未验证 提交 be273ea9 编写于 作者: L Li-fAngyU 提交者: GitHub

fix build warning: [Wsign-compare] on linux (#46644)

上级 ddf317ed
...@@ -21,8 +21,8 @@ namespace distributed { ...@@ -21,8 +21,8 @@ namespace distributed {
int FLAGS_pslib_table_save_max_retry_dense = 3; int FLAGS_pslib_table_save_max_retry_dense = 3;
void MemoryDenseTable::CreateInitializer(const std::string& attr, void MemoryDenseTable::CreateInitializer(const std::string &attr,
const std::string& name) { const std::string &name) {
auto slices = string::split_string<std::string>(attr, "&"); auto slices = string::split_string<std::string>(attr, "&");
if (slices[0] == "gaussian_random") { if (slices[0] == "gaussian_random") {
...@@ -60,14 +60,14 @@ int32_t MemoryDenseTable::InitializeValue() { ...@@ -60,14 +60,14 @@ int32_t MemoryDenseTable::InitializeValue() {
values_.resize(size); values_.resize(size);
total_dim_ = 0; total_dim_ = 0;
for (int x = 0; x < size; ++x) { for (int x = 0; x < size; ++x) {
auto& varname = common.params()[x]; auto &varname = common.params()[x];
auto& dim = common.dims()[x]; auto &dim = common.dims()[x];
if (varname == "Param") { if (varname == "Param") {
param_dim_ = dim; param_dim_ = dim;
param_idx_ = x; param_idx_ = x;
} }
auto& initializer = common.initializers()[x]; auto &initializer = common.initializers()[x];
total_dim_ += dim; total_dim_ += dim;
CreateInitializer(initializer, varname); CreateInitializer(initializer, varname);
...@@ -81,7 +81,7 @@ int32_t MemoryDenseTable::InitializeValue() { ...@@ -81,7 +81,7 @@ int32_t MemoryDenseTable::InitializeValue() {
fixed_len_params_dim_ = 0; fixed_len_params_dim_ = 0;
for (int x = 0; x < size; ++x) { for (int x = 0; x < size; ++x) {
auto& dim = common.dims()[x]; auto &dim = common.dims()[x];
if (static_cast<int>(dim) != param_dim_) { if (static_cast<int>(dim) != param_dim_) {
fixed_len_params_dim_ += dim; fixed_len_params_dim_ += dim;
} else { } else {
...@@ -124,19 +124,19 @@ int32_t MemoryDenseTable::InitializeOptimizer() { ...@@ -124,19 +124,19 @@ int32_t MemoryDenseTable::InitializeOptimizer() {
return 0; return 0;
} }
int32_t MemoryDenseTable::SetGlobalLR(float* lr) { int32_t MemoryDenseTable::SetGlobalLR(float *lr) {
_global_lr = lr; _global_lr = lr;
optimizer_->SetGlobalLR(_global_lr); optimizer_->SetGlobalLR(_global_lr);
return 0; return 0;
} }
int32_t MemoryDenseTable::Pull(TableContext& context) { int32_t MemoryDenseTable::Pull(TableContext &context) {
CHECK(context.value_type == Dense); CHECK(context.value_type == Dense);
float* pull_values = context.pull_context.values; float *pull_values = context.pull_context.values;
return PullDense(pull_values, context.num); return PullDense(pull_values, context.num);
} }
int32_t MemoryDenseTable::Push(TableContext& context) { int32_t MemoryDenseTable::Push(TableContext &context) {
CHECK(context.value_type == Dense); CHECK(context.value_type == Dense);
if (context.push_context.values != nullptr) { if (context.push_context.values != nullptr) {
if (!context.push_context.is_param) { if (!context.push_context.is_param) {
...@@ -148,13 +148,13 @@ int32_t MemoryDenseTable::Push(TableContext& context) { ...@@ -148,13 +148,13 @@ int32_t MemoryDenseTable::Push(TableContext& context) {
return 0; return 0;
} }
int32_t MemoryDenseTable::PullDense(float* pull_values, size_t num) { int32_t MemoryDenseTable::PullDense(float *pull_values, size_t num) {
std::copy( std::copy(
values_[param_idx_].begin(), values_[param_idx_].end(), pull_values); values_[param_idx_].begin(), values_[param_idx_].end(), pull_values);
return 0; return 0;
} }
int32_t MemoryDenseTable::PushDenseParam(const float* values, size_t num) { int32_t MemoryDenseTable::PushDenseParam(const float *values, size_t num) {
PADDLE_ENFORCE_GE( PADDLE_ENFORCE_GE(
num, num,
param_dim_, param_dim_,
...@@ -171,7 +171,7 @@ int32_t MemoryDenseTable::Pour() { ...@@ -171,7 +171,7 @@ int32_t MemoryDenseTable::Pour() {
return 0; return 0;
} }
int32_t MemoryDenseTable::PushDense(const float* values, size_t num) { int32_t MemoryDenseTable::PushDense(const float *values, size_t num) {
if (sync) { if (sync) {
std::future<int> task = std::future<int> task =
_shards_task_pool[0]->enqueue([this, &values]() -> int { _shards_task_pool[0]->enqueue([this, &values]() -> int {
...@@ -185,7 +185,7 @@ int32_t MemoryDenseTable::PushDense(const float* values, size_t num) { ...@@ -185,7 +185,7 @@ int32_t MemoryDenseTable::PushDense(const float* values, size_t num) {
return 0; return 0;
} }
int32_t MemoryDenseTable::_PushDense(const float* values, size_t num) { int32_t MemoryDenseTable::_PushDense(const float *values, size_t num) {
PADDLE_ENFORCE_GE( PADDLE_ENFORCE_GE(
num, num,
param_dim_, param_dim_,
...@@ -212,8 +212,8 @@ int32_t MemoryDenseTable::_PushDense(const float* values, size_t num) { ...@@ -212,8 +212,8 @@ int32_t MemoryDenseTable::_PushDense(const float* values, size_t num) {
return 0; return 0;
} }
int32_t MemoryDenseTable::Load(const std::string& path, int32_t MemoryDenseTable::Load(const std::string &path,
const std::string& param) { const std::string &param) {
if (param_dim_ <= 0) { if (param_dim_ <= 0) {
return 0; return 0;
} }
...@@ -249,7 +249,7 @@ int32_t MemoryDenseTable::Load(const std::string& path, ...@@ -249,7 +249,7 @@ int32_t MemoryDenseTable::Load(const std::string& path,
try { try {
int dim_idx = 0; int dim_idx = 0;
float data_buffer[5]; float data_buffer[5];
float* data_buff_ptr = data_buffer; float *data_buff_ptr = data_buffer;
std::string line_data; std::string line_data;
auto common = _config.common(); auto common = _config.common();
...@@ -319,8 +319,8 @@ int32_t MemoryDenseTable::Load(const std::string& path, ...@@ -319,8 +319,8 @@ int32_t MemoryDenseTable::Load(const std::string& path,
return 0; return 0;
} }
int32_t MemoryDenseTable::Save(const std::string& path, int32_t MemoryDenseTable::Save(const std::string &path,
const std::string& param) { const std::string &param) {
int save_param = atoi(param.c_str()); int save_param = atoi(param.c_str());
uint32_t feasign_size; uint32_t feasign_size;
VLOG(0) << "MemoryDenseTable::save path " << path; VLOG(0) << "MemoryDenseTable::save path " << path;
...@@ -353,7 +353,7 @@ int32_t MemoryDenseTable::Save(const std::string& path, ...@@ -353,7 +353,7 @@ int32_t MemoryDenseTable::Save(const std::string& path,
os.clear(); os.clear();
os.str(""); os.str("");
os << values_[param_col_ids_[0]][y] << " 0"; os << values_[param_col_ids_[0]][y] << " 0";
for (int x = 2; x < param_col_ids_.size(); ++x) { for (size_t x = 2; x < param_col_ids_.size(); ++x) {
os << " "; os << " ";
os << values_[param_col_ids_[x]][y]; os << values_[param_col_ids_[x]][y];
} }
...@@ -365,7 +365,7 @@ int32_t MemoryDenseTable::Save(const std::string& path, ...@@ -365,7 +365,7 @@ int32_t MemoryDenseTable::Save(const std::string& path,
os.clear(); os.clear();
os.str(""); os.str("");
os << values_[param_col_ids_[0]][y]; os << values_[param_col_ids_[0]][y];
for (int x = 1; x < param_col_ids_.size(); ++x) { for (size_t x = 1; x < param_col_ids_.size(); ++x) {
os << " "; os << " ";
os << values_[param_col_ids_[x]][y]; os << values_[param_col_ids_[x]][y];
} }
...@@ -383,7 +383,7 @@ int32_t MemoryDenseTable::Save(const std::string& path, ...@@ -383,7 +383,7 @@ int32_t MemoryDenseTable::Save(const std::string& path,
auto write_channel = auto write_channel =
_afs_client.open_w(channel_config, 1024 * 1024 * 40, &err_no); _afs_client.open_w(channel_config, 1024 * 1024 * 40, &err_no);
for (auto& t : result_buffer_param) { for (auto &t : result_buffer_param) {
if (0 != write_channel->write_line(t)) { if (0 != write_channel->write_line(t)) {
++retry_num; ++retry_num;
is_write_failed = true; is_write_failed = true;
......
...@@ -23,7 +23,7 @@ DEFINE_bool(enable_show_scale_gradient, true, "enable show scale gradient"); ...@@ -23,7 +23,7 @@ DEFINE_bool(enable_show_scale_gradient, true, "enable show scale gradient");
namespace paddle { namespace paddle {
namespace distributed { namespace distributed {
void SparseNaiveSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param, void SparseNaiveSGDRule::LoadConfig(const SparseCommonSGDRuleParameter &param,
size_t emb_dim) { size_t emb_dim) {
_embedding_dim = emb_dim; _embedding_dim = emb_dim;
auto naive_param = param.naive(); auto naive_param = param.naive();
...@@ -41,9 +41,9 @@ void SparseNaiveSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param, ...@@ -41,9 +41,9 @@ void SparseNaiveSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param,
} }
} }
void SparseNaiveSGDRule::UpdateValueWork(float* w, void SparseNaiveSGDRule::UpdateValueWork(float *w,
float* sgd, float *sgd,
const float* push_value, const float *push_value,
float scale) { float scale) {
for (size_t i = 0; i < _embedding_dim; ++i) { for (size_t i = 0; i < _embedding_dim; ++i) {
w[i] -= learning_rate_ * push_value[i]; w[i] -= learning_rate_ * push_value[i];
...@@ -51,8 +51,8 @@ void SparseNaiveSGDRule::UpdateValueWork(float* w, ...@@ -51,8 +51,8 @@ void SparseNaiveSGDRule::UpdateValueWork(float* w,
} }
} }
void SparseNaiveSGDRule::InitValueWork(float* value, void SparseNaiveSGDRule::InitValueWork(float *value,
float* sgd, float *sgd,
bool zero_init) { bool zero_init) {
if (zero_init) { if (zero_init) {
for (size_t i = 0; i < _embedding_dim; ++i) { for (size_t i = 0; i < _embedding_dim; ++i) {
...@@ -68,7 +68,7 @@ void SparseNaiveSGDRule::InitValueWork(float* value, ...@@ -68,7 +68,7 @@ void SparseNaiveSGDRule::InitValueWork(float* value,
} }
} }
} }
void SparseAdaGradSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param, void SparseAdaGradSGDRule::LoadConfig(const SparseCommonSGDRuleParameter &param,
size_t emb_dim) { size_t emb_dim) {
_embedding_dim = emb_dim; _embedding_dim = emb_dim;
auto adagrad_param = param.adagrad(); auto adagrad_param = param.adagrad();
...@@ -88,11 +88,11 @@ void SparseAdaGradSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param, ...@@ -88,11 +88,11 @@ void SparseAdaGradSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param,
} }
} }
void SparseAdaGradSGDRule::UpdateValueWork(float* w, void SparseAdaGradSGDRule::UpdateValueWork(float *w,
float* sgd, float *sgd,
const float* grad, const float *grad,
float scale) { float scale) {
float& g2sum = sgd[G2SumIndex()]; float &g2sum = sgd[G2SumIndex()];
double add_g2sum = 0; double add_g2sum = 0;
for (size_t i = 0; i < _embedding_dim; i++) { for (size_t i = 0; i < _embedding_dim; i++) {
...@@ -106,8 +106,8 @@ void SparseAdaGradSGDRule::UpdateValueWork(float* w, ...@@ -106,8 +106,8 @@ void SparseAdaGradSGDRule::UpdateValueWork(float* w,
g2sum += add_g2sum / _embedding_dim; g2sum += add_g2sum / _embedding_dim;
} }
void SparseAdaGradSGDRule::InitValueWork(float* value, void SparseAdaGradSGDRule::InitValueWork(float *value,
float* sgd, float *sgd,
bool zero_init) { bool zero_init) {
for (size_t i = 0; i < _embedding_dim; ++i) { for (size_t i = 0; i < _embedding_dim; ++i) {
if (zero_init) { if (zero_init) {
...@@ -125,7 +125,7 @@ void SparseAdaGradSGDRule::InitValueWork(float* value, ...@@ -125,7 +125,7 @@ void SparseAdaGradSGDRule::InitValueWork(float* value,
sgd[G2SumIndex()] = 0; sgd[G2SumIndex()] = 0;
} }
void StdAdaGradSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param, void StdAdaGradSGDRule::LoadConfig(const SparseCommonSGDRuleParameter &param,
size_t emb_dim) { size_t emb_dim) {
_embedding_dim = emb_dim; _embedding_dim = emb_dim;
auto adagrad_param = param.adagrad(); auto adagrad_param = param.adagrad();
...@@ -145,12 +145,12 @@ void StdAdaGradSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param, ...@@ -145,12 +145,12 @@ void StdAdaGradSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param,
} }
} }
void StdAdaGradSGDRule::UpdateValueWork(float* w, void StdAdaGradSGDRule::UpdateValueWork(float *w,
float* sgd, float *sgd,
const float* grad, const float *grad,
float scale) { float scale) {
for (size_t i = 0; i < _embedding_dim; i++) { for (size_t i = 0; i < _embedding_dim; i++) {
float& g2sum = sgd[G2SumIndex() + i]; float &g2sum = sgd[G2SumIndex() + i];
double scaled_grad = grad[i] / scale; double scaled_grad = grad[i] / scale;
w[i] -= learning_rate_ * scaled_grad * w[i] -= learning_rate_ * scaled_grad *
sqrt(_initial_g2sum / (_initial_g2sum + g2sum)); sqrt(_initial_g2sum / (_initial_g2sum + g2sum));
...@@ -159,8 +159,8 @@ void StdAdaGradSGDRule::UpdateValueWork(float* w, ...@@ -159,8 +159,8 @@ void StdAdaGradSGDRule::UpdateValueWork(float* w,
} }
} }
void StdAdaGradSGDRule::InitValueWork(float* value, void StdAdaGradSGDRule::InitValueWork(float *value,
float* sgd, float *sgd,
bool zero_init) { bool zero_init) {
for (size_t i = 0; i < _embedding_dim; ++i) { for (size_t i = 0; i < _embedding_dim; ++i) {
if (zero_init) { if (zero_init) {
...@@ -178,7 +178,7 @@ void StdAdaGradSGDRule::InitValueWork(float* value, ...@@ -178,7 +178,7 @@ void StdAdaGradSGDRule::InitValueWork(float* value,
} }
} }
void SparseAdamSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param, void SparseAdamSGDRule::LoadConfig(const SparseCommonSGDRuleParameter &param,
size_t emb_dim) { size_t emb_dim) {
_embedding_dim = emb_dim; _embedding_dim = emb_dim;
auto adam_param = param.adam(); auto adam_param = param.adam();
...@@ -199,15 +199,15 @@ void SparseAdamSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param, ...@@ -199,15 +199,15 @@ void SparseAdamSGDRule::LoadConfig(const SparseCommonSGDRuleParameter& param,
} }
} }
void SparseAdamSGDRule::UpdateValueWork(float* w, void SparseAdamSGDRule::UpdateValueWork(float *w,
float* sgd, float *sgd,
const float* grad, const float *grad,
float scale) { float scale) {
float* gsum = sgd + GSumIndex(); float *gsum = sgd + GSumIndex();
float* g2sum = sgd + G2SumIndex(); float *g2sum = sgd + G2SumIndex();
float* beta1_pow = sgd + Beta1PowIndex(); float *beta1_pow = sgd + Beta1PowIndex();
float* beta2_pow = sgd + Beta2PowIndex(); float *beta2_pow = sgd + Beta2PowIndex();
const float* g = grad; const float *g = grad;
float lr = learning_rate_; float lr = learning_rate_;
float beta1_pow_ = *beta1_pow; float beta1_pow_ = *beta1_pow;
...@@ -227,8 +227,8 @@ void SparseAdamSGDRule::UpdateValueWork(float* w, ...@@ -227,8 +227,8 @@ void SparseAdamSGDRule::UpdateValueWork(float* w,
(*beta2_pow) *= _beta2_decay_rate; (*beta2_pow) *= _beta2_decay_rate;
} }
void SparseAdamSGDRule::InitValueWork(float* value, void SparseAdamSGDRule::InitValueWork(float *value,
float* sgd, float *sgd,
bool zero_init) { bool zero_init) {
for (size_t i = 0; i < _embedding_dim; ++i) { for (size_t i = 0; i < _embedding_dim; ++i) {
if (zero_init) { if (zero_init) {
...@@ -253,7 +253,7 @@ void SparseAdamSGDRule::InitValueWork(float* value, ...@@ -253,7 +253,7 @@ void SparseAdamSGDRule::InitValueWork(float* value,
} }
void SparseSharedAdamSGDRule::LoadConfig( void SparseSharedAdamSGDRule::LoadConfig(
const SparseCommonSGDRuleParameter& param, size_t emb_dim) { const SparseCommonSGDRuleParameter &param, size_t emb_dim) {
_embedding_dim = emb_dim; _embedding_dim = emb_dim;
auto adam_param = param.adam(); auto adam_param = param.adam();
learning_rate_ = adam_param.learning_rate(); learning_rate_ = adam_param.learning_rate();
...@@ -273,15 +273,15 @@ void SparseSharedAdamSGDRule::LoadConfig( ...@@ -273,15 +273,15 @@ void SparseSharedAdamSGDRule::LoadConfig(
} }
} }
void SparseSharedAdamSGDRule::UpdateValueWork(float* w, void SparseSharedAdamSGDRule::UpdateValueWork(float *w,
float* sgd, float *sgd,
const float* grad, const float *grad,
float scale) { float scale) {
float* gsum = sgd + GSumIndex(); float *gsum = sgd + GSumIndex();
float* g2sum = sgd + G2SumIndex(); float *g2sum = sgd + G2SumIndex();
float* beta1_pow = sgd + Beta1PowIndex(); float *beta1_pow = sgd + Beta1PowIndex();
float* beta2_pow = sgd + Beta2PowIndex(); float *beta2_pow = sgd + Beta2PowIndex();
const float* g = grad; const float *g = grad;
float lr = learning_rate_; float lr = learning_rate_;
float beta1_pow_ = *beta1_pow; float beta1_pow_ = *beta1_pow;
...@@ -292,7 +292,7 @@ void SparseSharedAdamSGDRule::UpdateValueWork(float* w, ...@@ -292,7 +292,7 @@ void SparseSharedAdamSGDRule::UpdateValueWork(float* w,
lr *= sqrt(1 - beta2_pow_) / (1 - beta1_pow_); lr *= sqrt(1 - beta2_pow_) / (1 - beta1_pow_);
double sum_gsum = 0.0; double sum_gsum = 0.0;
double sum_g2sum = 0.0; double sum_g2sum = 0.0;
for (int i = 0; i < _embedding_dim; i++) { for (size_t i = 0; i < _embedding_dim; i++) {
// Calculation // Calculation
double new_gsum = double new_gsum =
_beta1_decay_rate * gsum_ + (1 - _beta1_decay_rate) * g[i]; _beta1_decay_rate * gsum_ + (1 - _beta1_decay_rate) * g[i];
...@@ -310,10 +310,10 @@ void SparseSharedAdamSGDRule::UpdateValueWork(float* w, ...@@ -310,10 +310,10 @@ void SparseSharedAdamSGDRule::UpdateValueWork(float* w,
(*beta2_pow) *= _beta2_decay_rate; (*beta2_pow) *= _beta2_decay_rate;
} }
void SparseSharedAdamSGDRule::InitValueWork(float* value, void SparseSharedAdamSGDRule::InitValueWork(float *value,
float* sgd, float *sgd,
bool zero_init) { bool zero_init) {
for (int i = 0; i < _embedding_dim; ++i) { for (size_t i = 0; i < _embedding_dim; ++i) {
if (zero_init) { if (zero_init) {
value[i] = 0.0; value[i] = 0.0;
BoundValue(value[i]); BoundValue(value[i]);
...@@ -327,7 +327,7 @@ void SparseSharedAdamSGDRule::InitValueWork(float* value, ...@@ -327,7 +327,7 @@ void SparseSharedAdamSGDRule::InitValueWork(float* value,
} }
} }
// init rule gsum and g2sum // init rule gsum and g2sum
for (int i = GSumIndex(); i < Beta1PowIndex(); i++) { for (size_t i = GSumIndex(); i < Beta1PowIndex(); i++) {
sgd[i] = 0.0; sgd[i] = 0.0;
} }
// init beta1_pow and beta2_pow // init beta1_pow and beta2_pow
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册