Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
be6ecec4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
be6ecec4
编写于
8月 10, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix unittests' division issues
上级
59adf7ce
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
42 addition
and
41 deletion
+42
-41
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+12
-12
python/paddle/fluid/tests/unittests/test_conv3d_op.py
python/paddle/fluid/tests/unittests/test_conv3d_op.py
+9
-9
python/paddle/fluid/tests/unittests/test_infer_shape.py
python/paddle/fluid/tests/unittests/test_infer_shape.py
+7
-6
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+2
-2
python/paddle/fluid/tests/unittests/test_pool3d_op.py
python/paddle/fluid/tests/unittests/test_pool3d_op.py
+12
-12
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
be6ecec4
...
...
@@ -550,7 +550,7 @@ def dynamic_lstmp(input,
"""
helper
=
LayerHelper
(
'lstmp'
,
**
locals
())
size
=
size
/
4
size
=
size
/
/
4
weight
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
proj_size
,
4
*
size
],
dtype
=
dtype
)
proj_weight
=
helper
.
create_parameter
(
...
...
@@ -778,7 +778,7 @@ def gru_unit(input,
helper
=
LayerHelper
(
'gru_unit'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
size
=
size
/
3
size
=
size
/
/
3
# create weight
weight
=
helper
.
create_parameter
(
...
...
@@ -1258,7 +1258,7 @@ def sequence_conv(input,
outputs
=
{
"Out"
:
pre_bias
},
attrs
=
{
'contextStride'
:
filter_stride
,
'contextStart'
:
-
int
(
filter_size
/
2
),
'contextStart'
:
-
int
(
filter_size
/
/
2
),
'contextLength'
:
filter_size
})
pre_act
=
helper
.
append_bias_op
(
pre_bias
)
...
...
@@ -1487,7 +1487,7 @@ def conv2d(input,
else
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
num_filter_channels
=
num_channels
/
/
groups
filter_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
'filter_size'
)
stride
=
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
...
...
@@ -1649,7 +1649,7 @@ def conv3d(input,
else
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
num_filter_channels
=
num_channels
/
/
groups
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
'filter_size'
)
stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
...
...
@@ -2384,16 +2384,16 @@ def conv2d_transpose(input,
w_in
=
input
.
shape
[
3
]
filter_size_h
=
(
output_size
[
0
]
-
(
h_in
-
1
)
*
stride
[
0
]
+
2
*
padding
[
0
]
-
1
)
/
dilation
[
0
]
+
1
padding
[
0
]
-
1
)
/
/
dilation
[
0
]
+
1
filter_size_w
=
(
output_size
[
1
]
-
(
w_in
-
1
)
*
stride
[
1
]
+
2
*
padding
[
1
]
-
1
)
/
dilation
[
1
]
+
1
padding
[
1
]
-
1
)
/
/
dilation
[
1
]
+
1
filter_size
=
[
filter_size_h
,
filter_size_w
]
else
:
filter_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
'conv2d_transpose.filter_size'
)
groups
=
1
if
groups
is
None
else
groups
filter_shape
=
[
input_channel
,
num_filters
/
groups
]
+
filter_size
filter_shape
=
[
input_channel
,
num_filters
/
/
groups
]
+
filter_size
img_filter
=
helper
.
create_parameter
(
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
...
...
@@ -2551,18 +2551,18 @@ def conv3d_transpose(input,
w_in
=
input
.
shape
[
4
]
filter_size_d
=
(
output_size
[
0
]
-
(
d_in
-
1
)
*
stride
[
0
]
+
2
*
padding
[
0
]
-
1
)
/
dilation
[
0
]
+
1
padding
[
0
]
-
1
)
/
/
dilation
[
0
]
+
1
filter_size_h
=
(
output_size
[
1
]
-
(
h_in
-
1
)
*
stride
[
1
]
+
2
*
padding
[
1
]
-
1
)
/
dilation
[
1
]
+
1
padding
[
1
]
-
1
)
/
/
dilation
[
1
]
+
1
filter_size_w
=
(
output_size
[
2
]
-
(
w_in
-
1
)
*
stride
[
2
]
+
2
*
padding
[
2
]
-
1
)
/
dilation
[
2
]
+
1
padding
[
2
]
-
1
)
/
/
dilation
[
2
]
+
1
filter_size
=
[
filter_size_d
,
filter_size_h
,
filter_size_w
]
else
:
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
'conv3d_transpose.filter_size'
)
groups
=
1
if
groups
is
None
else
groups
filter_shape
=
[
input_channel
,
num_filters
/
groups
]
+
filter_size
filter_shape
=
[
input_channel
,
num_filters
/
/
groups
]
+
filter_size
img_filter
=
helper
.
create_parameter
(
dtype
=
input
.
dtype
,
shape
=
filter_shape
,
attr
=
helper
.
param_attr
)
...
...
python/paddle/fluid/tests/unittests/test_conv3d_op.py
浏览文件 @
be6ecec4
...
...
@@ -24,14 +24,14 @@ def conv3d_forward_naive(input, filter, group, conv_param):
out_c
,
f_c
,
f_d
,
f_h
,
f_w
=
filter
.
shape
assert
f_c
*
group
==
in_c
assert
np
.
mod
(
out_c
,
group
)
==
0
sub_out_c
=
out_c
/
group
sub_out_c
=
out_c
/
/
group
stride
,
pad
,
dilation
=
conv_param
[
'stride'
],
conv_param
[
'pad'
],
conv_param
[
'dilations'
]
out_d
=
1
+
(
in_d
+
2
*
pad
[
0
]
-
(
dilation
[
0
]
*
(
f_d
-
1
)
+
1
))
/
stride
[
0
]
out_h
=
1
+
(
in_h
+
2
*
pad
[
1
]
-
(
dilation
[
1
]
*
(
f_h
-
1
)
+
1
))
/
stride
[
1
]
out_w
=
1
+
(
in_w
+
2
*
pad
[
2
]
-
(
dilation
[
2
]
*
(
f_w
-
1
)
+
1
))
/
stride
[
2
]
out_d
=
1
+
(
in_d
+
2
*
pad
[
0
]
-
(
dilation
[
0
]
*
(
f_d
-
1
)
+
1
))
/
/
stride
[
0
]
out_h
=
1
+
(
in_h
+
2
*
pad
[
1
]
-
(
dilation
[
1
]
*
(
f_h
-
1
)
+
1
))
/
/
stride
[
1
]
out_w
=
1
+
(
in_w
+
2
*
pad
[
2
]
-
(
dilation
[
2
]
*
(
f_w
-
1
)
+
1
))
/
/
stride
[
2
]
out
=
np
.
zeros
((
in_n
,
out_c
,
out_d
,
out_h
,
out_w
))
...
...
@@ -166,7 +166,7 @@ class TestConv3dOp(OpTest):
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCDHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
,
3
]
def
init_dilation
(
self
):
...
...
@@ -185,7 +185,7 @@ class TestCase1(TestConv3dOp):
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCDHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
,
3
]
...
...
@@ -205,7 +205,7 @@ class TestWith1x1(TestConv3dOp):
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
4
,
4
,
4
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
,
1
]
def
init_dilation
(
self
):
...
...
@@ -221,7 +221,7 @@ class TestWithInput1x1Filter1x1(TestConv3dOp):
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
1
,
1
,
1
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
,
1
]
def
init_dilation
(
self
):
...
...
@@ -237,7 +237,7 @@ class TestWithDilation(TestConv3dOp):
self
.
stride
=
[
1
,
1
,
1
]
self
.
input_size
=
[
2
,
3
,
6
,
6
,
6
]
# NCDHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
/
self
.
groups
f_c
=
self
.
input_size
[
1
]
/
/
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
2
,
2
,
2
]
def
init_dilation
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_infer_shape.py
浏览文件 @
be6ecec4
...
...
@@ -14,6 +14,7 @@
import
unittest
import
six
import
paddle.fluid.core
as
core
...
...
@@ -27,14 +28,14 @@ class TestInferShape(unittest.TestCase):
shape
=
[
10
,
20
]
# prepare input/output
x1
=
block
.
var
(
"x1"
)
x1
=
block
.
var
(
six
.
b
(
"x1"
)
)
x1
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x1
.
set_shape
(
shape
)
x2
=
block
.
var
(
"x2"
)
x2
=
block
.
var
(
six
.
b
(
"x2"
)
)
x2
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x2
.
set_shape
(
shape
)
out
=
block
.
var
(
"out"
)
out
=
block
.
var
(
six
.
b
(
"out"
)
)
out
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
# prepare the operator
...
...
@@ -57,14 +58,14 @@ class TestInferShape(unittest.TestCase):
y_shape
=
[
20
,
30
]
# prepare input/output
x1
=
block
.
var
(
"x"
)
x1
=
block
.
var
(
six
.
b
(
"x"
)
)
x1
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x1
.
set_shape
(
x_shape
)
x2
=
block
.
var
(
"y"
)
x2
=
block
.
var
(
six
.
b
(
"y"
)
)
x2
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
x2
.
set_shape
(
y_shape
)
out
=
block
.
var
(
"out"
)
out
=
block
.
var
(
six
.
b
(
"out"
)
)
out
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
# prepare the operator
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
be6ecec4
...
...
@@ -158,7 +158,7 @@ class TestBook(unittest.TestCase):
input
=
crf_decode
,
label
=
label
,
chunk_scheme
=
"IOB"
,
num_chunk_types
=
(
label_dict_len
-
1
)
/
2
)
num_chunk_types
=
(
label_dict_len
-
1
)
/
/
2
)
self
.
assertFalse
(
crf
is
None
)
self
.
assertFalse
(
crf_decode
is
None
)
...
...
@@ -285,7 +285,7 @@ class TestBook(unittest.TestCase):
name
=
'word_{0}'
.
format
(
i
),
shape
=
[
1
],
dtype
=
'int64'
))
dict_size
=
10000
label_word
=
int
(
window_size
/
2
)
+
1
label_word
=
int
(
window_size
/
/
2
)
+
1
embs
=
[]
for
i
in
range
(
window_size
):
...
...
python/paddle/fluid/tests/unittests/test_pool3d_op.py
浏览文件 @
be6ecec4
...
...
@@ -29,14 +29,14 @@ def max_pool3D_forward_naive(x,
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
)
/
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
)
/
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
]
+
strides
[
2
]
-
1
)
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
)
/
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
/
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
range
(
D_out
):
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
...
...
@@ -63,14 +63,14 @@ def avg_pool3D_forward_naive(x,
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
)
/
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
)
/
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
]
+
strides
[
2
]
-
1
)
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
)
/
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
/
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
range
(
D_out
):
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录