Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bea0c9f5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bea0c9f5
编写于
11月 05, 2021
作者:
W
Weilong Wu
提交者:
GitHub
11月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimized the solve op code:renamed var and removed template func (#36981)
上级
3705b12c
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
45 addition
and
54 deletion
+45
-54
paddle/fluid/operators/solve_op.h
paddle/fluid/operators/solve_op.h
+42
-50
paddle/fluid/operators/triangular_solve_op.cc
paddle/fluid/operators/triangular_solve_op.cc
+1
-1
paddle/fluid/operators/triangular_solve_op.h
paddle/fluid/operators/triangular_solve_op.h
+2
-2
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+0
-1
未找到文件。
paddle/fluid/operators/solve_op.h
浏览文件 @
bea0c9f5
...
...
@@ -157,70 +157,62 @@ static void to_unsqueeze(const framework::ExecutionContext& context,
out
->
Resize
(
out_dims
);
}
template
<
typename
Container
>
Container
infer_size_impl
(
std
::
vector
<
int64_t
>
a
,
std
::
vector
<
int64_t
>
b
)
{
size_t
dimsA
=
a
.
size
();
size_t
dimsB
=
b
.
size
();
size_t
ndim
=
dimsA
>
dimsB
?
dimsA
:
dimsB
;
Container
expandedSizes
(
ndim
);
for
(
ptrdiff_t
i
=
(
ptrdiff_t
)
ndim
-
1
;
i
>=
0
;
--
i
)
{
ptrdiff_t
offset
=
ndim
-
1
-
i
;
ptrdiff_t
dimA
=
dimsA
-
1
-
offset
;
ptrdiff_t
dimB
=
dimsB
-
1
-
offset
;
int64_t
sizeA
=
(
dimA
>=
0
)
?
a
[
dimA
]
:
1
;
int64_t
sizeB
=
(
dimB
>=
0
)
?
b
[
dimB
]
:
1
;
// Prepared for the broadcast operation
static
std
::
vector
<
int64_t
>
get_broadcast_batch_portion
(
std
::
vector
<
int64_t
>
x
,
std
::
vector
<
int64_t
>
y
)
{
size_t
size_x
=
x
.
size
();
size_t
size_y
=
y
.
size
();
size_t
size
=
std
::
max
(
size_x
,
size_y
);
std
::
vector
<
int64_t
>
batchPortion
(
size
);
ptrdiff_t
i
=
(
ptrdiff_t
)
size
-
1
;
for
(;
i
>=
0
;
--
i
)
{
ptrdiff_t
offset
=
size
-
i
-
1
;
ptrdiff_t
dim_x
=
size_x
-
offset
-
1
;
ptrdiff_t
dim_y
=
size_y
-
offset
-
1
;
int64_t
x_size
=
(
dim_x
>=
0
)
?
x
[
dim_x
]
:
1
;
int64_t
y_size
=
(
dim_y
>=
0
)
?
y
[
dim_y
]
:
1
;
PADDLE_ENFORCE_EQ
(
(
sizeA
==
sizeB
||
sizeA
==
1
||
sizeB
==
1
),
true
,
(
x_size
==
y_size
||
x_size
==
1
||
y_size
==
1
),
true
,
platform
::
errors
::
PreconditionNotMet
(
"The size of tensor
a (%d) must match the size of tensor b
"
"The size of tensor
x (%d) must match the size of tensor y
"
"(%d) at non-singleton dimension %d."
,
sizeA
,
sizeB
,
i
));
x_size
,
y_size
,
i
));
expandedSizes
[
i
]
=
sizeA
==
1
?
sizeB
:
sizeA
;
batchPortion
[
i
]
=
x_size
!=
1
?
x_size
:
y_size
;
}
return
expandedSizes
;
return
batchPortion
;
}
// infer size for broadcast operation
static
std
::
vector
<
int64_t
>
infer_size
(
std
::
vector
<
int64_t
>
a
,
std
::
vector
<
int64_t
>
b
)
{
return
infer_size_impl
<
std
::
vector
<
int64_t
>>
(
a
,
b
);
}
// broadcast the batch dimensions of arg1 and arg2.
// broadcast the batch dimensions of tensor x and tensor y.
static
inline
std
::
tuple
<
std
::
vector
<
int64_t
>
,
std
::
vector
<
int64_t
>>
_broadcast_batch_dims
(
const
Tensor
&
arg1
,
const
Tensor
&
arg2
)
{
std
::
vector
<
int64_t
>
arg1_dims_vec
=
paddle
::
framework
::
vectorize
(
arg1
.
dims
());
std
::
vector
<
int64_t
>
arg2_dims_vec
=
paddle
::
framework
::
vectorize
(
arg2
.
dims
());
get_broadcast_dims
(
const
Tensor
&
x
,
const
Tensor
&
y
)
{
std
::
vector
<
int64_t
>
x_dims_vec
=
paddle
::
framework
::
vectorize
(
x
.
dims
());
std
::
vector
<
int64_t
>
y_dims_vec
=
paddle
::
framework
::
vectorize
(
y
.
dims
());
std
::
vector
<
int64_t
>::
const_iterator
f1
=
arg1
_dims_vec
.
begin
();
std
::
vector
<
int64_t
>::
const_iterator
l1
=
arg1
_dims_vec
.
end
()
-
2
;
std
::
vector
<
int64_t
>
arg1
_dims_vec_cut
(
f1
,
l1
);
std
::
vector
<
int64_t
>::
const_iterator
f1
=
x
_dims_vec
.
begin
();
std
::
vector
<
int64_t
>::
const_iterator
l1
=
x
_dims_vec
.
end
()
-
2
;
std
::
vector
<
int64_t
>
x
_dims_vec_cut
(
f1
,
l1
);
std
::
vector
<
int64_t
>::
const_iterator
f2
=
arg2
_dims_vec
.
begin
();
std
::
vector
<
int64_t
>::
const_iterator
l2
=
arg2
_dims_vec
.
end
()
-
2
;
std
::
vector
<
int64_t
>
arg2
_dims_vec_cut
(
f2
,
l2
);
std
::
vector
<
int64_t
>::
const_iterator
f2
=
y
_dims_vec
.
begin
();
std
::
vector
<
int64_t
>::
const_iterator
l2
=
y
_dims_vec
.
end
()
-
2
;
std
::
vector
<
int64_t
>
y
_dims_vec_cut
(
f2
,
l2
);
std
::
vector
<
int64_t
>
expand_batch_portion
=
infer_size
(
arg1_dims_vec_cut
,
arg2
_dims_vec_cut
);
get_broadcast_batch_portion
(
x_dims_vec_cut
,
y
_dims_vec_cut
);
std
::
vector
<
int64_t
>
arg1_expand_size
({
expand_batch_portion
});
arg1_expand_size
.
insert
(
arg1_expand_size
.
end
(),
{
arg1_dims_vec
[
static_cast
<
int
>
(
arg1_dims_vec
.
size
())
-
2
],
arg1_dims_vec
[
static_cast
<
int
>
(
arg1_dims_vec
.
size
())
-
1
]});
std
::
vector
<
int64_t
>
x_expand_size
({
expand_batch_portion
});
x_expand_size
.
insert
(
x_expand_size
.
end
(),
{
x_dims_vec
[
static_cast
<
int
>
(
x_dims_vec
.
size
())
-
2
],
x_dims_vec
[
static_cast
<
int
>
(
x_dims_vec
.
size
())
-
1
]});
std
::
vector
<
int64_t
>
arg2_expand_size
({
expand_batch_portion
});
arg2_expand_size
.
insert
(
arg2_expand_size
.
end
(),
{
arg2_dims_vec
[
static_cast
<
int
>
(
arg2_dims_vec
.
size
())
-
2
],
arg2_dims_vec
[
static_cast
<
int
>
(
arg2_dims_vec
.
size
())
-
1
]});
std
::
vector
<
int64_t
>
y_expand_size
({
expand_batch_portion
});
y_expand_size
.
insert
(
y_expand_size
.
end
(),
{
y_dims_vec
[
static_cast
<
int
>
(
y_dims_vec
.
size
())
-
2
],
y_dims_vec
[
static_cast
<
int
>
(
y_dims_vec
.
size
())
-
1
]});
return
std
::
make_tuple
(
arg1_expand_size
,
arg2
_expand_size
);
return
std
::
make_tuple
(
x_expand_size
,
y
_expand_size
);
}
template
<
int
Rank
,
typename
T
,
typename
DeviceContext
>
...
...
@@ -364,7 +356,7 @@ static void linalg_solve(const framework::ExecutionContext& context,
std
::
vector
<
int64_t
>
x_broadcast_dims
;
std
::
vector
<
int64_t
>
y_broadcast_dims
;
std
::
tie
(
x_broadcast_dims
,
y_broadcast_dims
)
=
_broadcast_batch
_dims
(
tmp_x
,
tmp_y
);
get_broadcast
_dims
(
tmp_x
,
tmp_y
);
Tensor
tmp_x_bc
;
TensorExpand
<
T
,
DeviceContext
>
(
dev_ctx
,
tmp_x
,
&
tmp_x_bc
,
x_broadcast_dims
);
...
...
@@ -510,7 +502,7 @@ class SolveGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int64_t
>
x_broadcast_dims
;
std
::
vector
<
int64_t
>
y_broadcast_dims
;
std
::
tie
(
x_broadcast_dims
,
y_broadcast_dims
)
=
_broadcast_batch
_dims
(
tmp_x
,
tmp_y
);
get_broadcast
_dims
(
tmp_x
,
tmp_y
);
// tmp_dx
Tensor
tmp_dx
;
...
...
paddle/fluid/operators/triangular_solve_op.cc
浏览文件 @
bea0c9f5
...
...
@@ -63,7 +63,7 @@ class TriangularSolveOp : public framework::OperatorWithKernel {
y_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
expand_batch_portion
=
infer_size
(
x_dims_vec_cut
,
y_dims_vec_cut
);
get_broadcast_batch_portion
(
x_dims_vec_cut
,
y_dims_vec_cut
);
std
::
vector
<
int64_t
>
y_broadcast_dims
({
expand_batch_portion
});
y_broadcast_dims
.
insert
(
y_broadcast_dims
.
end
(),
{
y_dims_vec
[
y_dims_n
-
2
],
...
...
paddle/fluid/operators/triangular_solve_op.h
浏览文件 @
bea0c9f5
...
...
@@ -36,7 +36,7 @@ static void triangular_solve(const DeviceContext& context, const Tensor& x,
// Tensor broadcast use eigen
std
::
vector
<
int64_t
>
x_bst_dims_vec
;
std
::
vector
<
int64_t
>
y_bst_dims_vec
;
std
::
tie
(
x_bst_dims_vec
,
y_bst_dims_vec
)
=
_broadcast_batch
_dims
(
x
,
y
);
std
::
tie
(
x_bst_dims_vec
,
y_bst_dims_vec
)
=
get_broadcast
_dims
(
x
,
y
);
Tensor
x_bst
(
x
.
type
());
TensorExpand
<
T
,
DeviceContext
>
(
context
,
x
,
&
x_bst
,
x_bst_dims_vec
);
...
...
@@ -141,7 +141,7 @@ class TriangularSolveGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int64_t
>
x_bst_dims_vec
;
std
::
vector
<
int64_t
>
y_bst_dims_vec
;
std
::
tie
(
x_bst_dims_vec
,
y_bst_dims_vec
)
=
_broadcast_batch
_dims
(
*
x
,
*
y
);
std
::
tie
(
x_bst_dims_vec
,
y_bst_dims_vec
)
=
get_broadcast
_dims
(
*
x
,
*
y
);
Tensor
dy_bst
(
y
->
type
());
if
(
dy
)
{
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
bea0c9f5
...
...
@@ -1019,7 +1019,6 @@ set_tests_properties(test_dataloader_unkeep_order PROPERTIES TIMEOUT 120)
set_tests_properties
(
test_reader_reset PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_pool3d_api PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_cumprod_op PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_solve_op PROPERTIES TIMEOUT 120
)
if
(
WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL
)
set_tests_properties
(
test_parallel_dygraph_dataparallel PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_dygraph_unused_variables PROPERTIES TIMEOUT 120
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录