Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
be52f333
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
be52f333
编写于
10月 11, 2019
作者:
D
DuYao
提交者:
hong
10月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update English Documents, test=release/1.6, test=document_fix (#20482)
上级
534cf892
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
336 addition
and
244 deletion
+336
-244
paddle/fluid/API.spec
paddle/fluid/API.spec
+12
-12
python/paddle/fluid/dygraph/learning_rate_scheduler.py
python/paddle/fluid/dygraph/learning_rate_scheduler.py
+175
-127
python/paddle/fluid/dygraph/nn.py
python/paddle/fluid/dygraph/nn.py
+131
-91
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+18
-14
未找到文件。
paddle/fluid/API.spec
浏览文件 @
be52f333
...
...
@@ -199,7 +199,7 @@ paddle.fluid.layers.lod_append (ArgSpec(args=['x', 'level'], varargs=None, keywo
paddle.fluid.layers.lrn (ArgSpec(args=['input', 'n', 'k', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(5, 1.0, 0.0001, 0.75, None)), ('document', 'fa565b65fb98d3ca82361c79f41b06b2'))
paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '46b3ada86dd2c79042dca90a55e08f66'))
paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '89aa122a50dc20ee116ae49d66854d20'))
paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)), ('document', '
214f1dfbe95a628600bbe99e836319cf
'))
paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)), ('document', '
70b6f4ab59e60650231b1ead4ad46222
'))
paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', '6fc9bae94518bbf3e1a9e479f38f6537'))
paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '3885fd76e122ac0563fa8369bcab7363'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-05, None)), ('document', '08d94daffbea3935178810bdc1633f07'))
...
...
@@ -604,7 +604,7 @@ paddle.fluid.dygraph.Conv2D.set_dict (ArgSpec(args=['self', 'stat_dict', 'includ
paddle.fluid.dygraph.Conv2D.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '9d689f44592cd22812c7ec06a9654eac'))
paddle.fluid.dygraph.Conv2D.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Conv2D.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D ('paddle.fluid.dygraph.nn.Conv3D', ('document', '
50412bd3fbf3557a8ef48e25c6517025
'))
paddle.fluid.dygraph.Conv3D ('paddle.fluid.dygraph.nn.Conv3D', ('document', '
f81dee6781d6c18d0e7f5ca66b2fb010
'))
paddle.fluid.dygraph.Conv3D.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3D.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Conv3D.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
...
...
@@ -689,7 +689,7 @@ paddle.fluid.dygraph.Embedding.set_dict (ArgSpec(args=['self', 'stat_dict', 'inc
paddle.fluid.dygraph.Embedding.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '9d689f44592cd22812c7ec06a9654eac'))
paddle.fluid.dygraph.Embedding.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Embedding.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit ('paddle.fluid.dygraph.nn.GRUUnit', ('document', '
389e860e455b67aab1f4d472ac9d7e49
'))
paddle.fluid.dygraph.GRUUnit ('paddle.fluid.dygraph.nn.GRUUnit', ('document', '
f0e648f0a8d3389f755698dde488dc93
'))
paddle.fluid.dygraph.GRUUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation', 'origin_mode', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.GRUUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.GRUUnit.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
...
...
@@ -757,7 +757,7 @@ paddle.fluid.dygraph.PRelu.set_dict (ArgSpec(args=['self', 'stat_dict', 'include
paddle.fluid.dygraph.PRelu.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '9d689f44592cd22812c7ec06a9654eac'))
paddle.fluid.dygraph.PRelu.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.PRelu.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct ('paddle.fluid.dygraph.nn.BilinearTensorProduct', ('document', '
be70d0f6d43729d9cb80c9a34ed5f26b
'))
paddle.fluid.dygraph.BilinearTensorProduct ('paddle.fluid.dygraph.nn.BilinearTensorProduct', ('document', '
ddea5bc0668a636ded7db09538511c20
'))
paddle.fluid.dygraph.BilinearTensorProduct.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'name', 'act', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.BilinearTensorProduct.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.BilinearTensorProduct.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
...
...
@@ -791,7 +791,7 @@ paddle.fluid.dygraph.Conv2DTranspose.set_dict (ArgSpec(args=['self', 'stat_dict'
paddle.fluid.dygraph.Conv2DTranspose.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '9d689f44592cd22812c7ec06a9654eac'))
paddle.fluid.dygraph.Conv2DTranspose.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.dygraph.Conv2DTranspose.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose ('paddle.fluid.dygraph.nn.Conv3DTranspose', ('document', '
91ba132bc690eaf76eabdbde8f87e4a0
'))
paddle.fluid.dygraph.Conv3DTranspose ('paddle.fluid.dygraph.nn.Conv3DTranspose', ('document', '
0ef981fd6a74aaff21673f9925736ac7
'))
paddle.fluid.dygraph.Conv3DTranspose.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Conv3DTranspose.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Conv3DTranspose.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
...
...
@@ -870,31 +870,31 @@ paddle.fluid.dygraph.Tracer.train_mode (ArgSpec(args=['self'], varargs=None, key
paddle.fluid.dygraph.prepare_context (ArgSpec(args=['strategy'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.save_dygraph (ArgSpec(args=['state_dict', 'model_path'], varargs=None, keywords=None, defaults=None), ('document', '7c2bd58a69f9bca3b884f44154c84569'))
paddle.fluid.dygraph.load_dygraph (ArgSpec(args=['model_path'], varargs=None, keywords=None, defaults=None), ('document', 'd6d98002c39d2484835f4748e35b761c'))
paddle.fluid.dygraph.NoamDecay ('paddle.fluid.dygraph.learning_rate_scheduler.NoamDecay', ('document', '
9ccfea97dbf15134d406a23aae1e1fa2
'))
paddle.fluid.dygraph.NoamDecay ('paddle.fluid.dygraph.learning_rate_scheduler.NoamDecay', ('document', '
3441619381487db8d1929a205f3c6d41
'))
paddle.fluid.dygraph.NoamDecay.__init__ (ArgSpec(args=['self', 'd_model', 'warmup_steps', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(1, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NoamDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.NoamDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PiecewiseDecay ('paddle.fluid.dygraph.learning_rate_scheduler.PiecewiseDecay', ('document', '
8f4d37eaad4e2f5b12850f3663856758
'))
paddle.fluid.dygraph.PiecewiseDecay ('paddle.fluid.dygraph.learning_rate_scheduler.PiecewiseDecay', ('document', '
0fccf303b94a13ae670fb3dd51931f73
'))
paddle.fluid.dygraph.PiecewiseDecay.__init__ (ArgSpec(args=['self', 'boundaries', 'values', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PiecewiseDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.PiecewiseDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NaturalExpDecay ('paddle.fluid.dygraph.learning_rate_scheduler.NaturalExpDecay', ('document', '
94bed58b392a5a71b6d1abd39eed711
1'))
paddle.fluid.dygraph.NaturalExpDecay ('paddle.fluid.dygraph.learning_rate_scheduler.NaturalExpDecay', ('document', '
5fef27468d49ca8ca6c6a9635ad0f5c
1'))
paddle.fluid.dygraph.NaturalExpDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'decay_steps', 'decay_rate', 'staircase', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(False, 0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.NaturalExpDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.NaturalExpDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.ExponentialDecay ('paddle.fluid.dygraph.learning_rate_scheduler.ExponentialDecay', ('document', '
a259689c649c5f82636536386ce2ef19
'))
paddle.fluid.dygraph.ExponentialDecay ('paddle.fluid.dygraph.learning_rate_scheduler.ExponentialDecay', ('document', '
846eb564df136d8a8917bf16b5b8ac9b
'))
paddle.fluid.dygraph.ExponentialDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'decay_steps', 'decay_rate', 'staircase', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(False, 0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.ExponentialDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.ExponentialDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.InverseTimeDecay ('paddle.fluid.dygraph.learning_rate_scheduler.InverseTimeDecay', ('document', '
6a868b2c7cc0f09f57ef71902bbc93ca
'))
paddle.fluid.dygraph.InverseTimeDecay ('paddle.fluid.dygraph.learning_rate_scheduler.InverseTimeDecay', ('document', '
1a74f0370e2e64f9e786d3c336526e6d
'))
paddle.fluid.dygraph.InverseTimeDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'decay_steps', 'decay_rate', 'staircase', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(False, 0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.InverseTimeDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.InverseTimeDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PolynomialDecay ('paddle.fluid.dygraph.learning_rate_scheduler.PolynomialDecay', ('document', '
bb90314cee58952f13522dcd571ca832
'))
paddle.fluid.dygraph.PolynomialDecay ('paddle.fluid.dygraph.learning_rate_scheduler.PolynomialDecay', ('document', '
e222a066a2bcf31bc52a14271048e034
'))
paddle.fluid.dygraph.PolynomialDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False, 0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.PolynomialDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.PolynomialDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.CosineDecay ('paddle.fluid.dygraph.learning_rate_scheduler.CosineDecay', ('document', '
46dadadee1a8a92d70bd277d9345bfb0
'))
paddle.fluid.dygraph.CosineDecay ('paddle.fluid.dygraph.learning_rate_scheduler.CosineDecay', ('document', '
0d7fe2b87492a0eb5cde60dbe268ea17
'))
paddle.fluid.dygraph.CosineDecay.__init__ (ArgSpec(args=['self', 'learning_rate', 'step_each_epoch', 'epochs', 'begin', 'step', 'dtype'], varargs=None, keywords=None, defaults=(0, 1, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.CosineDecay.create_lr_var (ArgSpec(args=['self', 'lr'], varargs=None, keywords=None, defaults=None), ('document', '013bc233558149d0757b3df57845b866'))
paddle.fluid.dygraph.CosineDecay.step (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
python/paddle/fluid/dygraph/learning_rate_scheduler.py
浏览文件 @
be52f333
...
...
@@ -69,30 +69,33 @@ class LearningRateDecay(object):
class
PiecewiseDecay
(
LearningRateDecay
):
"""
piecewise decay scheduler
Piecewise decay scheduler.
The algorithm can be described as the code below.
.. code-block:: text
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
if step < 10000:
learning_rate = 1.0
elif 10000 <= step < 20000:
learning_rate = 0.5
else:
learning_rate = 0.1
Args:
boundaries: A list of steps numbers.
values: A list of learning rate values that will be picked during
different step boundaries.
begin: The begin step to initilize the self.step_num
step: The step_size using when calculate the new step_num (Defalult is 1)
dtype: The dtype used to create the learning rate variable
boundaries = [10000, 20000]
values = [1.0, 0.5, 0.1]
if global_step < 10000:
learning_rate = 1.0
elif 10000 <= global_step < 20000:
learning_rate = 0.5
else:
learning_rate = 0.1
Parameters:
boundaries(list): A list of steps numbers. The type of element in the list is python int.
values(list): A list of learning rate values that will be picked during
different step boundaries. The type of element in the list is python float.
begin(int): The begin step to initilize the global_step in the description above.
step(int, optional): The step size used to calculate the new global_step in the description above.
The defalult value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
The decayed learning rat
e.
Non
e.
Examples:
.. code-block:: python
...
...
@@ -125,25 +128,40 @@ class NaturalExpDecay(LearningRateDecay):
"""
Applies natural exponential decay to the initial learning rate.
.. code-block:: python
The algorithm can be described as following.
if not staircase:
decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
else:
decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
Args:
learning_rate: A scalar float32 value or a Variable. This
will be the initial learning rate during training
decay_steps: A Python `int32` number.
decay_rate: A Python `float` number.
staircase: Boolean. If set true, decay the learning rate every decay_steps.
begin: A Python 'int32' number, the begin step (Default is 0)
step: A Python 'int32' number, the step size (Default is 1)
dtype: A Python 'str', the dtype used to create learning rate variable (Default is 'float32')
.. math::
decayed\_learning\_rate = learning\_rate * e^{y}
If staircase is set to False, then:
.. math::
y = - decay\_rate *
\\
frac{global\_step}{decay\_steps}
If staircase is set to True, then:
.. math::
y = - decay\_rate * math.floor(
\\
frac{global\_step}{decay\_steps})
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int): The decay step size. It determines the decay cycle.
decay_rate(int): The decay rate.
staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The defalult value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
The decayed learning rat
e.
Non
e.
Examples:
.. code-block:: python
...
...
@@ -189,29 +207,41 @@ class ExponentialDecay(LearningRateDecay):
"""
Applies exponential decay to the learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
'decay_rate' every 'decay_steps' steps.
The algorithm can be described as following.
..
code-block:: python
..
math::
if staircase == True:
decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
else:
decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Args:
learning_rate(Variable|float): The initial learning rate.
decay_steps(int): See the decay computation above.
decay_rate(float): The decay rate. See the decay computation above.
staircase(Boolean): If True, decay the learning rate at discrete intervals.
Default: False
begin(int): The begin step (default is 0)
step(int): The step size (default is 1)
dtype(str): The dtype used to create learning rate (default is 'float32')
decayed\_learning\_rate = learning\_rate * decay\_rate ^ y
If staircase is set to False, then:
.. math::
y =
\\
frac{global\_step}{decay\_steps}
If staircase is set to True, then:
.. math::
y = math.floor(
\\
frac{global\_step}{decay\_steps})
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int): The decay step size. It determines the decay cycle.
decay_rate(float): The decay rate.
staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The defalult value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
The decayed learning rat
e.
Non
e.
Examples:
.. code-block:: python
...
...
@@ -257,27 +287,35 @@ class InverseTimeDecay(LearningRateDecay):
"""
Applies inverse time decay to the initial learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, an inverse decay function will be
applied to the initial learning rate.
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
>>> else:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
Args:
learning_rate(Variable|float): The initial learning rate.
decay_steps(int): See the decay computation above.
decay_rate(float): The decay rate. See the decay computation above.
staircase(Boolean): If True, decay the learning rate at discrete intervals.
Default: False
begin(int): The begin step (default is 0)
step(int): The step size (default is 1)
dtype(str): The dtype used to create learning rate (default is 'float32')
The algorithm can be described as following.
If staircase is set to False, then:
.. math::
decayed\_learning\_rate =
\\
frac{learning\_rate}{1 + decay\_rate *
\\
frac{global\_step}{decay\_step}}
If staircase is set to True, then:
.. math::
decayed\_learning\_rate =
\\
frac{learning\_rate}{1 + decay\_rate * math.floor(
\\
frac{global\_step}{decay\_step})}
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int): The decay step size. It determines the decay cycle.
decay_rate(float): The decay rate.
staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The defalult value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be
'float32', 'float64'. The default value is 'float32'.
Returns:
The decayed learning rat
e.
Non
e.
Examples:
.. code-block:: python
...
...
@@ -323,28 +361,40 @@ class PolynomialDecay(LearningRateDecay):
"""
Applies polynomial decay to the initial learning rate.
.. code-block:: text
The algorithm can be described as following.
If cycle is set to True, then:
.. math::
decay\_steps & = decay\_steps * math.ceil(
\\
frac{global\_step}{decay\_steps})
if cycle:
decay_steps = decay_steps * ceil(global_step / decay_steps)
else:
global_step = min(global_step, decay_steps)
decayed_learning_rate = (learning_rate - end_learning_rate) *
(1 - global_step / decay_steps) ^ power + end_learning_rate
Args:
learning_rate(Variable|float32): A scalar float32 value or a Variable. This
will be the initial learning rate during training.
decay_steps(int32): A Python `int32` number.
end_learning_rate(float): A Python `float` number.
power(float): A Python `float` number.
cycle(bool): If set true, decay the learning rate every decay_steps.
begin(int): The begin step (default is 0)
step(int): The step size (default is 1)
dtype(str): The dtype used to create learning rate (default is 'float32')
decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-
\\
frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate
If cycle is set to False, then:
.. math::
global\_step & = min(global\_step, decay\_steps)
decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-
\\
frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
decay_steps(int32): The decay step size. It determines the decay cycle.
end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
power(float, optional): Power of polynomial. The default value is 1.0.
cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The defalult value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
The decayed learning rat
e.
Non
e.
Examples:
.. code-block:: python
...
...
@@ -401,24 +451,26 @@ class CosineDecay(LearningRateDecay):
"""
Applies cosine decay to the learning rate.
when training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
following cosine decay strategy.
The algorithm can be described as following.
.. math::
decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch *
\\
frac{math.pi}{epochs
} ) + 1)
decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step *
\\
frac{math.pi}{step\_each\_epoch
} ) + 1)
Args:
learning_rate(Variable|float): The initial learning rate.
step_each_epoch(int): the number of steps in an epoch.
epochs(int): the number of epochs.
begin(int): The begin step (default is 0).
step(int): The step size (default is 1).
dtype(str): The dtype used to create learning rate (default is 'float32').
Parameters:
learning_rate(Variable|float): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number.
step_each_epoch(int): The number of steps in an epoch.
epochs(int): The number of epochs.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The defalult value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
The decayed learning rat
e.
Non
e.
Examples:
.. code-block:: python
...
...
@@ -453,33 +505,29 @@ class CosineDecay(LearningRateDecay):
class
NoamDecay
(
LearningRateDecay
):
"""
Noam decay method. The numpy implementation of noam decay as follows.
.. code-block:: python
import numpy as np
# set hyper parameters
d_model = 2
current_steps = 20
warmup_steps = 200
# compute
lr_value = np.power(d_model, -0.5) * np.min([
np.power(current_steps, -0.5),
np.power(warmup_steps, -1.5) * current_steps])
Please reference `attention is all you need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
Args:
d_model(Variable): The dimensionality of input and output of model.
warmup_steps(Variable): A super parameter.
begin(int): The begin step (default is 0)
step(int): The step size (default is 1)
dtype(str): The dtype used to create learning rate (default is 'float32')
Applies Noam decay to the initial learning rate.
The algorithm can be described as following.
.. math::
decayed\_learning\_rate = d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
Parameters:
d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
step(int, optional): The step size used to calculate the new global_step in the description above.
The defalult value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Returns:
The decayed learning rat
e.
Non
e.
Examples:
.. code-block:: python
...
...
python/paddle/fluid/dygraph/nn.py
浏览文件 @
be52f333
...
...
@@ -273,7 +273,8 @@ class Conv3D(layers.Layer):
The convolution3D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are in NCDHW format. Where N is batch size C is the number of
Output(Output) are multidimensional tensors with a shape of
:math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature. Convlution3D is similar with Convlution2D
but adds one dimension(depth). If bias attribution and activation type are
...
...
@@ -288,7 +289,7 @@ class Conv3D(layers.Layer):
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW format.
* :math:`X`: Input value, a tensor with NCDHW
or NDHWC
format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`
\\
ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
...
...
@@ -317,45 +318,46 @@ class Conv3D(layers.Layer):
Parameters:
name_scope(str) : The name for this class.
num_filters(int): The number of filter. It is as same as the output image channel.
filter_size (int|tuple
|None
): The filter size. If filter_size is a tuple,
filter_size (int|tuple
, optional
): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
Otherwise, the filter will be a square, filter_size_depth = filter_size_height
= filter_size_width = filter_size.
stride (int|tuple, optional): The stride size. If stride is a tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride.
Default: stride =
1.
padding (int|tuple): The padding size. If padding is a tuple, it must
stride_D = stride_H = stride_W = stride.
The default value is
1.
padding (int|tuple
, optional
): The padding size. If padding is a tuple, it must
contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
padding_D = padding_H = padding_W = padding.
Default: padding =
0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
padding_D = padding_H = padding_W = padding.
The default value is
0.
dilation (int|tuple
, optional
): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation.
Default: dilation =
1.
groups (int): The groups number of the Conv3d Layer. According to grouped
dilation_D = dilation_H = dilation_W = dilation.
The default value is
1.
groups (int
, optional
): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels.
Default: groups=1
param_attr (ParamAttr
|None
): The parameter attribute for learnable parameters/weights
connected to the second half of the input channels.
The default value is 1.
param_attr (ParamAttr
, optional
): The parameter attribute for learnable parameters/weights
of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as param_attr. If it is set to None, the parameter
is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
:math:`(
\\
frac{2.0 }{filter\_elem\_num})^{0.5}`.
Default:
None.
bias_attr (ParamAttr|bool
|None
): The parameter attribute for the bias of conv3d.
:math:`(
\\
frac{2.0 }{filter\_elem\_num})^{0.5}`.
The default value is
None.
bias_attr (ParamAttr|bool
, optional
): The parameter attribute for the bias of conv3d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero.
Default:
None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed.
Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default:
None.
is not set, the bias is initialized zero.
The default value is
None.
use_cudnn (bool
, optional
): Use cudnn kernel or not, it is valid only when the cudnn
library is installed.
The default value is True.
act (str
, optional
): Activation type, if it is set to None, activation is not appended.
The default value is
None.
Attributes:
weight (Parameter): the learnable weights of filters of this layer.
bias (Parameter|None): the learnable bias of this layer.
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter): the learnable bias of this layer.
Returns:
Variable: The tensor variable storing the convolution and
\
non-linearity activation result.
None.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
...
...
@@ -533,58 +535,85 @@ class Conv3DTranspose(layers.Layer):
.. math::
D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1
\\\\
H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1
\\\\
W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1
\\\\
H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1
\\\\
W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
\\\\
D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ]
\\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ]
\\\\
**Note**:
The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
when stride > 1, conv3d maps multiple input shape to the same output shape,
so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} =
\
H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
conv3d_transpose can compute the kernel size automatically.
Parameters:
name_scope(str) : The name for this class.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain three integers, (image_D, image_H, image_W). This
parameter only works when filter_size is None.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
output_size(int|tuple, optional): The output image size. If output size is a
tuple, it must contain three integers, (image_depth, image_height, image_width). This
parameter only works when filter_size is None. If output_size and filter_size are
specified at the same time, They should follow the formula above. The default value is None.
Output_size and filter_size should not be None at the same time.
filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
padding_D = padding_H = padding_W = padding. Default: padding = 0.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. Default: stride = 1.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
calculate filter_size. The default value is None.
padding(int|tuple, optional): The padding size. The padding argument effectively
adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
`[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
and when `data_format` is `'NCDHW'`, `padding` can be in the form
`[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `'NDHWC'`, `padding` can be in the form
`[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
The default value is 0.
stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
The default value is 1.
dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation.
Default: dilation =
1.
groups(int): The groups number of the Conv3d transpose layer. Inspired by
dilation_D = dilation_H = dilation_W = dilation.
The default value is
1.
groups(int
, optional
): The groups number of the Conv3d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups=1
param_attr (ParamAttr
|None
): The parameter attribute for learnable parameters/weights
The default value is 1.
param_attr (ParamAttr
, optional
): The parameter attribute for learnable parameters/weights
of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier.
Default:
None.
bias_attr (ParamAttr|bool
|None
): The parameter attribute for the bias of conv3d_transpose.
is not set, the parameter is initialized with Xavier.
The default value is
None.
bias_attr (ParamAttr|bool
, optional
): The parameter attribute for the bias of conv3d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero.
Default:
None.
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed.
Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default:
None.
name(str
|None): A name for this layer(optional). If set None, the layer
will be named automatically
.
is not set, the bias is initialized zero.
The default value is
None.
use_cudnn(bool
, optional
): Use cudnn kernel or not, it is valid only when the cudnn
library is installed.
The default value is True.
act (str
, optional
): Activation type, if it is set to None, activation is not appended.
The default value is
None.
name(str
, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`
.
Attributes:
weight (Parameter): the learnable weights of filters of this layer.
bias (Parameter|None): the learnable bias of this layer.
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter): the learnable bias of this layer.
Returns:
Variable: The tensor variable storing the convolution transpose result
.
None
.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
...
...
@@ -1626,10 +1655,11 @@ class LayerNorm(layers.Layer):
class
GRUUnit
(
layers
.
Layer
):
"""
**GRU unit layer**
if origin_mode is True, then the equation of a gru step is from paper
`Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`
It creates a callable object from GRUUnit class.
If origin_mode is True, then the equation of a gru step is from paper
`Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
...
...
@@ -1640,7 +1670,7 @@ class GRUUnit(layers.Layer):
h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)
i
f origin_mode is False, then the equation of a gru step is from paper
I
f origin_mode is False, then the equation of a gru step is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
...
...
@@ -1669,39 +1699,46 @@ class GRUUnit(layers.Layer):
Parameters:
name_scope(str): The name of this class.
size (int): The input dimension value.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight matrix. Note:
param_attr(ParamAttr, optional): The parameter attribute for the learnable
hidden-hidden weight matrix.
**Note**:
1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
2. All elements in the weight matrix can be divided into two parts. The first
part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`,
and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
- The shape of the weight matrix is :math:`(T
\\
times 3D)`, where
:math:`D` is the hidden size.
- All elements in the weight matrix can be divided into two parts.
The first part are weights of the update gate and reset gate with
shape :math:`(D
\\
times 2D)`, and the second part are weights for
candidate hidden state with shape :math:`(D
\\
times D)`.
If it is set to None or one attribute of ParamAttr, gru_unit will
create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU.Note that the bias with :math:`(1
\\
times 3D)` concatenates
is not set, the parameter is initialized with Xavier. The default
value is None.
bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, gru_unit will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero.
Default:
None.
is initialized zero.
The default value is
None.
activation (str): The activation type for cell (actNode).
Default: 'tanh'
The default value is 'tanh'.
gate_activation (str): The activation type for gates (actGate).
Default: 'sigmoid'
dtype(str): The dtype of the layers. Default: 'float32'
The default value is 'sigmoid'.
dtype(str): The dtype of the layers. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
Attributes:
weight (Parameter): the learnable weights of this layer.
bias (Parameter): the learnable bias of this layer.
Attribute:
**weight** (Parameter): the learnable weights of this layer.
**bias** (Parameter): the learnable bias of this layer.
Returns:
tuple: The hidden value, reset-hidden value and gate values.
tuple: The hidden value, reset-hidden value and gate values. The hidden value
is a 2-D tensor with shape :math:`[T, D]` . The reset-hidden value is a
2-D tensor with shape :math:`[T, D]` . The gate value is a 2-D tensor with
shape :math:`[T, 3*D]`.
Examples:
...
...
@@ -1715,6 +1752,7 @@ class GRUUnit(layers.Layer):
D = 5
T = sum(lod[0])
input = numpy.random.rand(T, 3 * D).astype('float32')
hidden_input = numpy.random.rand(T, D).astype('float32')
with fluid.dygraph.guard():
x = numpy.random.random((3, 32, 32)).astype('float32')
...
...
@@ -2154,22 +2192,24 @@ class BilinearTensorProduct(layers.Layer):
- :math:`y`: the second input contains N elements, shape is [batch_size, N].
- :math:`W_{i}`: the i-th learned weight, shape is [M, N]
- :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
- :math:`y^\mathrm{T}`: the transpose of :math:`y
_{2}
`.
- :math:`y^\mathrm{T}`: the transpose of :math:`y`.
Parameters:
name_scope(str): The name of this class.
size (int): The dimension of this layer.
act (str): Activation to be applied to the output of this layer. Default: None.
name (str): The name of this layer. Default: None.
param_attr (ParamAttr): The parameter attribute for the learnable w.
parameters/weights of this layer. Default: None.
bias_attr (ParamAttr): The parameter attribute for the bias
name (str): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`.
act (str, optional): Activation to be applied to the output of this layer. The default value is None.
param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
this layer. The default value is None.
bias_attr (ParamAttr, optional): The parameter attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero.
Default:
None.
If it is set to None, the bias is initialized zero.
The default value is
None.
Attributes:
weight (Parameter): the learnable weights of this layer.
bias (Parameter|None): the learnable bias of this layer.
Attribute:
**weight** (Parameter): the learnable weights of this layer.
**bias** (Parameter): the learnable bias of this layer.
Returns:
Variable: A 2-D Tensor of shape [batch_size, size].
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
be52f333
...
...
@@ -8986,8 +8986,8 @@ def label_smooth(label,
dtype="float32",
name=None):
"""
Label smoothing is a mechanism to regularize the classifier layer and is
called label-smoothing regularization (LSR).
Label smoothing is a mechanism to regularize the classifier layer and is
called
label-smoothing regularization (LSR).
Label smoothing is proposed to encourage the model to be less confident,
since optimizing the log-likelihood of the correct label directly may
...
...
@@ -9006,19 +9006,23 @@ def label_smooth(label,
See more details about label smoothing in https://arxiv.org/abs/1512.00567.
Arg
s:
Parameter
s:
label(Variable): The input variable containing the label data. The
label data should use one-hot representation.
prior_dist(Variable): The prior distribution to be used to smooth
labels. If not provided, an uniform distribution
is used. The shape of :attr:`prior_dist` should
be :math:`(1, class\_num)`.
epsilon(float): The weight used to mix up the original ground-truth
distribution and the fixed distribution.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
float_64, int etc.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
label data should use one-hot representation. It's
a multidimensional tensor with a shape of
:math:`[N_1, ..., Depth]`, where Depth is class number.
prior_dist(Variable, optional): The prior distribution to be used to smooth
labels. If not provided, an uniform distribution
is used. It's a multidimensional tensor with a shape of
:math:`[1, class\_num]` . The default value is None.
epsilon(float, optional): The weight used to mix up the original ground-truth
distribution and the fixed distribution. The default value is
0.1.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
as 'float32', 'float64'. The default value is 'float32'.
name(str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to
:ref:`api_guide_Name`.
Returns:
Variable: The tensor variable containing the smoothed labels.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录