提交 be41c2ff 编写于 作者: L Luo Tao

Merge branch 'develop' into refine_relu_test

......@@ -56,6 +56,8 @@ ExternalProject_Add(
GIT_TAG "v0.14"
PREFIX ${MKLDNN_SOURCES_DIR}
UPDATE_COMMAND ""
# Patch MKLDNN to compile with gcc 4.8, the related issue is in intel/mkl-dnn#237.
PATCH_COMMAND ${CMAKE_COMMAND} -E copy_if_different ${CMAKE_CURRENT_SOURCE_DIR}/patches/mkldnn.hpp ${MKLDNN_SOURCES_DIR}/src/extern_mkldnn/include/mkldnn.hpp
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
CMAKE_ARGS -DMKLROOT=${MKLML_ROOT}
......
cc_library(dot SRCS dot.cc)
cc_library(analysis SRCS dot.cc node.cc node.h)
cc_test(test_node SRCS node_tester.cc DEPS analysis)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
namespace paddle {
namespace inference {
namespace analysis {
enum class Device { CPU, GPU };
} // namespace analysis
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/dot.h"
#include <gtest/gtest.h>
#include <memory>
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
namespace paddle {
namespace inference {
namespace analysis {
class DotTester : public ::testing::Test {
protected:
void SetUp() override {
std::vector<Dot::Attr> attrs({{"title", "hello"}});
dot.reset(new Dot(attrs));
dot->AddNode("a", {Dot::Attr{"shape", "box"}, Dot::Attr("color", "blue")});
dot->AddNode("b", {});
dot->AddNode("c", {});
dot->AddEdge("a", "b", {});
dot->AddEdge("b", "c", {});
dot->AddEdge("a", "c", {});
}
std::unique_ptr<Dot> dot;
};
TEST_F(DotTester, Build) {
auto codes = dot->Build();
// Output the DOT language code, the generated codes are too long to compare
// the string.
//
// The output is
//
// digraph G {
// title="hello"
// node_1
// node_2
// node_0[label="a" shape="box" color="blue"]
// node_0->node_1
// node_1->node_2
// node_0->node_2
// } // end G
LOG(INFO) << '\n' << codes;
}
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace analysis {
template <typename IteratorT>
class iterator_range {
IteratorT begin_, end_;
public:
template <typename Container>
explicit iterator_range(Container &&c) : begin_(c.begin()), end_(c.end()) {}
iterator_range(const IteratorT &begin, const IteratorT &end)
: begin_(begin), end_(end) {}
const IteratorT &begin() const { return begin_; }
const IteratorT &end() const { return end_; }
};
/*
* An registry helper class, with its records keeps the order they registers.
*/
template <typename T>
class OrderedRegistry {
public:
T *Register(const std::string &name, T *x) {
PADDLE_ENFORCE(!dic_.count(name));
dic_[name] = data_.size();
data_.emplace_back(std::unique_ptr<T>(x));
return data_.back().get();
}
T *Lookup(const std::string &name) {
auto it = dic_.find(name);
if (it == dic_.end()) return nullptr;
return data_[it->second].get();
}
protected:
std::unordered_map<std::string, int> dic_;
std::vector<std::unique_ptr<T>> data_;
};
} // namespace analysis
} // namespace inference
} // namespace paddle
#define PADDLE_DISALLOW_COPY_AND_ASSIGN(type__) \
\
type__(const type__ &) = delete; \
\
void operator=(const type__ &) = delete;
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/analysis/node.h"
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace analysis {
std::vector<Dot::Attr> Value::dot_attrs() const {
return std::vector<Dot::Attr>({Dot::Attr("style", "filled,rounded"),
Dot::Attr("shape", "box"),
Dot::Attr("fillcolor", "red")});
}
std::vector<Dot::Attr> Function::dot_attrs() const {
return std::vector<Dot::Attr>({Dot::Attr("style", "filled,rounded"),
Dot::Attr("shape", "diamond"),
Dot::Attr("fillcolor", "yellow")});
}
Node *NodeMap::Create(Node::Type type) {
switch (type) {
case Node::Type::kFunction:
nodes_.emplace_back(new Function);
break;
case Node::Type::kValue:
nodes_.emplace_back(new Value);
break;
default:
PADDLE_THROW("Not supported node type.");
}
nodes_.back()->id_ = size() - 1;
return nodes_.back().get();
}
Node *NodeMap::GetMutable(size_t id) {
PADDLE_ENFORCE_GT(size(), id);
return nodes_[id].get();
}
const Node &NodeMap::Get(size_t id) const {
PADDLE_ENFORCE_GT(size(), id);
return *nodes_[id].get();
}
void NodeMap::Delete(size_t id) {
PADDLE_ENFORCE_LT(id, size());
nodes_[id]->SetDeleted();
}
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file defines the Node class and its subclasses. A Node is the basis
* analysis element in a computation graph.
* There are basically two kinds of nodes, the function node and value node.
*/
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/inference/analysis/device.h"
#include "paddle/fluid/inference/analysis/dot.h"
#include "paddle/fluid/inference/analysis/helper.h"
namespace paddle {
namespace inference {
namespace analysis {
class NodeMap;
/*
* Node Representation.
*
* This is a very important class for analysis. It is the base class of all
* nodes computed by a program that may be used as operands to other nodes.
* Node is the super class of other important classes such as Function and
* Value, some nodes can have a name.
*/
class Node {
public:
// Node type. NOTE the new node types should add here.
enum class Type { kNone = -1, kFunction, kValue, kFunctionBlock };
Node() = default;
struct Attr;
// Cast to a subclass type, Function for example.
template <typename Subclass>
Subclass &As() {
return *dynamic_cast<Subclass *>(this);
}
// Formatted representation of this Node.
virtual std::string repr() const {
return name() + "(" + std::to_string(id()) + ")";
}
// DOT node representation. One Node type can customize its own node
// representation.
virtual std::vector<Dot::Attr> dot_attrs() const {
return std::vector<Dot::Attr>({Dot::Attr("style", "filled")});
}
// Get an additional attribute and convert it to T data type. NOTE this will
// silently create a new attribute if not exists.
Attr &attr(const std::string &name) { return attrs_[name]; }
int id() const { return id_; }
bool deleted() const { return deleted_; }
void SetDeleted() { deleted_ = true; }
void SetName(const std::string &name) { name_ = name; }
const std::string &name() const { return name_; }
void SetType(Type type) { type_ = type; }
Type type() const { return type_; }
void *extra_info() const { return extra_info_; }
void SetExtraInfo(void *extra_info) { extra_info_ = extra_info; }
// Input links.
std::vector<Node *> inlinks;
// Output links.
std::vector<Node *> outlinks;
// A helper class to maintain the status from Pass.
// TODO(superjomn) add a checker here to ensure the T is primary.
struct Attr {
// NOTE T should be a primary type or a struct combined by several primary
// types.
// NOTE the STL containers should not use here.
// Some usages
// Attr attr;
// T data;
// attr.data.assign((char*)data, sizeof(data));
bool &Bool() { return As<bool>(); }
float &Float() { return As<float>(); }
int32_t &Int32() { return As<int32_t>(); }
int64_t &Int64() { return As<int64_t>(); }
private:
template <typename T>
T &As() {
// init storage in the first usage.
if (data_.empty()) {
VLOG(4) << "resize data to " << sizeof(T);
type_hash_ = typeid(T).hash_code();
data_.resize(sizeof(T));
}
PADDLE_ENFORCE(type_hash_ == typeid(T).hash_code(), "type not matched");
PADDLE_ENFORCE_EQ(data_.size(), sizeof(T), "Node attr type recast error");
return *reinterpret_cast<T *>(&data_[0]);
}
private:
std::string data_;
size_t type_hash_{std::numeric_limits<size_t>::max()};
};
virtual ~Node() {}
friend class NodeMap;
PADDLE_DISALLOW_COPY_AND_ASSIGN(Node);
protected:
// The id number not the name is a node's unique identifier in the computation
// graph.
int id_{-1};
std::string name_;
Type type_{Type::kNone};
// Mark this node is deleted by some pass.
bool deleted_{false};
void *extra_info_;
mutable std::unordered_map<std::string, Attr> attrs_;
};
class Function;
/*
* Value represents a value node, it has some attributes including dims, data
* type and so on.
*/
class Value : public Node {
public:
enum class DataType { kInt32, kInt64, kFloat32, kFloat64 };
using Dims = std::vector<int>;
void SetDataType(DataType data_type) { data_type_ = data_type; }
DataType data_type() const { return data_type_; }
void SetDims(const Dims &dims) { dims_ = dims; }
const Dims &dims() const { return dims_; }
Device device() const { return device_; }
void SetDevice(Device device) { device_ = device; }
std::vector<Dot::Attr> dot_attrs() const override;
PADDLE_DISALLOW_COPY_AND_ASSIGN(Value);
protected:
Value() { SetType(Node::Type::kValue); }
friend class NodeMap;
private:
DataType data_type_;
Dims dims_;
Device device_;
};
/*
* Function represents any kind of executable concepts that takes several Values
* as input, and outputs several Values.
*/
class Function : public Node {
public:
std::vector<Dot::Attr> dot_attrs() const override;
// Get the operator's type from Desc.
const std::string &func_type() const { return func_type_; }
// Set the operator's type.
void SetFuncType(const std::string &func_type) { func_type_ = func_type; }
PADDLE_DISALLOW_COPY_AND_ASSIGN(Function);
protected:
std::string func_type_;
Function() { SetType(Node::Type::kFunction); }
friend class NodeMap;
};
/*
* FunctionBlock is a Node that contains a sub-graph multiple Node.
*/
struct FunctionBlock : public Node {
std::string repr() const override { return "block-" + std::to_string(id()); }
std::vector<Node *> subgraph;
};
class NodeMap {
public:
// Create a new node with type.
Node *Create(Node::Type type);
// Get a node by its id.
Node *GetMutable(size_t id);
const Node &Get(size_t id) const;
void Delete(size_t id);
const std::vector<std::unique_ptr<Node>> &nodes() { return nodes_; }
size_t size() const { return nodes_.size(); }
private:
std::vector<std::unique_ptr<Node>> nodes_;
std::unordered_map<std::string, Node *> map_;
};
} // namespace analysis
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/analysis/node.h"
#include <gtest/gtest.h>
namespace paddle {
namespace inference {
namespace analysis {
TEST(Node, Attr) {
// Node is an abstract class, use Value instead for they share the same Attr
// logic.
NodeMap nodes;
auto* node = nodes.Create(Node::Type::kValue);
node->attr("v0").Int32() = 2008;
ASSERT_EQ(node->attr("v0").Int32(), 2008);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
此差异已折叠。
......@@ -27,12 +27,15 @@ class TestNetWithDtype(unittest.TestCase):
def set_network(self):
self.dtype = "float64"
self.init_dtype()
main = fluid.Program()
with fluid.program_guard(main):
self.x = fluid.layers.data(name='x', shape=[13], dtype=self.dtype)
self.y = fluid.layers.data(name='y', shape=[1], dtype=self.dtype)
y_predict = fluid.layers.fc(input=self.x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=self.y)
avg_cost = fluid.layers.mean(cost)
self.program = main
self.fetch_list = [avg_cost]
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
......@@ -45,7 +48,7 @@ class TestNetWithDtype(unittest.TestCase):
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(fluid.default_main_program(),
exe.run(self.program,
feed=feeder.feed(data),
fetch_list=self.fetch_list)
# the main program is runable, the datatype is fully supported
......@@ -68,7 +71,7 @@ class TestNetWithDtype(unittest.TestCase):
# TODO(dzhwinter): make sure the fp16 is runable
# class TestFloat16(SimpleNet):
# class TestFloat16(TestNetWithDtype):
# def init_dtype(self):
# self.dtype = "float16"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册