dso_handle; ...@@ -95,10 +89,24 @@ extern void *cublas_dso_handle;
CUBLAS_BLAS_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP) CUBLAS_BLAS_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
// APIs available after CUDA 8.0
#if CUDA_VERSION >= 8000
#define CUBLAS_BLAS_ROUTINE_EACH_R2(__macro) \
__macro(cublasGemmEx); \
__macro(cublasSgemmStridedBatched); \
__macro(cublasDgemmStridedBatched); \
__macro(cublasCgemmStridedBatched); \
__macro(cublasZgemmStridedBatched); \
__macro(cublasHgemmStridedBatched);
CUBLAS_BLAS_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
#endif
// APIs available after CUDA 9.0 // APIs available after CUDA 9.0
#if CUDA_VERSION >= 9000 #if CUDA_VERSION >= 9000
#define CUBLAS_BLAS_ROUTINE_EACH_R2(__macro) __macro(cublasSetMathMode); #define CUBLAS_BLAS_ROUTINE_EACH_R3(__macro) __macro(cublasSetMathMode);
CUBLAS_BLAS_ROUTINE_EACH_R2(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
CUBLAS_BLAS_ROUTINE_EACH_R3(DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP)
#endif #endif
#undef DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP #undef DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP
......
...@@ -18,7 +18,6 @@ limitations under the License. */ ...@@ -18,7 +18,6 @@ limitations under the License. */
#include <mutex> // NOLINT #include <mutex> // NOLINT
#include "paddle/fluid/platform/call_once.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h" #include "paddle/fluid/platform/dynload/dynamic_loader.h"
namespace paddle { namespace paddle {
......
...@@ -1003,6 +1003,46 @@ HOSTDEVICE inline float16 exp(const float16& a) { ...@@ -1003,6 +1003,46 @@ HOSTDEVICE inline float16 exp(const float16& a) {
return float16(::expf(static_cast<float>(a))); return float16(::expf(static_cast<float>(a)));
} }
template <>
HOSTDEVICE inline float16 log(const float16& a) {
return float16(::logf(static_cast<float>(a)));
}
template <>
HOSTDEVICE inline float16 tanh(const float16& a) {
return float16(::tanhf(static_cast<float>(a)));
}
template <>
HOSTDEVICE inline float16 sqrt(const float16& a) {
return float16(::sqrtf(static_cast<float>(a)));
}
template <>
HOSTDEVICE inline float16 ceil(const float16& a) {
return float16(::ceilf(static_cast<float>(a)));
}
template <>
HOSTDEVICE inline float16 floor(const float16& a) {
return float16(::floorf(static_cast<float>(a)));
}
template <>
HOSTDEVICE inline float16 round(const float16& a) {
return float16(::roundf(static_cast<float>(a)));
}
template <>
HOSTDEVICE inline float16 pow(const float16& a, const float16& b) {
return float16(::powf(static_cast<float>(a), static_cast<float>(b)));
}
template <>
HOSTDEVICE inline float16 abs(const float16& a) {
return float16(::fabs(static_cast<float>(a)));
}
} // namespace numext } // namespace numext
} // namespace Eigen } // namespace Eigen
...@@ -8,13 +8,14 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -8,13 +8,14 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/float16.h"
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/init.h" #include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include <gtest/gtest.h>
namespace paddle { namespace paddle {
namespace platform { namespace platform {
...@@ -74,24 +75,27 @@ TEST(float16, conversion_cpu) { ...@@ -74,24 +75,27 @@ TEST(float16, conversion_cpu) {
// Conversion operator // Conversion operator
EXPECT_EQ(Eigen::half(float16(1.0f)).x, 0x3c00); EXPECT_EQ(Eigen::half(float16(1.0f)).x, 0x3c00);
EXPECT_EQ(float(float16(0.5f)), 0.5f); EXPECT_EQ(static_cast<float>(float16(0.5f)), 0.5f);
EXPECT_NEAR(double(float16(0.33333)), 0.33333, 0.0001); EXPECT_NEAR(static_cast<double>(float16(0.33333)), 0.33333, 0.0001);
EXPECT_EQ(int(float16(-1)), -1); EXPECT_EQ(static_cast<int>(float16(-1)), -1);
EXPECT_EQ(bool(float16(true)), true); EXPECT_EQ(static_cast<bool>(float16(true)), true);
} }
TEST(float16, arithmetic_cpu) { TEST(float16, arithmetic_cpu) {
EXPECT_EQ(float(float16(1) + float16(1)), 2); EXPECT_EQ(static_cast<float>(float16(1) + float16(1)), 2);
EXPECT_EQ(float(float16(5) + float16(-5)), 0); EXPECT_EQ(static_cast<float>(float16(5) + float16(-5)), 0);
EXPECT_NEAR(float(float16(0.33333f) + float16(0.66667f)), 1.0f, 0.001); EXPECT_NEAR(static_cast<float>(float16(0.33333f) + float16(0.66667f)), 1.0f,
EXPECT_EQ(float(float16(3) - float16(5)), -2); 0.001);
EXPECT_NEAR(float(float16(0.66667f) - float16(0.33333f)), 0.33334f, 0.001); EXPECT_EQ(static_cast<float>(float16(3) - float16(5)), -2);
EXPECT_NEAR(float(float16(3.3f) * float16(2.0f)), 6.6f, 0.01); EXPECT_NEAR(static_cast<float>(float16(0.66667f) - float16(0.33333f)),
EXPECT_NEAR(float(float16(-2.1f) * float16(-3.0f)), 6.3f, 0.01); 0.33334f, 0.001);
EXPECT_NEAR(float(float16(2.0f) / float16(3.0f)), 0.66667f, 0.001); EXPECT_NEAR(static_cast<float>(float16(3.3f) * float16(2.0f)), 6.6f, 0.01);
EXPECT_EQ(float(float16(1.0f) / float16(2.0f)), 0.5f); EXPECT_NEAR(static_cast<float>(float16(-2.1f) * float16(-3.0f)), 6.3f, 0.01);
EXPECT_EQ(float(-float16(512.0f)), -512.0f); EXPECT_NEAR(static_cast<float>(float16(2.0f) / float16(3.0f)), 0.66667f,
EXPECT_EQ(float(-float16(-512.0f)), 512.0f); 0.001);
EXPECT_EQ(static_cast<float>(float16(1.0f) / float16(2.0f)), 0.5f);
EXPECT_EQ(static_cast<float>(-float16(512.0f)), -512.0f);
EXPECT_EQ(static_cast<float>(-float16(-512.0f)), 512.0f);
} }
TEST(float16, comparison_cpu) { TEST(float16, comparison_cpu) {
......
...@@ -36,19 +36,19 @@ limitations under the License. */ ...@@ -36,19 +36,19 @@ limitations under the License. */
half *in1, *in2, *out; \ half *in1, *in2, *out; \
half *d_in1, *d_in2, *d_out; \ half *d_in1, *d_in2, *d_out; \
int size = sizeof(half); \ int size = sizeof(half); \
cudaMalloc((void**)&d_in1, size); \ cudaMalloc(reinterpret_cast<void**>(&d_in1), size); \
cudaMalloc((void**)&d_in2, size); \ cudaMalloc(reinterpret_cast<void**>(&d_in2), size); \
cudaMalloc((void**)&d_out, size); \ cudaMalloc(reinterpret_cast<void**>(&d_out), size); \
in1 = (half*)malloc(size); \ in1 = reinterpret_cast<half*>(malloc(size)); \
in2 = (half*)malloc(size); \ in2 = reinterpret_cast<half*>(malloc(size)); \
out = (half*)malloc(size); \ out = reinterpret_cast<half*>(malloc(size)); \
in1[0] = half(float16(v_in1)); \ in1[0] = half(float16(v_in1)); \
in2[0] = half(float16(v_in2)); \ in2[0] = half(float16(v_in2)); \
cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \
cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \ cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \
op_type<<<1, 1>>>(d_in1, d_in2, d_out); \ op_type<<<1, 1>>>(d_in1, d_in2, d_out); \
cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); \ cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); \
EXPECT_EQ(float(float16(out[0])), v_out); \ EXPECT_EQ(static_cast<float>(float16(out[0])), v_out); \
free(in1); \ free(in1); \
free(in2); \ free(in2); \
free(out); \ free(out); \
...@@ -63,17 +63,17 @@ limitations under the License. */ ...@@ -63,17 +63,17 @@ limitations under the License. */
half *in1, *in2; \ half *in1, *in2; \
half *d_in1, *d_in2; \ half *d_in1, *d_in2; \
int size = sizeof(half); \ int size = sizeof(half); \
cudaMalloc((void**)&d_in1, size); \ cudaMalloc(reinterpret_cast<void**>(&d_in1), size); \
cudaMalloc((void**)&d_in2, size); \ cudaMalloc(reinterpret_cast<void**>(&d_in2), size); \
in1 = (half*)malloc(size); \ in1 = reinterpret_cast<half*>(malloc(size)); \
in2 = (half*)malloc(size); \ in2 = reinterpret_cast<half*>(malloc(size)); \
in1[0] = half(float16(v_in1)); \ in1[0] = half(float16(v_in1)); \
in2[0] = half(float16(v_in2)); \ in2[0] = half(float16(v_in2)); \
cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \
cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \ cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \
op_type<<<1, 1>>>(d_in1, d_in2); \ op_type<<<1, 1>>>(d_in1, d_in2); \
cudaMemcpy(in1, d_in1, size, cudaMemcpyDeviceToHost); \ cudaMemcpy(in1, d_in1, size, cudaMemcpyDeviceToHost); \
EXPECT_EQ(float(float16(in1[0])), v_out); \ EXPECT_EQ(static_cast<float>(float16(in1[0])), v_out); \
free(in1); \ free(in1); \
free(in2); \ free(in2); \
cudaFree(d_in1); \ cudaFree(d_in1); \
...@@ -87,12 +87,12 @@ limitations under the License. */ ...@@ -87,12 +87,12 @@ limitations under the License. */
half *d_in1, *d_in2; \ half *d_in1, *d_in2; \
bool *out, *d_out; \ bool *out, *d_out; \
int size = sizeof(half); \ int size = sizeof(half); \
cudaMalloc((void**)&d_in1, size); \ cudaMalloc(reinterpret_cast<void**>(&d_in1), size); \
cudaMalloc((void**)&d_in2, size); \ cudaMalloc(reinterpret_cast<void**>(&d_in2), size); \
cudaMalloc((void**)&d_out, 1); \ cudaMalloc(reinterpret_cast<void**>(&d_out), 1); \
in1 = (half*)malloc(size); \ in1 = reinterpret_cast<half*>(malloc(size)); \
in2 = (half*)malloc(size); \ in2 = reinterpret_cast<half*>(malloc(size)); \
out = (bool*)malloc(1); \ out = reinterpret_cast<bool*>(malloc(1)); \
in1[0] = half(float16(v_in1)); \ in1[0] = half(float16(v_in1)); \
in2[0] = half(float16(v_in2)); \ in2[0] = half(float16(v_in2)); \
cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \
...@@ -130,13 +130,13 @@ void TestNeg(float v_in, float v_out) { ...@@ -130,13 +130,13 @@ void TestNeg(float v_in, float v_out) {
LOG(INFO) << "Test Neg on GPU!"; LOG(INFO) << "Test Neg on GPU!";
half *in, *d_in; half *in, *d_in;
int size = sizeof(half); int size = sizeof(half);
cudaMalloc((void**)&d_in, size); cudaMalloc(reinterpret_cast<void**>(&d_in), size);
in = (half*)malloc(size); in = reinterpret_cast<half*>(malloc(size));
in[0] = half(float16(v_in)); in[0] = half(float16(v_in));
cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice); cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
Neg<<<1, 1>>>(d_in); Neg<<<1, 1>>>(d_in);
cudaMemcpy(in, d_in, size, cudaMemcpyDeviceToHost); cudaMemcpy(in, d_in, size, cudaMemcpyDeviceToHost);
EXPECT_EQ(float(float16(in[0])), v_out); EXPECT_EQ(static_cast<float>(float16(in[0])), v_out);
free(in); free(in);
cudaFree(d_in); cudaFree(d_in);
} }
......
...@@ -11,11 +11,11 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,11 +11,11 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <mkldnn.hpp> #include <vector>
#include "mkldnn/include/mkldnn.hpp"
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/operator.h"
namespace paddle { namespace paddle {
......
...@@ -14,8 +14,9 @@ ...@@ -14,8 +14,9 @@
#pragma once #pragma once
#include <thread> #include <thread> // NOLINT
#include <typeindex> #include <typeindex>
#include <vector>
#include "paddle/fluid/platform/dynload/nccl.h" #include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
...@@ -29,6 +30,8 @@ inline ncclDataType_t ToNCCLDataType(std::type_index type) { ...@@ -29,6 +30,8 @@ inline ncclDataType_t ToNCCLDataType(std::type_index type) {
return ncclDouble; return ncclDouble;
} else if (type == typeid(int)) { // NOLINT } else if (type == typeid(int)) { // NOLINT
return ncclInt; return ncclInt;
} else if (type == typeid(int64_t)) { // NOLINT
return ncclInt64;
} else { } else {
PADDLE_THROW("Not supported"); PADDLE_THROW("Not supported");
} }
...@@ -58,7 +61,7 @@ struct NCCLContext { ...@@ -58,7 +61,7 @@ struct NCCLContext {
ncclComm_t comm_; ncclComm_t comm_;
explicit NCCLContext(int dev_id) explicit NCCLContext(int dev_id)
: ctx_(new CUDADeviceContext(CUDAPlace(dev_id))) {} : ctx_(new CUDADeviceContext(CUDAPlace(dev_id))), comm_{nullptr} {}
cudaStream_t stream() const { return ctx_->stream(); } cudaStream_t stream() const { return ctx_->stream(); }
...@@ -66,23 +69,23 @@ struct NCCLContext { ...@@ -66,23 +69,23 @@ struct NCCLContext {
return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device; return boost::get<platform::CUDAPlace>(ctx_->GetPlace()).device;
} }
static void InitNCCLContext(std::unordered_map<int, NCCLContext> &contexts, static void InitNCCLContext(std::unordered_map<int, NCCLContext> *contexts,
const std::vector<platform::Place> &places) { const std::vector<platform::Place> &places) {
std::vector<ncclComm_t> comms; std::vector<ncclComm_t> comms;
std::vector<int> devs; std::vector<int> devs;
comms.resize(contexts.size()); comms.resize(contexts->size());
devs.reserve(contexts.size()); devs.reserve(contexts->size());
for (auto &p : places) { for (auto &p : places) {
devs.push_back(boost::get<platform::CUDAPlace>(p).device); devs.push_back(boost::get<platform::CUDAPlace>(p).device);
} }
PADDLE_ENFORCE(platform::dynload::ncclCommInitAll( PADDLE_ENFORCE(platform::dynload::ncclCommInitAll(
&comms[0], static_cast<int>(contexts.size()), &devs[0])); &comms[0], static_cast<int>(contexts->size()), &devs[0]));
int i = 0; int i = 0;
for (auto &dev_id : devs) { for (auto &dev_id : devs) {
contexts.at(dev_id).comm_ = comms[i++]; contexts->at(dev_id).comm_ = comms[i++];
} }
} }
}; };
...@@ -91,7 +94,8 @@ struct NCCLContextMap { ...@@ -91,7 +94,8 @@ struct NCCLContextMap {
std::unordered_map<int, NCCLContext> contexts_; std::unordered_map<int, NCCLContext> contexts_;
std::vector<int> order_; std::vector<int> order_;
NCCLContextMap(const std::vector<platform::Place> &places) { explicit NCCLContextMap(const std::vector<platform::Place> &places) {
PADDLE_ENFORCE(!places.empty());
order_.reserve(places.size()); order_.reserve(places.size());
for (auto &p : places) { for (auto &p : places) {
int dev_id = boost::get<CUDAPlace>(p).device; int dev_id = boost::get<CUDAPlace>(p).device;
...@@ -102,15 +106,17 @@ struct NCCLContextMap { ...@@ -102,15 +106,17 @@ struct NCCLContextMap {
order_.size(), contexts_.size(), order_.size(), contexts_.size(),
"NCCL Context Map does not support contain two or more same device"); "NCCL Context Map does not support contain two or more same device");
std::vector<ncclComm_t> comms; if (places.size() > 1) {
comms.resize(order_.size()); std::vector<ncclComm_t> comms;
comms.resize(order_.size());
PADDLE_ENFORCE(platform::dynload::ncclCommInitAll( PADDLE_ENFORCE(platform::dynload::ncclCommInitAll(
&comms[0], static_cast<int>(order_.size()), &order_[0])); &comms[0], static_cast<int>(order_.size()), &order_[0]));
int i = 0; int i = 0;
for (auto &dev_id : order_) { for (auto &dev_id : order_) {
contexts_.at(dev_id).comm_ = comms[i++]; contexts_.at(dev_id).comm_ = comms[i++];
}
} }
} }
......
...@@ -15,8 +15,11 @@ limitations under the License. */ ...@@ -15,8 +15,11 @@ limitations under the License. */
#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler.h"
#include <sys/time.h> #include <sys/time.h>
#include <time.h> #include <time.h>
#include <algorithm>
#include <iomanip> #include <iomanip>
#include <map> #include <map>
#include <mutex> // NOLINT
#include <string>
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
#include <cuda.h> #include <cuda.h>
#endif // PADDLE_WITH_CUDA #endif // PADDLE_WITH_CUDA
...@@ -28,10 +31,10 @@ limitations under the License. */ ...@@ -28,10 +31,10 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace platform { namespace platform {
struct EventList;
// The profiler state, the initial value is ProfilerState::kDisabled // The profiler state, the initial value is ProfilerState::kDisabled
static ProfilerState g_state = ProfilerState::kDisabled; static ProfilerState g_state = ProfilerState::kDisabled;
// To record which timer the profiler used, CUDA or CPU.
static std::string g_profiler_place = "";
// The thread local event list only can be accessed by the specific thread // The thread local event list only can be accessed by the specific thread
// The thread index of each thread // The thread index of each thread
static thread_local int32_t g_thread_id; static thread_local int32_t g_thread_id;
...@@ -45,6 +48,39 @@ static std::list<std::shared_ptr<EventList>> g_all_event_lists; ...@@ -45,6 +48,39 @@ static std::list<std::shared_ptr<EventList>> g_all_event_lists;
// The thread local event list only can be accessed by the specific thread // The thread local event list only can be accessed by the specific thread
static thread_local std::shared_ptr<EventList> g_event_list; static thread_local std::shared_ptr<EventList> g_event_list;
struct EventList {
constexpr static size_t kMB = 1024 * 1024;
constexpr static size_t kEventBlockSize = 16 * kMB;
constexpr static size_t kEventSize = sizeof(Event);
constexpr static size_t kEventAlign = alignof(Event);
constexpr static size_t kNumBlock =
kEventBlockSize /
((kEventSize + kEventAlign - 1) / kEventAlign * kEventAlign);
template <typename... Args>
void Record(Args&&... args) {
if (event_blocks.empty() || event_blocks.front().size() == kNumBlock) {
event_blocks.emplace_front();
event_blocks.front().reserve(kNumBlock);
}
event_blocks.front().emplace_back(std::forward<Args>(args)...);
}
std::vector<Event> Reduce() {
std::vector<Event> result;
for (auto& block : event_blocks) {
result.insert(result.begin(), std::make_move_iterator(block.begin()),
std::make_move_iterator(block.end()));
}
event_blocks.clear();
return result;
}
void Clear() { event_blocks.clear(); }
std::forward_list<std::vector<Event>> event_blocks;
};
inline uint64_t GetTimeInNsec() { inline uint64_t GetTimeInNsec() {
using clock = std::conditional<std::chrono::high_resolution_clock::is_steady, using clock = std::conditional<std::chrono::high_resolution_clock::is_steady,
std::chrono::high_resolution_clock, std::chrono::high_resolution_clock,
...@@ -60,9 +96,9 @@ inline uint64_t PosixInNsec() { ...@@ -60,9 +96,9 @@ inline uint64_t PosixInNsec() {
return 1000 * (static_cast<uint64_t>(tv.tv_sec) * 1000000 + tv.tv_usec); return 1000 * (static_cast<uint64_t>(tv.tv_sec) * 1000000 + tv.tv_usec);
} }
Event::Event(EventKind kind, std::string name, uint32_t thread_id, Event::Event(EventType type, std::string name, uint32_t thread_id,
const DeviceContext* dev_ctx) const DeviceContext* dev_ctx)
: kind_(kind), name_(name), thread_id_(thread_id), has_cuda_(false) { : type_(type), name_(name), thread_id_(thread_id), has_cuda_(false) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
has_cuda_ = dev_ctx ? platform::is_gpu_place(dev_ctx->GetPlace()) : false; has_cuda_ = dev_ctx ? platform::is_gpu_place(dev_ctx->GetPlace()) : false;
if (has_cuda_) { if (has_cuda_) {
...@@ -76,17 +112,7 @@ Event::Event(EventKind kind, std::string name, uint32_t thread_id, ...@@ -76,17 +112,7 @@ Event::Event(EventKind kind, std::string name, uint32_t thread_id,
cpu_ns_ = GetTimeInNsec(); cpu_ns_ = GetTimeInNsec();
} }
std::string Event::kind() const { const EventType& Event::type() const { return type_; }
switch (kind_) {
case EventKind::kMark:
return "mark";
case EventKind::kPushRange:
return "push";
case EventKind::kPopRange:
return "pop";
}
PADDLE_THROW("Unknown EventKind.");
}
double Event::CpuElapsedMs(const Event& e) const { double Event::CpuElapsedMs(const Event& e) const {
return (e.cpu_ns_ - cpu_ns_) / (1000000.0); return (e.cpu_ns_ - cpu_ns_) / (1000000.0);
...@@ -129,15 +155,15 @@ inline EventList& GetEventList() { ...@@ -129,15 +155,15 @@ inline EventList& GetEventList() {
} }
void Mark(const std::string& name, const DeviceContext* dev_ctx) { void Mark(const std::string& name, const DeviceContext* dev_ctx) {
GetEventList().Record(EventKind::kMark, name, g_thread_id, dev_ctx); GetEventList().Record(EventType::kMark, name, g_thread_id, dev_ctx);
} }
void PushEvent(const std::string& name, const DeviceContext* dev_ctx) { void PushEvent(const std::string& name, const DeviceContext* dev_ctx) {
GetEventList().Record(EventKind::kPushRange, name, g_thread_id, dev_ctx); GetEventList().Record(EventType::kPushRange, name, g_thread_id, dev_ctx);
} }
void PopEvent(const std::string& name, const DeviceContext* dev_ctx) { void PopEvent(const std::string& name, const DeviceContext* dev_ctx) {
GetEventList().Record(EventKind::kPopRange, name, g_thread_id, dev_ctx); GetEventList().Record(EventType::kPopRange, name, g_thread_id, dev_ctx);
} }
RecordEvent::RecordEvent(const std::string& name, const DeviceContext* dev_ctx) RecordEvent::RecordEvent(const std::string& name, const DeviceContext* dev_ctx)
...@@ -197,12 +223,7 @@ void EnableProfiler(ProfilerState state) { ...@@ -197,12 +223,7 @@ void EnableProfiler(ProfilerState state) {
"The profiling state should be disabled when calling ", "The profiling state should be disabled when calling ",
"EnableProfiler."); "EnableProfiler.");
g_state = state; g_state = state;
if (g_state == ProfilerState::kCUDA) { if (g_state == ProfilerState::kAll) {
g_profiler_place = "CUDA";
} else if (g_state == ProfilerState::kCPU) {
g_profiler_place = "CPU";
} else {
g_profiler_place = "All";
GetDeviceTracer()->Enable(); GetDeviceTracer()->Enable();
} }
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -240,27 +261,63 @@ std::vector<std::vector<Event>> GetAllEvents() { ...@@ -240,27 +261,63 @@ std::vector<std::vector<Event>> GetAllEvents() {
return result; return result;
} }
void DisableProfiler(EventSortingKey sorted_key, // The information of each event given in the profiling report
const std::string& profile_path) { struct EventItem {
PADDLE_ENFORCE(g_state != ProfilerState::kDisabled, std::string name;
"Can't disable profiling, since it's not starting."); int calls;
// Mark the profiling stop. double total_time;
Mark("_stop_profiler_", nullptr); double min_time;
g_state = ProfilerState::kDisabled; double max_time;
double ave_time;
};
// Print results
void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
const std::string& sorted_domain, const size_t name_width,
const size_t data_width) {
// Output header information
std::cout << "\n------------------------->"
<< " Profiling Report "
<< "<-------------------------\n\n";
std::string place;
if (g_state == ProfilerState::kCPU) {
place = "CPU";
} else if (g_state == ProfilerState::kCUDA) {
place = "CUDA";
} else if (g_state == ProfilerState::kAll) {
place = "All";
} else {
PADDLE_THROW("Invalid profiler state");
}
std::vector<std::vector<Event>> all_events = GetAllEvents(); std::cout << "Place: " << place << std::endl;
ParseEvents(all_events, sorted_key); std::cout << "Time unit: ms" << std::endl;
ResetProfiler(); std::cout << "Sorted by " << sorted_domain
DeviceTracer* tracer = GetDeviceTracer(); << " in descending order in the same thread\n\n";
if (g_profiler_place == "All" && tracer && tracer->IsEnabled()) { // Output events table
tracer->Disable(); std::cout.setf(std::ios::left);
tracer->GenProfile(profile_path); std::cout << std::setw(name_width) << "Event" << std::setw(data_width)
<< "Calls" << std::setw(data_width) << "Total"
<< std::setw(data_width) << "Min." << std::setw(data_width)
<< "Max." << std::setw(data_width) << "Ave." << std::endl;
for (size_t i = 0; i < events_table.size(); ++i) {
for (size_t j = 0; j < events_table[i].size(); ++j) {
const EventItem& event_item = events_table[i][j];
std::cout << std::setw(name_width) << event_item.name
<< std::setw(data_width) << event_item.calls
<< std::setw(data_width) << event_item.total_time
<< std::setw(data_width) << event_item.min_time
<< std::setw(data_width) << event_item.max_time
<< std::setw(data_width) << event_item.ave_time << std::endl;
}
} }
std::cout << std::endl;
} }
void ParseEvents(std::vector<std::vector<Event>>& events, // Parse the event list and output the profiling report
EventSortingKey sorted_by) { void ParseEvents(const std::vector<std::vector<Event>>& events,
if (g_profiler_place == "") return; EventSortingKey sorted_by = EventSortingKey::kDefault) {
if (g_state == ProfilerState::kDisabled) return;
std::string sorted_domain; std::string sorted_domain;
std::function<bool(const EventItem&, const EventItem&)> sorted_func; std::function<bool(const EventItem&, const EventItem&)> sorted_func;
...@@ -307,9 +364,9 @@ void ParseEvents(std::vector<std::vector<Event>>& events, ...@@ -307,9 +364,9 @@ void ParseEvents(std::vector<std::vector<Event>>& events,
std::unordered_map<std::string, int> event_idx; std::unordered_map<std::string, int> event_idx;
for (size_t j = 0; j < events[i].size(); j++) { for (size_t j = 0; j < events[i].size(); j++) {
if (events[i][j].kind() == "push") { if (events[i][j].type() == EventType::kPushRange) {
pushed_events.push_back(events[i][j]); pushed_events.push_back(events[i][j]);
} else if (events[i][j].kind() == "pop") { } else if (events[i][j].type() == EventType::kPopRange) {
std::list<Event>::reverse_iterator rit = pushed_events.rbegin(); std::list<Event>::reverse_iterator rit = pushed_events.rbegin();
while (rit != pushed_events.rend() && while (rit != pushed_events.rend() &&
rit->name() != events[i][j].name()) { rit->name() != events[i][j].name()) {
...@@ -317,10 +374,10 @@ void ParseEvents(std::vector<std::vector<Event>>& events, ...@@ -317,10 +374,10 @@ void ParseEvents(std::vector<std::vector<Event>>& events,
} }
if (rit != pushed_events.rend()) { if (rit != pushed_events.rend()) {
double event_time = double event_time = (g_state == ProfilerState::kCUDA ||
(g_profiler_place == "CUDA" || g_profiler_place == "All") g_state == ProfilerState::kAll)
? rit->CudaElapsedMs(events[i][j]) ? rit->CudaElapsedMs(events[i][j])
: rit->CpuElapsedMs(events[i][j]); : rit->CpuElapsedMs(events[i][j]);
std::string event_name = std::string event_name =
"thread" + std::to_string(rit->thread_id()) + "::" + rit->name(); "thread" + std::to_string(rit->thread_id()) + "::" + rit->name();
...@@ -376,35 +433,22 @@ void ParseEvents(std::vector<std::vector<Event>>& events, ...@@ -376,35 +433,22 @@ void ParseEvents(std::vector<std::vector<Event>>& events,
PrintProfiler(events_table, sorted_domain, max_name_width + 4, 12); PrintProfiler(events_table, sorted_domain, max_name_width + 4, 12);
} }
void PrintProfiler(std::vector<std::vector<EventItem>>& events_table, void DisableProfiler(EventSortingKey sorted_key,
std::string& sorted_domain, const size_t name_width, const std::string& profile_path) {
const size_t data_width) { PADDLE_ENFORCE(g_state != ProfilerState::kDisabled,
// Output header information "Can't disable profiling, since it's not starting.");
std::cout << "\n------------------------->" // Mark the profiling stop.
<< " Profiling Report " Mark("_stop_profiler_", nullptr);
<< "<-------------------------\n\n";
std::cout << "Place: " << g_profiler_place << std::endl; std::vector<std::vector<Event>> all_events = GetAllEvents();
std::cout << "Time unit: ms" << std::endl; ParseEvents(all_events, sorted_key);
std::cout << "Sorted by " << sorted_domain ResetProfiler();
<< " in descending order in the same thread\n\n"; DeviceTracer* tracer = GetDeviceTracer();
// Output events table if (g_state == ProfilerState::kAll && tracer && tracer->IsEnabled()) {
std::cout.setf(std::ios::left); tracer->Disable();
std::cout << std::setw(name_width) << "Event" << std::setw(data_width) tracer->GenProfile(profile_path);
<< "Calls" << std::setw(data_width) << "Total"
<< std::setw(data_width) << "Min." << std::setw(data_width)
<< "Max." << std::setw(data_width) << "Ave." << std::endl;
for (size_t i = 0; i < events_table.size(); ++i) {
for (size_t j = 0; j < events_table[i].size(); ++j) {
EventItem& event_item = events_table[i][j];
std::cout << std::setw(name_width) << event_item.name
<< std::setw(data_width) << event_item.calls
<< std::setw(data_width) << event_item.total_time
<< std::setw(data_width) << event_item.min_time
<< std::setw(data_width) << event_item.max_time
<< std::setw(data_width) << event_item.ave_time << std::endl;
}
} }
std::cout << std::endl; g_state = ProfilerState::kDisabled;
} }
} // namespace platform } // namespace platform
......
...@@ -15,7 +15,7 @@ limitations under the License. */ ...@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include <forward_list> #include <forward_list>
#include <list> #include <list>
#include <mutex> #include <string>
#include <vector> #include <vector>
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/profiler.pb.h" #include "paddle/fluid/platform/profiler.pb.h"
...@@ -23,16 +23,16 @@ limitations under the License. */ ...@@ -23,16 +23,16 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace platform { namespace platform {
enum EventKind { kMark, kPushRange, kPopRange }; enum EventType { kMark, kPushRange, kPopRange };
class Event { class Event {
public: public:
// The DeviceContext is used to get the cuda stream. // The DeviceContext is used to get the cuda stream.
// If CPU profiling mode, can pass nullptr. // If CPU profiling mode, can pass nullptr.
Event(EventKind kind, std::string name, uint32_t thread_id, Event(EventType type, std::string name, uint32_t thread_id,
const DeviceContext* dev_ctx); const DeviceContext* dev_ctx);
std::string kind() const; const EventType& type() const;
std::string name() const { return name_; } std::string name() const { return name_; }
uint32_t thread_id() const { return thread_id_; } uint32_t thread_id() const { return thread_id_; }
bool has_cuda() const { return has_cuda_; } bool has_cuda() const { return has_cuda_; }
...@@ -46,7 +46,7 @@ class Event { ...@@ -46,7 +46,7 @@ class Event {
double CudaElapsedMs(const Event& e) const; double CudaElapsedMs(const Event& e) const;
private: private:
EventKind kind_; EventType type_;
std::string name_; std::string name_;
uint32_t thread_id_; uint32_t thread_id_;
int64_t cpu_ns_; int64_t cpu_ns_;
...@@ -57,39 +57,6 @@ class Event { ...@@ -57,39 +57,6 @@ class Event {
#endif #endif
}; };
struct EventList {
constexpr static size_t kMB = 1024 * 1024;
constexpr static size_t kEventBlockSize = 16 * kMB;
constexpr static size_t kEventSize = sizeof(Event);
constexpr static size_t kEventAlign = alignof(Event);
constexpr static size_t kNumBlock =
kEventBlockSize /
((kEventSize + kEventAlign - 1) / kEventAlign * kEventAlign);
template <typename... Args>
void Record(Args&&... args) {
if (event_blocks.empty() || event_blocks.front().size() == kNumBlock) {
event_blocks.emplace_front();
event_blocks.front().reserve(kNumBlock);
}
event_blocks.front().emplace_back(std::forward<Args>(args)...);
}
std::vector<Event> Reduce() {
std::vector<Event> result;
for (auto& block : event_blocks) {
result.insert(result.begin(), std::make_move_iterator(block.begin()),
std::make_move_iterator(block.end()));
}
event_blocks.clear();
return result;
}
void Clear() { event_blocks.clear(); }
std::forward_list<std::vector<Event>> event_blocks;
};
enum ProfilerState { enum ProfilerState {
kDisabled, // disabled state kDisabled, // disabled state
kCPU, // CPU profiling state kCPU, // CPU profiling state
...@@ -136,16 +103,6 @@ struct RecordThread { ...@@ -136,16 +103,6 @@ struct RecordThread {
// event_lists, event_lists[i][j] represents the j-th Event of i-th thread. // event_lists, event_lists[i][j] represents the j-th Event of i-th thread.
std::vector<std::vector<Event>> GetAllEvents(); std::vector<std::vector<Event>> GetAllEvents();
// The information of each event given in the profiling report
struct EventItem {
std::string name;
int calls;
double total_time;
double min_time;
double max_time;
double ave_time;
};
// Candidate keys to sort the profiling report // Candidate keys to sort the profiling report
enum EventSortingKey { kDefault, kCalls, kTotal, kMin, kMax, kAve }; enum EventSortingKey { kDefault, kCalls, kTotal, kMin, kMax, kAve };
...@@ -158,14 +115,5 @@ void ResetProfiler(); ...@@ -158,14 +115,5 @@ void ResetProfiler();
void DisableProfiler(EventSortingKey sorted_key, void DisableProfiler(EventSortingKey sorted_key,
const std::string& profile_path); const std::string& profile_path);
// Parse the event list and output the profiling report
void ParseEvents(std::vector<std::vector<Event>>&,
EventSortingKey sorted_by = EventSortingKey::kDefault);
// Print results
void PrintProfiler(std::vector<std::vector<EventItem>>& events_table,
std::string& sorted_domain, const size_t name_width,
const size_t data_width);
} // namespace platform } // namespace platform
} // namespace paddle } // namespace paddle
...@@ -13,22 +13,23 @@ See the License for the specific language governing permissions and ...@@ -13,22 +13,23 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler.h"
#include <string>
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
#include "cuda_runtime.h" #include <cuda_runtime.h>
#endif #endif
#include "gtest/gtest.h" #include "gtest/gtest.h"
TEST(Event, CpuElapsedTime) { TEST(Event, CpuElapsedTime) {
using paddle::platform::Event; using paddle::platform::Event;
using paddle::platform::EventKind; using paddle::platform::EventType;
Event start_event(EventKind::kPushRange, "test", 0, nullptr); Event start_event(EventType::kPushRange, "test", 0, nullptr);
EXPECT_TRUE(start_event.has_cuda() == false); EXPECT_TRUE(start_event.has_cuda() == false);
int counter = 0; int counter = 0;
while (counter != 1000) { while (counter != 1000) {
counter++; counter++;
} }
Event stop_event(EventKind::kPopRange, "test", 0, nullptr); Event stop_event(EventType::kPopRange, "test", 0, nullptr);
EXPECT_GT(start_event.CpuElapsedMs(stop_event), 0); EXPECT_GT(start_event.CpuElapsedMs(stop_event), 0);
} }
...@@ -38,16 +39,16 @@ TEST(Event, CudaElapsedTime) { ...@@ -38,16 +39,16 @@ TEST(Event, CudaElapsedTime) {
using paddle::platform::CUDADeviceContext; using paddle::platform::CUDADeviceContext;
using paddle::platform::CUDAPlace; using paddle::platform::CUDAPlace;
using paddle::platform::Event; using paddle::platform::Event;
using paddle::platform::EventKind; using paddle::platform::EventType;
DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(0)); DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(0));
Event start_event(EventKind::kPushRange, "test", 0, dev_ctx); Event start_event(EventType::kPushRange, "test", 0, dev_ctx);
EXPECT_TRUE(start_event.has_cuda() == true); EXPECT_TRUE(start_event.has_cuda() == true);
int counter = 0; int counter = 0;
while (counter != 1000) { while (counter != 1000) {
counter++; counter++;
} }
Event stop_event(EventKind::kPopRange, "test", 0, dev_ctx); Event stop_event(EventType::kPopRange, "test", 0, dev_ctx);
EXPECT_GT(start_event.CudaElapsedMs(stop_event), 0); EXPECT_GT(start_event.CudaElapsedMs(stop_event), 0);
} }
#endif #endif
...@@ -55,7 +56,7 @@ TEST(Event, CudaElapsedTime) { ...@@ -55,7 +56,7 @@ TEST(Event, CudaElapsedTime) {
TEST(RecordEvent, RecordEvent) { TEST(RecordEvent, RecordEvent) {
using paddle::platform::DeviceContext; using paddle::platform::DeviceContext;
using paddle::platform::Event; using paddle::platform::Event;
using paddle::platform::EventKind; using paddle::platform::EventType;
using paddle::platform::RecordEvent; using paddle::platform::RecordEvent;
using paddle::platform::ProfilerState; using paddle::platform::ProfilerState;
using paddle::platform::EventSortingKey; using paddle::platform::EventSortingKey;
......
...@@ -2,13 +2,13 @@ if(WITH_PYTHON) ...@@ -2,13 +2,13 @@ if(WITH_PYTHON)
if(WITH_AMD_GPU) if(WITH_AMD_GPU)
hip_library(paddle_pybind SHARED hip_library(paddle_pybind SHARED
SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc
DEPS pybind python backward proto_desc paddle_memory executor prune init profiler feed_fetch_method DEPS pybind python backward proto_desc memory executor prune init profiler feed_fetch_method
parallel_executor parallel_executor
${GLOB_OP_LIB}) ${GLOB_OP_LIB})
else() else()
cc_library(paddle_pybind SHARED cc_library(paddle_pybind SHARED
SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc
DEPS pybind python backward proto_desc paddle_memory executor prune init profiler feed_fetch_method DEPS pybind python backward proto_desc memory executor prune init profiler feed_fetch_method
parallel_executor parallel_executor
${GLOB_OP_LIB}) ${GLOB_OP_LIB})
if(NOT APPLE AND NOT ANDROID) if(NOT APPLE AND NOT ANDROID)
......
...@@ -252,7 +252,6 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -252,7 +252,6 @@ All parameter, weight, gradient are variables in Paddle.
py::return_value_policy::reference); py::return_value_policy::reference);
py::class_<framework::ReaderHolder>(m, "Reader", "") py::class_<framework::ReaderHolder>(m, "Reader", "")
.def("has_next", &framework::ReaderHolder::HasNext)
.def("reset", &framework::ReaderHolder::ReInit); .def("reset", &framework::ReaderHolder::ReInit);
py::class_<Scope>(m, "Scope", "") py::class_<Scope>(m, "Scope", "")
...@@ -465,7 +464,8 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -465,7 +464,8 @@ All parameter, weight, gradient are variables in Paddle.
m.def("init_gflags", framework::InitGflags); m.def("init_gflags", framework::InitGflags);
m.def("init_glog", framework::InitGLOG); m.def("init_glog", framework::InitGLOG);
m.def("init_devices", &framework::InitDevices); m.def("init_devices",
[](bool init_p2p) { framework::InitDevices(init_p2p); });
m.def("is_compiled_with_cuda", IsCompiledWithCUDA); m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -544,13 +544,21 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -544,13 +544,21 @@ All parameter, weight, gradient are variables in Paddle.
[](ParallelExecutor &self, size_t num_threads, bool use_event, [](ParallelExecutor &self, size_t num_threads, bool use_event,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const ProgramDesc &startup_program, const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name, const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, bool allow_op_delay) { Scope *scope, std::vector<Scope *> &local_scopes,
new (&self) ParallelExecutor(num_threads, use_event, places, bool allow_op_delay) {
params, startup_program, main_program, new (&self)
loss_var_name, scope, allow_op_delay); ParallelExecutor(num_threads, use_event, places, params,
bcast_vars, main_program, loss_var_name,
scope, local_scopes, allow_op_delay);
}) })
.def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
.def("local_scopes",
[](ParallelExecutor &self) -> std::vector<Scope *> * {
return &self.GetLocalScopes();
},
py::return_value_policy::reference)
.def("run", &ParallelExecutor::Run); .def("run", &ParallelExecutor::Run);
BindRecordIOWriter(&m); BindRecordIOWriter(&m);
......
...@@ -39,7 +39,7 @@ class RecordIOWriter { ...@@ -39,7 +39,7 @@ class RecordIOWriter {
void CompleteAppendTensor() { void CompleteAppendTensor() {
auto& ctx = auto& ctx =
*platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); *platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
framework::WriteToRecordIO(writer_, tensors_, ctx); framework::WriteToRecordIO(&writer_, tensors_, ctx);
tensors_.clear(); tensors_.clear();
} }
......
...@@ -6,6 +6,6 @@ if(WITH_TESTING) ...@@ -6,6 +6,6 @@ if(WITH_TESTING)
add_library(paddle_test_util STATIC TestUtil.cpp) add_library(paddle_test_util STATIC TestUtil.cpp)
add_dependencies(paddle_test_util paddle_proto ${external_project_dependencies}) add_dependencies(paddle_test_util paddle_proto ${external_project_dependencies})
if(NOT MOBILE_INFERENCE) if(NOT MOBILE_INFERENCE)
cc_library(paddle_gtest_main SRCS paddle_gtest_main.cc DEPS init paddle_memory gtest gflags) cc_library(paddle_gtest_main SRCS paddle_gtest_main.cc DEPS init memory gtest gflags)
endif() endif()
endif() endif()
...@@ -41,6 +41,6 @@ int main(int argc, char** argv) { ...@@ -41,6 +41,6 @@ int main(int argc, char** argv) {
paddle::memory::Used(paddle::platform::CUDAPlace(0)); paddle::memory::Used(paddle::platform::CUDAPlace(0));
#endif #endif
paddle::framework::InitDevices(); paddle::framework::InitDevices(true);
return RUN_ALL_TESTS(); return RUN_ALL_TESTS();
} }
*pyc *pyc
build build
dist dist
paddlepaddle.egg-info
paddle.egg-info paddle.egg-info
paddlepaddle_gpu.egg-info paddlepaddle_gpu.egg-info
.idea .idea
......
...@@ -29,6 +29,7 @@ import optimizer ...@@ -29,6 +29,7 @@ import optimizer
import backward import backward
import regularizer import regularizer
import average import average
import metrics
from param_attr import ParamAttr, WeightNormParamAttr from param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder from data_feeder import DataFeeder
from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace
...@@ -85,6 +86,8 @@ def __bootstrap__(): ...@@ -85,6 +86,8 @@ def __bootstrap__():
import core import core
import os import os
in_test = 'unittest' in sys.modules
try: try:
num_threads = int(os.getenv('OMP_NUM_THREADS', '1')) num_threads = int(os.getenv('OMP_NUM_THREADS', '1'))
except ValueError: except ValueError:
...@@ -109,8 +112,11 @@ def __bootstrap__(): ...@@ -109,8 +112,11 @@ def __bootstrap__():
core.init_gflags([sys.argv[0]] + core.init_gflags([sys.argv[0]] +
["--tryfromenv=" + ",".join(read_env_flags)]) ["--tryfromenv=" + ",".join(read_env_flags)])
core.init_glog(sys.argv[0]) core.init_glog(sys.argv[0])
core.init_devices() # don't init_p2p when in unittest to save time.
core.init_devices(not in_test)
# TODO(panyx0718): Avoid doing complex initialization logic in __init__.py.
# Consider paddle.init(args) or paddle.main(args)
layers.monkey_patch_variable() layers.monkey_patch_variable()
__bootstrap__() __bootstrap__()
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
import numpy as np import numpy as np
import warnings
""" """
Class of all kinds of Average. Class of all kinds of Average.
...@@ -22,6 +23,8 @@ import numpy as np ...@@ -22,6 +23,8 @@ import numpy as np
wrappers of Python functions. wrappers of Python functions.
""" """
__all__ = ["WeightedAverage"]
def _is_number_(var): def _is_number_(var):
return isinstance(var, int) or isinstance(var, float) or (isinstance( return isinstance(var, int) or isinstance(var, float) or (isinstance(
...@@ -34,6 +37,9 @@ def _is_number_or_matrix_(var): ...@@ -34,6 +37,9 @@ def _is_number_or_matrix_(var):
class WeightedAverage(object): class WeightedAverage(object):
def __init__(self): def __init__(self):
warnings.warn(
"The %s is deprecated, please use fluid.metrics.Accuracy instead." %
(self.__class__.__name__), Warning)
self.reset() self.reset()
def reset(self): def reset(self):
......
...@@ -16,6 +16,7 @@ import sys ...@@ -16,6 +16,7 @@ import sys
import re import re
from graphviz import GraphPreviewGenerator from graphviz import GraphPreviewGenerator
import proto.framework_pb2 as framework_pb2 import proto.framework_pb2 as framework_pb2
from google.protobuf import text_format
_vartype2str_ = [ _vartype2str_ = [
"UNK", "UNK",
...@@ -100,7 +101,7 @@ def repr_var(vardesc): ...@@ -100,7 +101,7 @@ def repr_var(vardesc):
def pprint_program_codes(program_desc): def pprint_program_codes(program_desc):
reprs = [] reprs = []
for block_idx in range(program_desc.num_blocks()): for block_idx in range(program_desc.desc.num_blocks()):
block_desc = program_desc.block(block_idx) block_desc = program_desc.block(block_idx)
block_repr = pprint_block_codes(block_desc) block_repr = pprint_block_codes(block_desc)
reprs.append(block_repr) reprs.append(block_repr)
...@@ -127,7 +128,7 @@ def pprint_block_codes(block_desc, show_backward=False): ...@@ -127,7 +128,7 @@ def pprint_block_codes(block_desc, show_backward=False):
if type(block_desc) is not framework_pb2.BlockDesc: if type(block_desc) is not framework_pb2.BlockDesc:
block_desc = framework_pb2.BlockDesc.FromString( block_desc = framework_pb2.BlockDesc.FromString(
block_desc.serialize_to_string()) block_desc.desc.serialize_to_string())
var_reprs = [] var_reprs = []
op_reprs = [] op_reprs = []
for var in block_desc.vars: for var in block_desc.vars:
...@@ -237,13 +238,13 @@ def draw_block_graphviz(block, highlights=None, path="./temp.dot"): ...@@ -237,13 +238,13 @@ def draw_block_graphviz(block, highlights=None, path="./temp.dot"):
# draw parameters and args # draw parameters and args
vars = {} vars = {}
for var in desc.vars: for var in desc.vars:
shape = [str(i) for i in var.lod_tensor.tensor.dims] # TODO(gongwb): format the var.type
if not shape:
shape = ['null']
# create var # create var
if var.persistable: if var.persistable:
varn = graph.add_param( varn = graph.add_param(
var.name, var.type, shape, highlight=need_highlight(var.name)) var.name,
str(var.type).replace("\n", "<br />", 1),
highlight=need_highlight(var.name))
else: else:
varn = graph.add_arg(var.name, highlight=need_highlight(var.name)) varn = graph.add_arg(var.name, highlight=need_highlight(var.name))
vars[var.name] = varn vars[var.name] = varn
...@@ -268,4 +269,4 @@ def draw_block_graphviz(block, highlights=None, path="./temp.dot"): ...@@ -268,4 +269,4 @@ def draw_block_graphviz(block, highlights=None, path="./temp.dot"):
for var in op.outputs: for var in op.outputs:
add_op_link_var(opn, var, True) add_op_link_var(opn, var, True)
graph(path, show=True) graph(path, show=False)
...@@ -102,6 +102,8 @@ def split_dense_variable(var_list, ...@@ -102,6 +102,8 @@ def split_dense_variable(var_list,
the parameter server side can gain better performance. By default the parameter server side can gain better performance. By default
minimum block size is 1024. The max block size is used to prevent minimum block size is 1024. The max block size is used to prevent
very large blocks that may cause send error. very large blocks that may cause send error.
:return: A list of VarBlocks. Each VarBlock specifies a shard of
the var.
""" """
blocks = [] blocks = []
for var in var_list: for var in var_list:
...@@ -192,22 +194,24 @@ class DistributeTranspiler: ...@@ -192,22 +194,24 @@ class DistributeTranspiler:
self.trainer_id = trainer_id self.trainer_id = trainer_id
pserver_endpoints = pservers.split(",") pserver_endpoints = pservers.split(",")
# step1 # step1: For large parameters and gradients, split them into smaller
# blocks.
param_list = [pg[0] for pg in params_grads] param_list = [pg[0] for pg in params_grads]
grad_list = [pg[1] for pg in params_grads] grad_list = [pg[1] for pg in params_grads]
grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints)) grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
param_blocks = split_dense_variable(param_list, len(pserver_endpoints)) param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
# step2 # step2: Create new vars for the parameters and gradients blocks and
# add ops to do the split.
grad_var_mapping = self._append_split_op(program, grad_blocks) grad_var_mapping = self._append_split_op(program, grad_blocks)
# step3 param_var_mapping = self._create_vars_from_blocklist(program,
param_blocks)
# step3: Add gradients as send op inputs and parameters as send
# op outputs.
send_inputs = [] send_inputs = []
send_outputs = [] send_outputs = []
for b in grad_blocks: # append by order for b in grad_blocks: # append by order
varname, block_id, _ = b.split(":") varname, block_id, _ = b.split(":")
send_inputs.append(grad_var_mapping[varname][int(block_id)]) send_inputs.append(grad_var_mapping[varname][int(block_id)])
param_var_mapping = self._create_vars_from_blocklist(program,
param_blocks)
for b in param_blocks: for b in param_blocks:
varname, block_id, _ = b.split(":") varname, block_id, _ = b.split(":")
send_outputs.append(param_var_mapping[varname][int(block_id)]) send_outputs.append(param_var_mapping[varname][int(block_id)])
...@@ -237,7 +241,7 @@ class DistributeTranspiler: ...@@ -237,7 +241,7 @@ class DistributeTranspiler:
"RPCClient": rpc_client_var}, "RPCClient": rpc_client_var},
attrs={"endpoints": pserver_endpoints, attrs={"endpoints": pserver_endpoints,
"epmap": eplist}) "epmap": eplist})
# step4 # step4: Concat the parameters splits together after recv.
for varname, splited_var in param_var_mapping.iteritems(): for varname, splited_var in param_var_mapping.iteritems():
if len(splited_var) <= 1: if len(splited_var) <= 1:
continue continue
...@@ -251,6 +255,7 @@ class DistributeTranspiler: ...@@ -251,6 +255,7 @@ class DistributeTranspiler:
def get_trainer_program(self): def get_trainer_program(self):
# remove optimize ops and add a send op to main_program # remove optimize ops and add a send op to main_program
self.program.global_block().delete_ops(self.optimize_ops) self.program.global_block().delete_ops(self.optimize_ops)
self.program.sync_with_cpp()
# FIXME(typhoonzero): serialize once will fix error occurs when clone. # FIXME(typhoonzero): serialize once will fix error occurs when clone.
self.program.__str__() self.program.__str__()
return self.program return self.program
...@@ -258,13 +263,14 @@ class DistributeTranspiler: ...@@ -258,13 +263,14 @@ class DistributeTranspiler:
def get_pserver_program(self, endpoint): def get_pserver_program(self, endpoint):
""" """
Get pserver side program using the endpoint. Get pserver side program using the endpoint.
TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
NOTE: assume blocks of the same variable is not distributed NOTE: assume blocks of the same variable is not distributed
on the same pserver, only change param/grad varnames for on the same pserver, only change param/grad varnames for
trainers to fetch. trainers to fetch.
""" """
# step1 # step1
pserver_program = Program() pserver_program = Program()
# step2 # step2: Create vars to receive vars at parameter servers.
recv_inputs = [] recv_inputs = []
for v in self.param_grad_ep_mapping[endpoint]["params"]: for v in self.param_grad_ep_mapping[endpoint]["params"]:
self._clone_var(pserver_program.global_block(), v) self._clone_var(pserver_program.global_block(), v)
...@@ -273,17 +279,21 @@ class DistributeTranspiler: ...@@ -273,17 +279,21 @@ class DistributeTranspiler:
# we don't need to create them when grad arrives. # we don't need to create them when grad arrives.
# change client side var name to origin name by # change client side var name to origin name by
# removing ".trainer_%d" suffix # removing ".trainer_%d" suffix
suff_idx = v.name.find(".trainer_") suff_idx = v.name.find(".trainer_")
if suff_idx >= 0: if suff_idx >= 0:
orig_var_name = v.name[:suff_idx] orig_var_name = v.name[:suff_idx]
else: else:
orig_var_name = v.name orig_var_name = v.name
single_trainer_var = pserver_program.global_block().create_var( # NOTE: single_trainer_var must be created for multi-trainer
name=orig_var_name, # case to merge grads from multiple trainers
persistable=True, single_trainer_var = \
type=v.type, pserver_program.global_block().create_var(
dtype=v.dtype, name=orig_var_name,
shape=v.shape) persistable=True,
type=v.type,
dtype=v.dtype,
shape=v.shape)
if self.trainers > 1: if self.trainers > 1:
for trainer_id in xrange(self.trainers): for trainer_id in xrange(self.trainers):
var = pserver_program.global_block().create_var( var = pserver_program.global_block().create_var(
...@@ -344,7 +354,7 @@ class DistributeTranspiler: ...@@ -344,7 +354,7 @@ class DistributeTranspiler:
self._append_pserver_non_opt_ops(block, op) self._append_pserver_non_opt_ops(block, op)
append_block = optimize_block append_block = optimize_block
# append lr decay ops to the child block if exits # append lr decay ops to the child block if exists
lr_ops = self._get_lr_ops() lr_ops = self._get_lr_ops()
if len(lr_ops) > 0: if len(lr_ops) > 0:
for _, op in enumerate(lr_ops): for _, op in enumerate(lr_ops):
...@@ -447,8 +457,10 @@ class DistributeTranspiler: ...@@ -447,8 +457,10 @@ class DistributeTranspiler:
block_list, block_list,
add_trainer_suffix=False): add_trainer_suffix=False):
""" """
Create vars for each split.
NOTE: only grads need to be named for different trainers, use NOTE: only grads need to be named for different trainers, use
add_trainer_suffix to rename the grad vars. add_trainer_suffix to rename the grad vars.
:return: A dict mapping from original var name to each var split.
""" """
block_map = dict() block_map = dict()
var_mapping = dict() var_mapping = dict()
...@@ -615,6 +627,7 @@ class DistributeTranspiler: ...@@ -615,6 +627,7 @@ class DistributeTranspiler:
type="sum", type="sum",
inputs={"X": vars2merge}, inputs={"X": vars2merge},
outputs={"Out": merged_var}) outputs={"Out": merged_var})
# TODO(panyx0718): What if it's SELECTED_ROWS.
if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS: if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
optimize_block.append_op( optimize_block.append_op(
type="scale", type="scale",
...@@ -638,7 +651,7 @@ class DistributeTranspiler: ...@@ -638,7 +651,7 @@ class DistributeTranspiler:
shape=param_block.shape) shape=param_block.shape)
new_inputs[key] = tmpvar new_inputs[key] = tmpvar
elif key == "LearningRate": elif key == "LearningRate":
# leraning rate variable has already be created by non-optimize op, # learning rate variable has already be created by non-optimize op,
# don't create it once again. # don't create it once again.
lr_varname = opt_op.input(key)[0] lr_varname = opt_op.input(key)[0]
if pserver_block.vars.has_key(lr_varname): if pserver_block.vars.has_key(lr_varname):
...@@ -773,6 +786,7 @@ class DistributeTranspiler: ...@@ -773,6 +786,7 @@ class DistributeTranspiler:
return False return False
def _get_input_map_from_op(self, varmap, op): def _get_input_map_from_op(self, varmap, op):
"""Returns a dict from op input name to the vars in varmap."""
iomap = dict() iomap = dict()
for key in op.input_names: for key in op.input_names:
vars = [] vars = []
...@@ -785,6 +799,7 @@ class DistributeTranspiler: ...@@ -785,6 +799,7 @@ class DistributeTranspiler:
return iomap return iomap
def _get_output_map_from_op(self, varmap, op): def _get_output_map_from_op(self, varmap, op):
"""Returns a dict from op output name to the vars in varmap."""
iomap = dict() iomap = dict()
for key in op.output_names: for key in op.output_names:
vars = [] vars = []
...@@ -812,6 +827,7 @@ class DistributeTranspiler: ...@@ -812,6 +827,7 @@ class DistributeTranspiler:
find_ops.append(op) find_ops.append(op)
# make a union find struct by the ops in default_main_program # make a union find struct by the ops in default_main_program
ufind = UnionFind(block.ops) ufind = UnionFind(block.ops)
for op1 in block.ops: for op1 in block.ops:
for op2 in block.ops: for op2 in block.ops:
# NOTE: we need to skip all optimize ops, since it is connected # NOTE: we need to skip all optimize ops, since it is connected
......
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import warnings
import numpy as np import numpy as np
import layers import layers
...@@ -59,6 +60,9 @@ class Evaluator(object): ...@@ -59,6 +60,9 @@ class Evaluator(object):
""" """
def __init__(self, name, **kwargs): def __init__(self, name, **kwargs):
warnings.warn(
"The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead."
% (self.__class__.__name__, self.__class__.__name__), Warning)
self.states = [] self.states = []
self.metrics = [] self.metrics = []
self.helper = LayerHelper(name, **kwargs) self.helper = LayerHelper(name, **kwargs)
......
...@@ -659,7 +659,7 @@ class Block(object): ...@@ -659,7 +659,7 @@ class Block(object):
def __init__(self, program, idx): def __init__(self, program, idx):
self.desc = program.desc.block(idx) self.desc = program.desc.block(idx)
self.vars = dict() # var_name --> var self.vars = dict() # var_name --> var
self.ops = collections.deque() # operator list self.ops = list() # operator list
self.program = program self.program = program
self.removed_vars = dict() self.removed_vars = dict()
...@@ -818,6 +818,11 @@ class Block(object): ...@@ -818,6 +818,11 @@ class Block(object):
del self.vars[name] del self.vars[name]
self.sync_with_cpp() self.sync_with_cpp()
def remove_var(self, name):
self.sync_with_cpp()
self.desc.remove_var(name)
del self.vars[name]
def create_parameter(self, *args, **kwargs): def create_parameter(self, *args, **kwargs):
global_block = self.program.global_block() global_block = self.program.global_block()
param = Parameter(global_block, *args, **kwargs) param = Parameter(global_block, *args, **kwargs)
...@@ -831,6 +836,18 @@ class Block(object): ...@@ -831,6 +836,18 @@ class Block(object):
self.ops.append(op) self.ops.append(op)
return op return op
def insert_op(self, index, *args, **kwargs):
self.sync_with_cpp()
op_desc = self.desc.insert_op(index)
op = Operator(block=self, desc=op_desc, *args, **kwargs)
self.ops.insert(index, op)
return op
def remove_op(self, index):
self.sync_with_cpp()
self.desc.remove_op(index, index + 1)
del self.ops[index]
def delete_ops(self, ops): def delete_ops(self, ops):
# remove from cpp # remove from cpp
# FIXME(typhoonzero): remove only the first occurrence. # FIXME(typhoonzero): remove only the first occurrence.
...@@ -839,15 +856,16 @@ class Block(object): ...@@ -839,15 +856,16 @@ class Block(object):
end = list(self.ops).index(ops[-1]) end = list(self.ops).index(ops[-1])
except Exception, e: except Exception, e:
raise e raise e
self.desc.remove_op(start, end + 1) self.desc.remove_op(start, end + 1)
def slice_ops(self, start, end): def slice_ops(self, start, end):
return list(self.ops)[start:end] return self.ops[start:end]
def prepend_op(self, *args, **kwargs): def prepend_op(self, *args, **kwargs):
op_desc = self.desc.prepend_op() op_desc = self.desc.prepend_op()
op = Operator(self, op_desc, *args, **kwargs) op = Operator(self, op_desc, *args, **kwargs)
self.ops.appendleft(op) self.ops.insert(0, op)
return op return op
def sync_with_cpp(self): def sync_with_cpp(self):
...@@ -892,7 +910,7 @@ class Block(object): ...@@ -892,7 +910,7 @@ class Block(object):
for index in range((start_index - 1 - 1), -1, -1): for index in range((start_index - 1 - 1), -1, -1):
op_desc = ops_in_cpp[index] op_desc = ops_in_cpp[index]
op = Operator(self, op_desc) op = Operator(self, op_desc)
self.ops.appendleft(op) self.ops.insert(0, op)
# sync ops append to the end of cpp_ops # sync ops append to the end of cpp_ops
for index in range((end_index + 1), len(ops_in_cpp)): for index in range((end_index + 1), len(ops_in_cpp)):
...@@ -965,6 +983,13 @@ class Block(object): ...@@ -965,6 +983,13 @@ class Block(object):
if var.type == core.VarDesc.VarType.STEP_SCOPES: if var.type == core.VarDesc.VarType.STEP_SCOPES:
ret_var = self.create_var( ret_var = self.create_var(
name=var.name, persistable=var.persistable, type=var.type) name=var.name, persistable=var.persistable, type=var.type)
elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
ret_var = self.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
persistable=True)
else: else:
ret_var = self.create_var( ret_var = self.create_var(
name=var.name, name=var.name,
......
...@@ -83,7 +83,7 @@ class Graph(object): ...@@ -83,7 +83,7 @@ class Graph(object):
file = open(dot_path, 'w') file = open(dot_path, 'w')
file.write(self.__str__()) file.write(self.__str__())
image_path = os.path.join( image_path = os.path.join(
os.path.dirname(__file__), dot_path[:-3] + "pdf") os.path.dirname(dot_path), dot_path[:-3] + "pdf")
cmd = ["dot", "-Tpdf", dot_path, "-o", image_path] cmd = ["dot", "-Tpdf", dot_path, "-o", image_path]
subprocess.Popen( subprocess.Popen(
cmd, cmd,
...@@ -199,7 +199,7 @@ class GraphPreviewGenerator(object): ...@@ -199,7 +199,7 @@ class GraphPreviewGenerator(object):
else: else:
self.graph.show(path) self.graph.show(path)
def add_param(self, name, data_type, shape, highlight=False): def add_param(self, name, data_type, highlight=False):
label = '\n'.join([ label = '\n'.join([
'<<table cellpadding="5">', '<<table cellpadding="5">',
' <tr>', ' <tr>',
...@@ -214,11 +214,6 @@ class GraphPreviewGenerator(object): ...@@ -214,11 +214,6 @@ class GraphPreviewGenerator(object):
str(data_type), str(data_type),
' </td>' ' </td>'
' </tr>', ' </tr>',
' <tr>',
' <td>',
'[%s]' % 'x'.join(shape),
' </td>'
' </tr>',
'</table>>', '</table>>',
]) ])
return self.graph.node( return self.graph.node(
......
...@@ -18,7 +18,8 @@ import contextlib ...@@ -18,7 +18,8 @@ import contextlib
__all__ = [ __all__ = [
'Constant', 'Uniform', 'Normal', 'Xavier', 'force_init_on_cpu', 'Constant', 'Uniform', 'Normal', 'Xavier', 'force_init_on_cpu',
'init_on_cpu' 'init_on_cpu', 'ConstantInitializer', 'UniformInitializer',
'NormalInitializer', 'XavierInitializer'
] ]
_force_init_on_cpu_ = False _force_init_on_cpu_ = False
......
...@@ -21,8 +21,7 @@ from ..executor import global_scope ...@@ -21,8 +21,7 @@ from ..executor import global_scope
__all__ = [ __all__ = [
'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file', 'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
'open_files', 'read_file', 'create_shuffle_reader', 'open_files', 'read_file', 'shuffle', 'double_buffer'
'create_double_buffer_reader', 'create_multi_pass_reader'
] ]
...@@ -237,13 +236,9 @@ def monkey_patch_reader_methods(reader): ...@@ -237,13 +236,9 @@ def monkey_patch_reader_methods(reader):
var = scope.find_var(reader.name) var = scope.find_var(reader.name)
return var.get_reader() return var.get_reader()
def eof():
return not __get_reader__().has_next()
def reset(): def reset():
return __get_reader__().reset() return __get_reader__().reset()
reader.eof = eof
reader.reset = reset reader.reset = reset
reader.stop_gradient = True reader.stop_gradient = True
reader.persistable = True reader.persistable = True
...@@ -283,7 +278,42 @@ def _copy_reader_create_op_(block, op): ...@@ -283,7 +278,42 @@ def _copy_reader_create_op_(block, op):
return new_op return new_op
def open_recordio_file(filename, shapes, lod_levels, dtypes): def open_recordio_file(filename,
shapes,
lod_levels,
dtypes,
pass_num=1,
for_parallel=False):
"""
Open a RecordIO file
This layer takes a RecordIO file to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from the given RecordIO file.
Args:
filename(str): The RecordIO file's name.
shapes(list): List of tuples which declaring data shapes.
lod_levels(list): List of ints which declaring data lod_level.
dtypes(list): List of strs which declaring data type.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
Variable: A Reader Variable via which we can get RecordIO file data.
Examples:
.. code-block:: python
reader = fluid.layers.io.open_recordio_file(
filename='./data.recordio',
shapes=[(3,224,224), (1)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.read_file(reader)
"""
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes] dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
shape_concat = [] shape_concat = []
ranks = [] ranks = []
...@@ -310,10 +340,63 @@ def open_recordio_file(filename, shapes, lod_levels, dtypes): ...@@ -310,10 +340,63 @@ def open_recordio_file(filename, shapes, lod_levels, dtypes):
startup_var.persistable = True startup_var.persistable = True
main_prog_var = _copy_reader_var_(default_main_program().current_block(), main_prog_var = _copy_reader_var_(default_main_program().current_block(),
startup_var) startup_var)
if pass_num > 1:
main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
if for_parallel:
main_prog_var = parallel(reader=main_prog_var)
return monkey_patch_reader_methods(main_prog_var) return monkey_patch_reader_methods(main_prog_var)
def open_files(filenames, thread_num, shapes, lod_levels, dtypes): def open_files(filenames,
shapes,
lod_levels,
dtypes,
thread_num,
buffer_size=None,
pass_num=1,
for_parallel=False):
"""
Open files
This layer takes a list of files to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from given files. All files must
have name suffixs to indicate their formats, e.g., '*.recordio'.
Args:
filenames(list): The list of file names.
shapes(list): List of tuples which declaring data shapes.
lod_levels(list): List of ints which declaring data lod_level.
dtypes(list): List of strs which declaring data type.
thread_num(int): The maximal concurrent prefetch thread number.
buffer_size(int): The size of prefetch buffer.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
Variable: A Reader Variable via which we can get file data.
Examples:
.. code-block:: python
reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
'./data2.recordio'],
shapes=[(3,224,224), (1)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'],
thread_num=2,
buffer_size=2)
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.io.read_file(reader)
"""
if buffer_size is None:
buffer_size = thread_num
if isinstance(filenames, basestring):
filenames = [filenames]
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes] dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
shape_concat = [] shape_concat = []
ranks = [] ranks = []
...@@ -322,29 +405,36 @@ def open_files(filenames, thread_num, shapes, lod_levels, dtypes): ...@@ -322,29 +405,36 @@ def open_files(filenames, thread_num, shapes, lod_levels, dtypes):
shape_concat.extend(shape) shape_concat.extend(shape)
ranks.append(len(shape)) ranks.append(len(shape))
var_name = unique_name('multiple_reader') multi_file_reader_name = unique_name('multi_file_reader')
startup_blk = default_startup_program().current_block() startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=var_name) startup_reader = startup_blk.create_var(name=multi_file_reader_name)
startup_blk.append_op( startup_blk.append_op(
type='open_files', type='open_files',
outputs={'Out': [startup_var]}, outputs={'Out': [startup_reader]},
attrs={ attrs={
'shape_concat': shape_concat, 'shape_concat': shape_concat,
'lod_levels': lod_levels, 'lod_levels': lod_levels,
'ranks': ranks, 'ranks': ranks,
'file_names': filenames, 'file_names': filenames,
'thread_num': thread_num 'thread_num': thread_num,
'buffer_size': buffer_size
}) })
startup_var.desc.set_dtypes(dtypes) startup_reader.desc.set_dtypes(dtypes)
startup_var.persistable = True startup_reader.persistable = True
main_prog_var = _copy_reader_var_(default_main_program().current_block(), main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
startup_var) startup_reader)
return monkey_patch_reader_methods(main_prog_var) if pass_num > 1:
main_prog_reader = multi_pass(
reader=main_prog_reader, pass_num=pass_num)
if for_parallel:
main_prog_reader = parallel(reader=main_prog_reader)
return monkey_patch_reader_methods(main_prog_reader)
def __create_decorated_reader__(op_type, reader, attrs): def __create_shared_decorated_reader__(op_type, reader, attrs):
var_name = unique_name(op_type) var_name = unique_name(op_type)
startup_blk = default_startup_program().current_block() startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=var_name) startup_var = startup_blk.create_var(name=var_name)
...@@ -360,22 +450,41 @@ def __create_decorated_reader__(op_type, reader, attrs): ...@@ -360,22 +450,41 @@ def __create_decorated_reader__(op_type, reader, attrs):
return monkey_patch_reader_methods(main_prog_var) return monkey_patch_reader_methods(main_prog_var)
def create_shuffle_reader(reader, buffer_size): def __create_unshared_decorated_reader__(op_type, reader, attrs):
return __create_decorated_reader__('create_shuffle_reader', reader, new_reader_name = unique_name(op_type)
{'buffer_size': int(buffer_size)}) main_blk = default_main_program().current_block()
new_reader = main_blk.create_var(name=new_reader_name)
main_blk.append_op(
type=op_type,
inputs={'UnderlyingReader': reader},
outputs={'Out': [new_reader]},
attrs=attrs)
new_reader.persistable = True
new_reader.stop_gradient = True
return monkey_patch_reader_methods(new_reader)
def shuffle(reader, buffer_size):
return __create_unshared_decorated_reader__(
'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
def create_double_buffer_reader(reader, place=None): def double_buffer(reader, place=None):
attrs = dict() attrs = dict()
if place is not None: if place is not None:
attrs['place'] = str(place).upper() attrs['place'] = str(place).upper()
return __create_decorated_reader__('create_double_buffer_reader', reader, return __create_unshared_decorated_reader__('create_double_buffer_reader',
attrs) reader, attrs)
def multi_pass(reader, pass_num):
return __create_shared_decorated_reader__(
'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
def create_multi_pass_reader(reader, pass_num): def parallel(reader):
return __create_decorated_reader__('create_multi_pass_reader', reader, return __create_shared_decorated_reader__('create_threaded_reader', reader,
{'pass_num': int(pass_num)}) {})
def read_file(file_obj): def read_file(file_obj):
......
...@@ -15,12 +15,13 @@ ...@@ -15,12 +15,13 @@
All layers just related to metric. All layers just related to metric.
""" """
import warnings
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant from ..initializer import Normal, Constant
from ..framework import Variable from ..framework import Variable
from ..param_attr import ParamAttr from ..param_attr import ParamAttr
__all__ = ['accuracy'] __all__ = ['accuracy', 'auc']
def accuracy(input, label, k=1, correct=None, total=None): def accuracy(input, label, k=1, correct=None, total=None):
...@@ -55,3 +56,37 @@ def accuracy(input, label, k=1, correct=None, total=None): ...@@ -55,3 +56,37 @@ def accuracy(input, label, k=1, correct=None, total=None):
"Total": [total], "Total": [total],
}) })
return acc_out return acc_out
def auc(input, label, curve='ROC', num_thresholds=200):
warnings.warn(
"This interface not recommended, fluid.layers.auc compute the auc at every minibatch, \
but can not aggregate them and get the pass AUC, because pass \
auc can not be averaged with weighted from the minibatch auc value. \
Please use fluid.metrics.Auc, it can compute the auc value via Python natively, \
which can get every minibatch and every pass auc value.", Warning)
helper = LayerHelper("auc", **locals())
topk_out = helper.create_tmp_variable(dtype=input.dtype)
topk_indices = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="top_k",
inputs={"X": [input]},
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
auc_out = helper.create_tmp_variable(dtype="float32")
if correct is None:
correct = helper.create_tmp_variable(dtype="int64")
if total is None:
total = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
attrs={"curve": curve,
"num_thresholds": num_thresholds},
outputs={"AUC": [auc_out], })
return auc_out
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fluid Metrics
The metrics are accomplished via Python natively.
"""
import numpy as np
import copy
import warnings
__all__ = [
'MetricBase',
'CompositeMetric',
'Accuracy',
'ChunkEvaluator',
'EditDistance',
'DetectionMAP',
'Auc',
]
def _is_numpy_(var):
return isinstance(var, (np.ndarray, np.generic))
def _is_number_(var):
return isinstance(var, int) or isinstance(var, float) or (isinstance(
var, np.ndarray) and var.shape == (1, ))
def _is_number_or_matrix_(var):
return _is_number_(var) or isinstance(var, np.ndarray)
class MetricBase(object):
"""
Base Class for all evaluators
Args:
name(str): The name of evaluator. such as, "accuracy". Used for generate
temporary variable name.
Interface:
Note(*) : the states is the attributes who not has _ prefix.
get_config(): print current states and configuration
reset(): clear the states. If the Metrics states type is not (int, float, np.ndarray),
Please override this method.
update(): update states at every minibatch
eval(): get metric evaluation in numpy type.
"""
def __init__(self, name, **kwargs):
self._name = str(name) if name != None else self.__class__.__name__
self._kwargs = kwargs if kwargs != None else dict()
self.reset()
def __str__(self):
return self._name
def reset(self):
"""
states is the attributes who not has _ prefix.
reset the states of metrics.
"""
states = {
attr: value
for attr, value in self.__dict__.iteritems()
if not attr.startswith("_")
}
for attr, value in states.iteritems():
if isinstance(value, int):
setattr(self, attr, 0)
elif isinstance(value, float):
setattr(self, attr, .0)
elif isinstance(value, (np.ndarray, np.generic)):
setattr(self, attr, np.zeros_like(value))
else:
setattr(self, attr, None)
def get_config(self):
states = {
attr: value
for attr, value in self.__dict__.iteritems()
if not attr.startswith("_")
}
config = copy.deepcopy(self._kwargs)
config.update({"name": self._name, "states": copy.deepcopy(states)})
return config
def update(self):
raise NotImplementedError()
def eval(self):
raise NotImplementedError()
class CompositeMetric(MetricBase):
"""
Compute multiple metrics in each minibatch.
for example, merge F1, accuracy, recall into one Metric.
"""
def __init__(self, name=None, **kwargs):
super(CompositeMetric, self).__init__(name, kwargs)
self._metrics = []
def add_metric(self, metric):
if not isinstance(metric, MetricBase):
raise ValueError("SubMetric should be inherit from MetricBase.")
self._metrics.append(metric)
def eval(self):
ans = []
for m in self._metrics:
ans.append(m.eval())
return ans
class Accuracy(MetricBase):
"""
Accumulate the accuracy from minibatches and compute the average accuracy
for every pass.
Args:
name: the metrics name
Example:
minibatch_accuracy = fluid.layers.accuracy(pred, label)
accuracy_evaluator = fluid.metrics.Accuracy()
for epoch in PASS_NUM:
accuracy_evaluator.reset()
for data in batches:
loss = exe.run(fetch_list=[cost, minibatch_accuracy])
accuracy_evaluator.update(value=minibatch_accuracy, weight=batches)
accuracy = accuracy_evaluator.eval()
"""
def __init__(self, name=None):
super(Accuracy, self).__init__(name)
self.value = .0
self.weight = .0
def update(self, value, weight):
if not _is_number_or_matrix_(value):
raise ValueError(
"The 'value' must be a number(int, float) or a numpy ndarray.")
if not _is_number_(weight):
raise ValueError("The 'weight' must be a number(int, float).")
self.value += value * weight
self.weight += weight
def eval(self):
if self.weight == 0:
raise ValueError(
"There is no data in Accuracy Metrics. Please check layers.accuracy output has added to Accuracy."
)
return self.value / self.weight
class ChunkEvalutor(MetricBase):
"""
Accumulate counter numbers output by chunk_eval from mini-batches and
compute the precision recall and F1-score using the accumulated counter
numbers.
"""
def __init__(self, name=None):
super(ChunkEvalutor, self).__init__(name)
self.num_infer_chunks = 0
self.num_label_chunks = 0
self.num_correct_chunks = 0
def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks):
if not _is_number_or_matrix_(num_infer_chunks):
raise ValueError(
"The 'num_infer_chunks' must be a number(int, float) or a numpy ndarray."
)
if not _is_number_or_matrix_(num_label_chunks):
raise ValueError(
"The 'num_label_chunks' must be a number(int, float) or a numpy ndarray."
)
if not _is_number_or_matrix_(num_correct_chunks):
raise ValueError(
"The 'num_correct_chunks' must be a number(int, float) or a numpy ndarray."
)
self.num_infer_chunks += num_infer_chunks
self.num_label_chunks += num_label_chunks
self.num_correct_chunks += num_correct_chunks
def eval(self):
precision = float(
self.num_correct_chunks
) / self.num_infer_chunks if self.num_infer_chunks else 0
recall = float(self.num_correct_chunks
) / self.num_label_chunks if self.num_label_chunks else 0
f1_score = float(2 * precision * recall) / (
precision + recall) if self.num_correct_chunks else 0
return precision, recall, f1_score
class EditDistance(MetricBase):
"""
Accumulate edit distance sum and sequence number from mini-batches and
compute the average edit_distance and instance error of all batches.
Args:
name: the metrics name
Example:
edit_distance_metrics = fluid.layers.edit_distance(input, label)
distance_evaluator = fluid.metrics.EditDistance()
for epoch in PASS_NUM:
distance_evaluator.reset()
for data in batches:
loss = exe.run(fetch_list=[cost] + list(edit_distance_metrics))
distance_evaluator.update(*edit_distance_metrics)
distance, instance_error = distance_evaluator.eval()
In the above example:
'distance' is the average of the edit distance in a pass.
'instance_error' is the instance error rate in a pass.
"""
def __init__(self, name):
super(EditDistance, self).__init__(name)
self.total_distance = .0
self.seq_num = 0
self.instance_error = 0
def update(self, distances, seq_num):
if not _is_numpy_(distances):
raise ValueError("The 'distances' must be a numpy ndarray.")
if not _is_number_(seq_num):
raise ValueError("The 'seq_num' must be a number(int, float).")
seq_right_count = np.sum(distances == 0)
total_distance = np.sum(distances)
self.seq_num += seq_num
self.instance_error += seq_num - seq_right_count
self.total_distance += total_distance
def eval():
if self.seq_num == 0:
raise ValueError(
"There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance."
)
avg_distance = self.total_distance / self.seq_num
avg_instance_error = self.instance_error / self.seq_num
return avg_distance, avg_instance_error
class DetectionMAP(MetricBase):
"""
Calculate the detection mean average precision (mAP).
TODO (Dang Qingqing): update the following doc.
The general steps are as follows:
1. calculate the true positive and false positive according to the input
of detection and labels.
2. calculate mAP value, support two versions: '11 point' and 'integral'.
Please get more information from the following articles:
https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325
"""
def __init__(self, name=None):
super(DetectionMAP, self).__init__(name)
# the current map value
self.value = .0
def update(self, value, weight):
if not _is_number_or_matrix_(value):
raise ValueError(
"The 'value' must be a number(int, float) or a numpy ndarray.")
if not _is_number_(weight):
raise ValueError("The 'weight' must be a number(int, float).")
self.value += value
self.weight += weight
def eval(self):
if self.weight == 0:
raise ValueError(
"There is no data in DetectionMAP Metrics. "
"Please check layers.detection_map output has added to DetectionMAP."
)
return self.value / self.weight
class Auc(MetricBase):
"""
Auc Metrics which adapts to binary classification.
Need to note that auc metrics compute the value via Python natively.
If you concern the speed, please use the fluid.layers.auc instead.
The `auc` function creates four local variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives` that are used to
compute the AUC. To discretize the AUC curve, a linearly spaced set of
thresholds is used to compute pairs of recall and precision values. The area
under the ROC-curve is therefore computed using the height of the recall
values by the false positive rate, while the area under the PR-curve is the
computed using the height of the precision values by the recall.
Args:
name: metric name
curve: Specifies the name of the curve to be computed, 'ROC' [default] or
'PR' for the Precision-Recall-curve.
num_thresholds: The number of thresholds to use when discretizing the roc
curve.
"NOTE: only implement the ROC curve type via Python now."
"""
def __init__(self, name, curve='ROC', num_thresholds=200):
super(MetricBase, self).__init__(name, curve, num_thresholds)
self._curve = curve
self._num_thresholds = num_thresholds
self._epsilon = 1e-6
self.tp_list = np.ndarray((num_thresholds, ))
self.fn_list = np.ndarray((num_thresholds, ))
self.tn_list = np.ndarray((num_thresholds, ))
self.fp_list = np.ndarray((num_thresholds, ))
def update(self, labels, predictions, axis=1):
if not _is_numpy_(labels):
raise ValueError("The 'labels' must be a numpy ndarray.")
if not _is_numpy_(predictions):
raise ValueError("The 'predictions' must be a numpy ndarray.")
kepsilon = 1e-7 # to account for floating point imprecisions
thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
for i in range(num_thresholds - 2)]
thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon]
# caculate TP, FN, TN, FP count
for idx_thresh, thresh in enumerate(thresholds):
tp, fn, tn, fp = 0, 0, 0, 0
for i, lbl in enumerate(labels):
if lbl:
if predictions[i, 0] >= thresh:
tp += 1
else:
fn += 1
else:
if predictions[i, 0] >= thresh:
fp += 1
else:
tn += 1
tp_list[idx_thresh] += tp
fn_list[idx_thresh] += fn
tn_list[idx_thresh] += tn
fp_list[idx_thresh] += fp
def eval(self):
epsilon = self._epsilon
num_thresholds = self._num_thresholds
tpr = (tp_list.astype("float32") + epsilon) / (
tp_list + fn_list + epsilon)
fpr = fp_list.astype("float32") / (fp_list + tn_list + epsilon)
rec = (tp_list.astype("float32") + epsilon) / (
tp_list + fp_list + epsilon)
x = fpr[:num_thresholds - 1] - fpr[1:]
y = (tpr[:num_thresholds - 1] + tpr[1:]) / 2.0
auc_value = np.sum(x * y)
return auc_value
...@@ -22,10 +22,49 @@ __all__ = ['ParallelExecutor'] ...@@ -22,10 +22,49 @@ __all__ = ['ParallelExecutor']
class ParallelExecutor(object): class ParallelExecutor(object):
def __init__(self, def __init__(self,
loss_name,
use_cuda, use_cuda,
loss_name=None,
main_program=None,
num_threads=None, num_threads=None,
allow_op_delay=False): allow_op_delay=False,
share_vars_from=None):
"""
ParallelExecutor can run program in parallel.
Args:
use_cuda(bool): Whether to use CUDA or not.
loss_name(str, default None): The loss name must set in training.
main_program(Program, default None): The program that need to run,
if not provided, then default_main_program will be used.
num_threads(int, default None): How many threads are used for
training.
allow_op_delay(bool, default False): Whether to delay and buffer
some operators together for scheduling or not, which may
improve performance in some cases, defalut False.
share_vars_from(ParallelExecutor, default None): If provied,
it will share variables from the specified ParallelExecutor.
Returns:
A ParallelExecutor object.
Raises:
TypeError: If share_vars_from is provided, but not ParallelExecutor
object.
Examples:
.. code-block:: python
train_exe = fluid.ParallelExecutor(
use_cuda=True, loss_name=loss.name)
test_exe = fluid.ParallelExecutor(
use_cuda=True,
main_program=test_program,
share_vars_from=train_exe)
train_loss, = train_exe.run([loss.name], feed_dict=feed_dict)
test_loss, = test_exe.run([loss.name], feed_dict=feed_dict)
"""
self._places = [] self._places = []
self._act_places = [] self._act_places = []
if use_cuda: if use_cuda:
...@@ -48,12 +87,26 @@ class ParallelExecutor(object): ...@@ -48,12 +87,26 @@ class ParallelExecutor(object):
# performance. Worth tunning for other models in the future. # performance. Worth tunning for other models in the future.
num_threads = len(self._places) num_threads = len(self._places)
else: else:
min(len(self._places) * 2, multiprocessing.cpu_count()) num_threads = min(
len(self._places) * 2, multiprocessing.cpu_count())
startup = framework.default_startup_program() main = main_program
main = framework.default_main_program() main = main if main else framework.default_main_program()
scope = executor.global_scope() scope = executor.global_scope()
if share_vars_from and not isinstance(share_vars_from,
ParallelExecutor):
raise TypeError("share_vars_from must be ParallelExecutor.")
local_scopes = share_vars_from.executor.local_scopes(
) if share_vars_from else []
self.persistable_vars = [
v.name
for v in filter(lambda var: \
var.persistable and var.type != core.VarDesc.VarType.RAW,
main.list_vars())
]
self.executor = core.ParallelExecutor( self.executor = core.ParallelExecutor(
num_threads, num_threads,
True if use_cuda else False, # use_event True if use_cuda else False, # use_event
...@@ -62,10 +115,11 @@ class ParallelExecutor(object): ...@@ -62,10 +115,11 @@ class ParallelExecutor(object):
p.name for p in main.global_block().iter_parameters() p.name for p in main.global_block().iter_parameters()
if not p.stop_gradient if not p.stop_gradient
]), ]),
startup.desc, set(self.persistable_vars),
main.desc, main.desc,
loss_name, loss_name if loss_name else '',
scope, scope,
local_scopes,
allow_op_delay) allow_op_delay)
self.scope = scope self.scope = scope
...@@ -91,3 +145,6 @@ class ParallelExecutor(object): ...@@ -91,3 +145,6 @@ class ParallelExecutor(object):
self.executor.run(fetch_list, fetch_var_name, feed_tensor_dict) self.executor.run(fetch_list, fetch_var_name, feed_tensor_dict)
arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array() arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
return [arr[i] for i in range(len(arr))] return [arr[i] for i in range(len(arr))]
def bcast_params(self):
self.executor.bcast_params(set(self.persistable_vars))
...@@ -22,221 +22,504 @@ from scipy.special import expit ...@@ -22,221 +22,504 @@ from scipy.special import expit
class TestExp(OpTest): class TestExp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "exp" self.op_type = "exp"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") self.init_dtype()
}
self.outputs = {'Out': np.exp(self.inputs['X'])} x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.exp(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Exp(TestExp):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSigmoid(OpTest): class TestSigmoid(OpTest):
def setUp(self): def setUp(self):
self.op_type = "sigmoid" self.op_type = "sigmoid"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") self.init_dtype()
}
self.outputs = {'Out': 1 / (1 + np.exp(-self.inputs['X']))} x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
out = 1 / (1 + np.exp(-x))
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
self.check_grad(['X'], 'Out', max_relative_error=0.008) if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.01)
def init_dtype(self):
pass
class TestFP16Sigmoid(TestSigmoid):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestLogSigmoid(OpTest): class TestLogSigmoid(OpTest):
def setUp(self): def setUp(self):
self.op_type = "logsigmoid" self.op_type = "logsigmoid"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") self.init_dtype()
}
self.outputs = {'Out': np.log(1 / (1 + np.exp(-self.inputs['X'])))} x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
out = np.log(1 / (1 + np.exp(-x)))
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.008) self.check_grad(['X'], 'Out', max_relative_error=0.008)
def init_dtype(self):
pass
class TestFP16LogSigmoid(TestLogSigmoid):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestTanh(OpTest): class TestTanh(OpTest):
def setUp(self): def setUp(self):
self.op_type = "tanh" self.op_type = "tanh"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") self.init_dtype()
}
self.outputs = {'Out': np.tanh(self.inputs['X'])} x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.tanh(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Tanh(TestTanh):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestTanhShrink(OpTest): class TestTanhShrink(OpTest):
def setUp(self): def setUp(self):
self.op_type = "tanh_shrink" self.op_type = "tanh_shrink"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32") self.init_dtype()
}
self.outputs = {'Out': self.inputs['X'] - np.tanh(self.inputs['X'])} x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
out = x - np.tanh(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.008) self.check_grad(['X'], 'Out', max_relative_error=0.008)
def init_dtype(self):
pass
class TestFP16TanhShrink(TestTanhShrink):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestHardShrink(OpTest): class TestHardShrink(OpTest):
def setUp(self): def setUp(self):
self.op_type = "hard_shrink" self.op_type = "hard_shrink"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.dtype = np.float32
self.init_dtype()
threshold = 0.5 threshold = 0.5
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
out = np.copy(x)
out[(out >= -threshold) & (out <= threshold)] = 0
self.inputs = {'X': x}
self.attrs = {'lambda': threshold} self.attrs = {'lambda': threshold}
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
t = np.copy(x) self.outputs = {'Out': out}
t[(t >= -threshold) & (t <= threshold)] = 0
self.outputs = {'Out': t}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.005) self.check_grad(['X'], 'Out', max_relative_error=0.005)
def init_dtype(self):
pass
class TestFP16HardShrink(TestHardShrink):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSoftShrink(OpTest): class TestSoftShrink(OpTest):
def setUp(self): def setUp(self):
self.op_type = "softshrink" self.op_type = "softshrink"
self.dtype = np.float32
self.init_dtype()
lambda_val = 0.1 lambda_val = 0.1
x = np.random.uniform(0.25, 10, [4, 4]).astype(self.dtype)
out = np.copy(x)
out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
out - lambda_val)
self.attrs = {'lambda': lambda_val} self.attrs = {'lambda': lambda_val}
self.inputs = { self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
'X': np.random.uniform(0.25, 10, [4, 4]).astype("float32") self.outputs = {'Out': out}
}
y = np.copy(self.inputs['X'])
y = (y < -lambda_val) * (y + lambda_val) + (y > lambda_val) * (
y - lambda_val)
self.outputs = {'Out': y}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16SoftShrink(TestSoftShrink):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSqrt(OpTest): class TestSqrt(OpTest):
def setUp(self): def setUp(self):
self.op_type = "sqrt" self.op_type = "sqrt"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") self.init_dtype()
}
self.outputs = {'Out': np.sqrt(self.inputs['X'])} x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.sqrt(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Sqrt(TestSqrt):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestAbs(OpTest): class TestAbs(OpTest):
def setUp(self): def setUp(self):
self.op_type = "abs" self.op_type = "abs"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
# Because we set delta = 0.005 in caculating numeric gradient, # Because we set delta = 0.005 in caculating numeric gradient,
# if x is too small, such as 0.002, x_neg will be -0.003 # if x is too small, such as 0.002, x_neg will be -0.003
# x_pos will be 0.007, so the numeric gradient is unaccurate. # x_pos will be 0.007, so the numeric gradient is unaccurate.
# we should avoid this # we should avoid this
x[np.abs(x) < 0.005] = 0.02 x[np.abs(x) < 0.005] = 0.02
self.inputs = {'X': x} out = np.abs(x)
self.outputs = {'Out': np.abs(self.inputs['X'])}
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Abs(TestAbs):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCeil(OpTest): class TestCeil(OpTest):
def setUp(self): def setUp(self):
self.op_type = "ceil" self.op_type = "ceil"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.dtype = np.float32
self.inputs = {'X': x} self.init_dtype()
self.outputs = {'Out': np.ceil(self.inputs['X'])}
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
out = np.ceil(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Ceil(TestCeil):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestFloor(OpTest): class TestFloor(OpTest):
def setUp(self): def setUp(self):
self.op_type = "floor" self.op_type = "floor"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.dtype = np.float32
self.inputs = {'X': x} self.init_dtype()
self.outputs = {'Out': np.floor(self.inputs['X'])}
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
out = np.floor(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Floor(TestFloor):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCos(OpTest): class TestCos(OpTest):
def setUp(self): def setUp(self):
self.op_type = "cos" self.op_type = "cos"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.dtype = np.float32
self.inputs = {'X': x} self.init_dtype()
self.outputs = {'Out': np.cos(self.inputs['X'])}
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
out = np.cos(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Cos(TestCos):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSin(OpTest): class TestSin(OpTest):
def setUp(self): def setUp(self):
self.op_type = "sin" self.op_type = "sin"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.dtype = np.float32
self.inputs = {'X': x} self.init_dtype()
self.outputs = {'Out': np.sin(self.inputs['X'])}
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
out = np.sin(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Sin(TestSin):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestRound(OpTest): class TestRound(OpTest):
def setUp(self): def setUp(self):
self.op_type = "round" self.op_type = "round"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.dtype = np.float32
self.inputs = {'X': x} self.init_dtype()
self.outputs = {'Out': np.round(self.inputs['X'])}
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
out = np.round(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Round(TestRound):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestRelu(OpTest): class TestRelu(OpTest):
def setUp(self): def setUp(self):
...@@ -278,222 +561,463 @@ class TestFP16Relu(TestRelu): ...@@ -278,222 +561,463 @@ class TestFP16Relu(TestRelu):
class TestBRelu(OpTest): class TestBRelu(OpTest):
def setUp(self): def setUp(self):
self.op_type = "brelu" self.op_type = "brelu"
x = np.random.uniform(-1, 1, [4, 4]).astype("float32") self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(-1, 1, [4, 4]).astype(self.dtype)
t_min = 1.0 t_min = 1.0
t_max = 4.0 t_max = 4.0
# The same with TestAbs # The same with TestAbs
x[np.abs(x - t_min) < 0.005] = t_min + 0.02 x[np.abs(x - t_min) < 0.005] = t_min + 0.02
x[np.abs(x - t_max) < 0.005] = t_max + 0.02 x[np.abs(x - t_max) < 0.005] = t_max + 0.02
self.inputs = {'X': x}
self.attrs = {'t_min': t_min, 't_max': t_max}
t = np.copy(x) t = np.copy(x)
t[t < t_min] = t_min t[t < t_min] = t_min
t[t > t_max] = t_max t[t > t_max] = t_max
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'t_min': t_min, 't_max': t_max}
self.outputs = {'Out': t} self.outputs = {'Out': t}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.02) self.check_grad(['X'], 'Out', max_relative_error=0.02)
def init_dtype(self):
pass
class TestFP16BRelu(TestBRelu):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestRelu6(OpTest): class TestRelu6(OpTest):
def setUp(self): def setUp(self):
self.op_type = "relu6" self.op_type = "relu6"
x = np.random.uniform(-1, 1, [4, 10]).astype("float32") self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(-1, 1, [4, 10]).astype(self.dtype)
threshold = 6.0 threshold = 6.0
# The same with TestAbs # The same with TestAbs
x[np.abs(x) < 0.005] = 0.02 x[np.abs(x) < 0.005] = 0.02
x[np.abs(x - threshold) < 0.005] = threshold + 0.02 x[np.abs(x - threshold) < 0.005] = threshold + 0.02
out = np.minimum(np.maximum(x, 0), threshold)
self.inputs = {'X': x} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'threshold': threshold} self.attrs = {'threshold': threshold}
self.outputs = { self.outputs = {'Out': out}
'Out': np.minimum(np.maximum(self.inputs['X'], 0), threshold)
}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.02) self.check_grad(['X'], 'Out', max_relative_error=0.02)
def init_dtype(self):
pass
class TestFP16Relu6(TestRelu6):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSoftRelu(OpTest): class TestSoftRelu(OpTest):
def setUp(self): def setUp(self):
self.op_type = "soft_relu" self.op_type = "soft_relu"
x = np.random.uniform(-3, 3, [4, 4]).astype("float32") self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
threshold = 2.0 threshold = 2.0
# The same reason with TestAbs # The same reason with TestAbs
x[np.abs(x - threshold) < 0.005] = threshold + 0.02 x[np.abs(x - threshold) < 0.005] = threshold + 0.02
x[np.abs(x + threshold) < 0.005] = -threshold + 0.02 x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
self.inputs = {'X': x}
self.attrs = {'threshold': threshold}
t = np.copy(x) t = np.copy(x)
t[t < -threshold] = -threshold t[t < -threshold] = -threshold
t[t > threshold] = threshold t[t > threshold] = threshold
self.outputs = {'Out': np.log((np.exp(t) + 1))} out = np.log((np.exp(t) + 1))
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'threshold': threshold}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.02) self.check_grad(['X'], 'Out', max_relative_error=0.02)
def init_dtype(self):
pass
class TestFP16SoftRelu(TestSoftRelu):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestELU(OpTest): class TestELU(OpTest):
def setUp(self): def setUp(self):
self.op_type = "elu" self.op_type = "elu"
x = np.random.uniform(-3, 3, [4, 4]).astype("float32") self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
alpha = 1. alpha = 1.
out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
# Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1) # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
# is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
self.inputs = {'X': x} self.inputs = {'X': x}
self.attrs = {'alpha': alpha} self.attrs = {'alpha': alpha}
self.outputs = { self.outputs = {'Out': out}
'Out': np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.02) self.check_grad(['X'], 'Out', max_relative_error=0.02)
def init_dtype(self):
pass
class TestFP16ELU(TestELU):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestReciprocal(OpTest): class TestReciprocal(OpTest):
def setUp(self): def setUp(self):
self.op_type = "reciprocal" self.op_type = "reciprocal"
self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} self.dtype = np.float32
self.outputs = {'Out': np.reciprocal(self.inputs['X'])} self.init_dtype()
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.reciprocal(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.01) self.check_grad(['X'], 'Out', max_relative_error=0.01)
def init_dtype(self):
pass
class TestFP16Reciprocal(TestReciprocal):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestLog(OpTest): class TestLog(OpTest):
def setUp(self): def setUp(self):
self.op_type = "log" self.op_type = "log"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") self.init_dtype()
}
self.outputs = {'Out': np.log(self.inputs['X'])} x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.log(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Log(TestLog):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSquare(OpTest): class TestSquare(OpTest):
def setUp(self): def setUp(self):
self.op_type = "square" self.op_type = "square"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") self.init_dtype()
}
self.outputs = {'Out': np.square(self.inputs['X'])} x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
out = np.square(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Square(TestSquare):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestPow(OpTest): class TestPow(OpTest):
def setUp(self): def setUp(self):
self.op_type = "pow" self.op_type = "pow"
self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")} self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.power(x, 3)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'factor': 3.0} self.attrs = {'factor': 3.0}
self.outputs = {'Out': np.power(self.inputs['X'], 3)} self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.02) self.check_grad(['X'], 'Out', max_relative_error=0.02)
def init_dtype(self):
pass
class TestFP16Pow(TestPow):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=5e-2)
class TestSTanh(OpTest): class TestSTanh(OpTest):
def setUp(self): def setUp(self):
self.op_type = "stanh" self.op_type = "stanh"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") self.init_dtype()
}
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
scale_a = 2.0 / 3.0 scale_a = 2.0 / 3.0
scale_b = 1.7159 scale_b = 1.7159
out = scale_b * np.tanh(x * scale_a)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'scale_a': scale_a, 'scale_b': scale_b} self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
self.outputs = {'Out': scale_b * np.tanh(self.inputs['X'] * scale_a)} self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16STanh(TestSTanh):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSoftplus(OpTest): class TestSoftplus(OpTest):
def setUp(self): def setUp(self):
self.op_type = "softplus" self.op_type = "softplus"
self.inputs = { self.dtype = np.float64
'X': np.random.uniform(-1, 1, [11, 17]).astype("float64") self.init_dtype()
}
self.outputs = {'Out': np.log(1 + np.exp(self.inputs['X']))} x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
out = np.log(1 + np.exp(x))
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Softplus(TestSoftplus):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSoftsign(OpTest): class TestSoftsign(OpTest):
def setUp(self): def setUp(self):
self.op_type = "softsign" self.op_type = "softsign"
self.inputs = { self.dtype = np.float32
'X': np.random.uniform(-1, 1, [11, 17]).astype("float32") self.init_dtype()
}
self.outputs = { x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
'Out': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X'])) out = np.divide(x, 1 + np.abs(x))
}
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007) self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Softsign(TestSoftsign):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestThresholdedRelu(OpTest): class TestThresholdedRelu(OpTest):
def setUp(self): def setUp(self):
self.op_type = "thresholded_relu" self.op_type = "thresholded_relu"
self.dtype = np.float32
self.init_dtype()
threshold = 0.25 threshold = 0.25
self.relative_error = 0.005 self.relative_error = 0.005
X = np.random.uniform(-1, 1, [11, 17]).astype("float32") X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
# Same reason as TestAbs # Same reason as TestAbs
X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2 X[np.abs(X - threshold) < self.relative_error] = threshold + 0.2
out = (X > threshold) * X
self.inputs = {'X': X} self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
self.attrs = {'threshold': threshold} self.attrs = {'threshold': threshold}
self.outputs = {'Out': (X > threshold) * X} self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=self.relative_error) self.check_grad(['X'], 'Out', max_relative_error=self.relative_error)
def init_dtype(self):
pass
class TestFP16ThresholdedRelu(TestThresholdedRelu):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestHardSigmoid(OpTest): class TestHardSigmoid(OpTest):
def setUp(self): def setUp(self):
self.op_type = "hard_sigmoid" self.op_type = "hard_sigmoid"
self.dtype = np.float32
self.init_dtype()
self.relative_error = 0.002 self.relative_error = 0.002
X = np.random.uniform(-5, 5, [2, 2]).astype("float32") X = np.random.uniform(-5, 5, [2, 2]).astype("float32")
...@@ -502,7 +1026,6 @@ class TestHardSigmoid(OpTest): ...@@ -502,7 +1026,6 @@ class TestHardSigmoid(OpTest):
lower_threshold = -offset / slope lower_threshold = -offset / slope
upper_threshold = (1 - offset) / slope upper_threshold = (1 - offset) / slope
self.inputs = {'X': X}
# Same reason as TestAbs # Same reason as TestAbs
X[np.abs(X - lower_threshold) < self.relative_error] = \ X[np.abs(X - lower_threshold) < self.relative_error] = \
lower_threshold + 0.2 lower_threshold + 0.2
...@@ -510,34 +1033,103 @@ class TestHardSigmoid(OpTest): ...@@ -510,34 +1033,103 @@ class TestHardSigmoid(OpTest):
upper_threshold - 0.2 upper_threshold - 0.2
temp = X * slope + offset temp = X * slope + offset
self.outputs = {'Out': np.maximum(0.0, np.minimum(1.0, temp))} out = np.maximum(0.0, np.minimum(1.0, temp))
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.002) self.check_grad(['X'], 'Out', max_relative_error=0.002)
def init_dtype(self):
pass
class TestFP16HardSigmoid(TestHardSigmoid):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSwish(OpTest): class TestSwish(OpTest):
def setUp(self): def setUp(self):
self.op_type = "swish" self.op_type = "swish"
X = np.random.uniform(0.1, 1, [11, 17]).astype("float32") self.dtype = np.float32
self.inputs = {'X': X} self.init_dtype()
self.attrs = {'beta': 2.3}
self.outputs = {'Out': X * expit(self.attrs['beta'] * X)} X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
beta = 2.3
out = X * expit(beta * X)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
self.attrs = {'beta': beta}
self.outputs = {'Out': out}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.008) self.check_grad(['X'], 'Out', max_relative_error=0.008)
def init_dtype(self):
pass
class TestFP16Swish(TestSwish):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
#--------------------test MKLDNN-------------------- #--------------------test MKLDNN--------------------
class TestMKLDNNRelu(TestRelu): class TestMKLDNNReluDim2(TestRelu):
def setUp(self):
super(TestMKLDNNReluDim2, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNTanhDim2(TestTanh):
def setUp(self):
super(TestMKLDNNTanhDim2, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNSqrtDim2(TestSqrt):
def setUp(self):
super(TestMKLDNNSqrtDim2, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNAbsDim2(TestAbs):
def setUp(self):
super(TestMKLDNNAbsDim2, self).setUp()
self.attrs = {"use_mkldnn": True}
class TestMKLDNNReluDim4(TestRelu):
def setUp(self): def setUp(self):
super(TestMKLDNNRelu, self).setUp() super(TestMKLDNNReluDim4, self).setUp()
x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32") x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
# The same reason with TestAbs # The same reason with TestAbs
...@@ -549,9 +1141,9 @@ class TestMKLDNNRelu(TestRelu): ...@@ -549,9 +1141,9 @@ class TestMKLDNNRelu(TestRelu):
self.attrs = {"use_mkldnn": True} self.attrs = {"use_mkldnn": True}
class TestMKLDNNTanh(TestTanh): class TestMKLDNNTanhDim4(TestTanh):
def setUp(self): def setUp(self):
super(TestMKLDNNTanh, self).setUp() super(TestMKLDNNTanhDim4, self).setUp()
self.inputs = { self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32") 'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
...@@ -560,9 +1152,9 @@ class TestMKLDNNTanh(TestTanh): ...@@ -560,9 +1152,9 @@ class TestMKLDNNTanh(TestTanh):
self.attrs = {"use_mkldnn": True} self.attrs = {"use_mkldnn": True}
class TestMKLDNNSqrt(TestSqrt): class TestMKLDNNSqrtDim4(TestSqrt):
def setUp(self): def setUp(self):
super(TestMKLDNNSqrt, self).setUp() super(TestMKLDNNSqrtDim4, self).setUp()
self.inputs = { self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32") 'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
...@@ -571,9 +1163,9 @@ class TestMKLDNNSqrt(TestSqrt): ...@@ -571,9 +1163,9 @@ class TestMKLDNNSqrt(TestSqrt):
self.attrs = {"use_mkldnn": True} self.attrs = {"use_mkldnn": True}
class TestMKLDNNAbs(TestAbs): class TestMKLDNNAbsDim4(TestAbs):
def setUp(self): def setUp(self):
super(TestMKLDNNAbs, self).setUp() super(TestMKLDNNAbsDim4, self).setUp()
x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32") x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
# The same reason with TestAbs # The same reason with TestAbs
......
...@@ -51,7 +51,9 @@ class TestDebugger(unittest.TestCase): ...@@ -51,7 +51,9 @@ class TestDebugger(unittest.TestCase):
outputs={"Out": mul_out}, outputs={"Out": mul_out},
attrs={"x_num_col_dims": 1}) attrs={"x_num_col_dims": 1})
print(debuger.pprint_program_codes(p.desc)) print(debuger.pprint_program_codes(p))
debuger.draw_block_graphviz(p.block(0), path="./test.dot")
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -61,8 +61,12 @@ class TestMultipleReader(unittest.TestCase): ...@@ -61,8 +61,12 @@ class TestMultipleReader(unittest.TestCase):
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
batch_count = 0 batch_count = 0
while not data_files.eof(): while True:
img_val, = exe.run(fetch_list=[img]) try:
img_val, = exe.run(fetch_list=[img])
except fluid.core.EnforceNotMet as ex:
self.assertIn("There is no next data.", ex.message)
break
batch_count += 1 batch_count += 1
self.assertLessEqual(img_val.shape[0], self.batch_size) self.assertLessEqual(img_val.shape[0], self.batch_size)
data_files.reset() data_files.reset()
......
...@@ -44,7 +44,7 @@ class TestMultipleReader(unittest.TestCase): ...@@ -44,7 +44,7 @@ class TestMultipleReader(unittest.TestCase):
shapes=[(-1, 784), (-1, 1)], shapes=[(-1, 784), (-1, 1)],
lod_levels=[0, 0], lod_levels=[0, 0],
dtypes=['float32', 'int64']) dtypes=['float32', 'int64'])
data_file = fluid.layers.create_multi_pass_reader( data_file = fluid.layers.io.multi_pass(
reader=data_file, pass_num=self.pass_num) reader=data_file, pass_num=self.pass_num)
img, label = fluid.layers.read_file(data_file) img, label = fluid.layers.read_file(data_file)
...@@ -57,8 +57,12 @@ class TestMultipleReader(unittest.TestCase): ...@@ -57,8 +57,12 @@ class TestMultipleReader(unittest.TestCase):
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
batch_count = 0 batch_count = 0
while not data_file.eof(): while True:
img_val, = exe.run(fetch_list=[img]) try:
img_val, = exe.run(fetch_list=[img])
except fluid.core.EnforceNotMet as ex:
self.assertIn("There is no next data.", ex.message)
break
batch_count += 1 batch_count += 1
self.assertLessEqual(img_val.shape[0], self.batch_size) self.assertLessEqual(img_val.shape[0], self.batch_size)
data_file.reset() data_file.reset()
......
...@@ -26,11 +26,14 @@ def simple_fc_net(use_feed): ...@@ -26,11 +26,14 @@ def simple_fc_net(use_feed):
img = fluid.layers.data(name='image', shape=[784], dtype='float32') img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
else: else:
reader = fluid.layers.open_recordio_file( reader = fluid.layers.open_files(
filename='./mnist.recordio', filenames=['./mnist.recordio'],
shapes=[[-1, 784], [-1, 1]], shapes=[[-1, 784], [-1, 1]],
lod_levels=[0, 0], lod_levels=[0, 0],
dtypes=['float32', 'int64']) dtypes=['float32', 'int64'],
thread_num=1,
for_parallel=True)
reader = fluid.layers.io.double_buffer(reader)
img, label = fluid.layers.read_file(reader) img, label = fluid.layers.read_file(reader)
hidden = img hidden = img
for _ in xrange(4): for _ in xrange(4):
...@@ -51,11 +54,14 @@ def fc_with_batchnorm(use_feed): ...@@ -51,11 +54,14 @@ def fc_with_batchnorm(use_feed):
img = fluid.layers.data(name='image', shape=[784], dtype='float32') img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
else: else:
reader = fluid.layers.open_recordio_file( reader = fluid.layers.open_files(
filename='./mnist.recordio', filenames=['mnist.recordio'],
shapes=[[-1, 784], [-1, 1]], shapes=[[-1, 784], [-1, 1]],
lod_levels=[0, 0], lod_levels=[0, 0],
dtypes=['float32', 'int64']) dtypes=['float32', 'int64'],
thread_num=1,
for_parallel=True)
reader = fluid.layers.io.double_buffer(reader)
img, label = fluid.layers.read_file(reader) img, label = fluid.layers.read_file(reader)
hidden = img hidden = img
...@@ -207,7 +213,11 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -207,7 +213,11 @@ class TestParallelExecutorBase(unittest.TestCase):
if memory_opt: if memory_opt:
fluid.memory_optimize(main) fluid.memory_optimize(main)
exe = fluid.ParallelExecutor(loss_name=loss.name, use_cuda=True) place = fluid.CUDAPlace(0)
startup_exe = fluid.Executor(place)
startup_exe.run(startup)
exe = fluid.ParallelExecutor(True, loss_name=loss.name)
if batch_size is not None: if batch_size is not None:
batch_size *= fluid.core.get_cuda_device_count() batch_size *= fluid.core.get_cuda_device_count()
begin = time.time() begin = time.time()
...@@ -453,3 +463,41 @@ class TestTransformer(TestParallelExecutorBase): ...@@ -453,3 +463,41 @@ class TestTransformer(TestParallelExecutorBase):
@unittest.skip("transformer is buggy in multi gpu") @unittest.skip("transformer is buggy in multi gpu")
def test_main(self): def test_main(self):
self.check_network_convergence(transformer) self.check_network_convergence(transformer)
class ParallelExecutorTestingDuringTraining(unittest.TestCase):
def test_parallel_testing(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = simple_fc_net(True)
test_program = main.clone(for_test=True)
opt = fluid.optimizer.SGD(learning_rate=0.0001)
opt.minimize(loss)
batch_size = 32
image = numpy.random.normal(size=(batch_size,
784)).astype('float32')
label = numpy.random.randint(0, 10, (batch_size, 1), dtype="int64")
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup)
feed_dict = {'image': image, 'label': label}
train_exe = fluid.ParallelExecutor(
use_cuda=True, loss_name=loss.name, main_program=main)
test_exe = fluid.ParallelExecutor(
use_cuda=True,
main_program=test_program,
share_vars_from=train_exe)
for i in xrange(5):
test_loss, = test_exe.run([loss.name], feed_dict=feed_dict)
test_loss = numpy.array(test_loss)
train_loss, = train_exe.run([loss.name], feed_dict=feed_dict)
train_loss = numpy.array(train_loss)
self.assertTrue(numpy.allclose(train_loss, test_loss))
...@@ -201,24 +201,6 @@ class TestBlockDesc(unittest.TestCase): ...@@ -201,24 +201,6 @@ class TestBlockDesc(unittest.TestCase):
op1.set_type("test") op1.set_type("test")
op2.set_type("test") op2.set_type("test")
var0 = block.var("var0")
var1 = block.var("var1")
var2 = block.var("var2")
var3 = block.var("var3")
var4 = block.var("var4")
var5 = block.var("var5")
op0.set_input("X", ["var0"])
op0.set_output("Y", ["var0"])
op1.set_input("X", ["var1", "var2"])
op1.set_output("Y", ["var3", "var4"])
op2.set_input("X", ["var1"])
op2.set_output("Y", ["var4", "var5"])
program.sync_with_cpp()
# remove op1, its input var2 and output var3 will be removed at the same time,
# but its input var1 and output var4 will not be removed since they are used for op2.
block.remove_op(1, 2) block.remove_op(1, 2)
program.sync_with_cpp() program.sync_with_cpp()
...@@ -226,8 +208,6 @@ class TestBlockDesc(unittest.TestCase): ...@@ -226,8 +208,6 @@ class TestBlockDesc(unittest.TestCase):
for idx in xrange(0, block.op_size()): for idx in xrange(0, block.op_size()):
all_ops.append(block.op(idx)) all_ops.append(block.op(idx))
self.assertEqual(all_ops, [op0, op2]) self.assertEqual(all_ops, [op0, op2])
all_vars = block.all_vars()
self.assertEqual(set(all_vars), {var0, var1, var4, var5})
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -65,8 +65,13 @@ class TestRecordIO(unittest.TestCase): ...@@ -65,8 +65,13 @@ class TestRecordIO(unittest.TestCase):
# train a pass # train a pass
batch_id = 0 batch_id = 0
while not data_file.eof(): while True:
tmp, = exe.run(fetch_list=[avg_loss]) try:
tmp, = exe.run(fetch_list=[avg_loss])
except fluid.core.EnforceNotMet as ex:
self.assertIn("There is no next data.", ex.message)
break
avg_loss_np.append(tmp) avg_loss_np.append(tmp)
batch_id += 1 batch_id += 1
data_file.reset() data_file.reset()
...@@ -74,8 +79,8 @@ class TestRecordIO(unittest.TestCase): ...@@ -74,8 +79,8 @@ class TestRecordIO(unittest.TestCase):
self.assertLess(avg_loss_np[-1], avg_loss_np[0]) self.assertLess(avg_loss_np[-1], avg_loss_np[0])
def test_shuffle_reader(self): def test_shuffle_reader(self):
self.test_main(decorator_callback=lambda reader: fluid.layers.create_shuffle_reader(reader, buffer_size=200)) self.test_main(decorator_callback=lambda reader: fluid.layers.io.shuffle(reader, buffer_size=200))
def test_double_buffer_reader(self): def test_double_buffer_reader(self):
self.test_main(decorator_callback=lambda reader: fluid.layers.create_double_buffer_reader(reader, self.test_main(decorator_callback=lambda reader: fluid.layers.io.double_buffer(reader,
place='cuda:0' if fluid.core.is_compiled_with_cuda() else 'cpu')) place='cuda:0' if fluid.core.is_compiled_with_cuda() else 'cpu'))
...@@ -102,7 +102,7 @@ if '${WITH_FLUID_ONLY}'== 'OFF': ...@@ -102,7 +102,7 @@ if '${WITH_FLUID_ONLY}'== 'OFF':
package_data['py_paddle']=['*.py','_swig_paddle.so'] package_data['py_paddle']=['*.py','_swig_paddle.so']
package_dir={ package_dir={
'': '${CMAKE_CURRENT_SOURCE_DIR}', '': '${PADDLE_BINARY_DIR}/python',
# The paddle.fluid.proto will be generated while compiling. # The paddle.fluid.proto will be generated while compiling.
# So that package points to other directory. # So that package points to other directory.
'paddle.fluid.proto.profiler': '${PADDLE_BINARY_DIR}/paddle/fluid/platform', 'paddle.fluid.proto.profiler': '${PADDLE_BINARY_DIR}/paddle/fluid/platform',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册