diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake index 5d24caebdcc5a28823164d718fb1628be5c4179d..89fc34796a03ff3f3e5b022ae10b2646832b1ac7 100644 --- a/cmake/external/mkldnn.cmake +++ b/cmake/external/mkldnn.cmake @@ -63,9 +63,30 @@ ExternalProject_Add( -DMKLROOT:PATH=${MKLML_ROOT} ) -ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) -SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) -ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) +ADD_LIBRARY(shared_mkldnn SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET shared_mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) +ADD_DEPENDENCIES(shared_mkldnn ${MKLDNN_PROJECT}) MESSAGE(STATUS "MKLDNN library: ${MKLDNN_LIB}") add_definitions(-DPADDLE_WITH_MKLDNN) -LIST(APPEND external_project_dependencies mkldnn) +LIST(APPEND external_project_dependencies shared_mkldnn) + +# generate a static dummy target to track mkldnn dependencies +# for cc_library(xxx SRCS xxx.c DEPS mkldnn) +SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/mkldnn_dummy.c) +FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") +ADD_LIBRARY(mkldnn STATIC ${dummyfile}) +TARGET_LINK_LIBRARIES(mkldnn ${MKLDNN_LIB} ${MKLML_LIB} ${MKLML_IOMP_LIB}) +ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) + +# copy the real so.0 lib to install dir +# it can be directly contained in wheel or capi +SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0) +ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB} + COMMAND cp ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB} + DEPENDS mkldnn) +ADD_CUSTOM_TARGET(mkldnn_shared_lib ALL DEPENDS ${MKLDNN_SHARED_LIB}) + +IF(WITH_C_API) + INSTALL(FILES ${MKLDNN_SHARED_LIB} DESTINATION lib) +ENDIF() + diff --git a/cmake/external/mklml.cmake b/cmake/external/mklml.cmake index 20dbc32a738d982df2d3f035206279c82c8de264..15a07ea3daf5aa606235f20288a8306966334a1a 100644 --- a/cmake/external/mklml.cmake +++ b/cmake/external/mklml.cmake @@ -66,3 +66,7 @@ ADD_LIBRARY(mklml SHARED IMPORTED GLOBAL) SET_PROPERTY(TARGET mklml PROPERTY IMPORTED_LOCATION ${MKLML_LIB}) ADD_DEPENDENCIES(mklml ${MKLML_PROJECT}) LIST(APPEND external_project_dependencies mklml) + +IF(WITH_C_API) + INSTALL(FILES ${MKLML_LIB} ${MKLML_IOMP_LIB} DESTINATION lib) +ENDIF() diff --git a/doc/design/ci_build_whl.png b/doc/design/ci_build_whl.png new file mode 100644 index 0000000000000000000000000000000000000000..232762b82a9ae3e979a1f38a7beb715c87438f40 Binary files /dev/null and b/doc/design/ci_build_whl.png differ diff --git a/doc/design/releasing_process.md b/doc/design/releasing_process.md index 14c081ea84282e52a2e36475c3c0ea755122d154..b9787261092f1f27377886152cb1596d9ff54188 100644 --- a/doc/design/releasing_process.md +++ b/doc/design/releasing_process.md @@ -7,11 +7,9 @@ PaddlePaddle每次发新的版本,遵循以下流程: 1. 从`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0` 1. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。 1. 对这个版本的提交,做如下几个操作: + * 使用Regression Test List作为检查列表,测试本次release的正确性。 + * 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,到第二步 * 修改`python/setup.py.in`中的版本信息,并将`istaged`字段设为`True`。 - * 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步 - * 编译这个版本的Ubuntu Deb包。如果失败,修复Ubuntu Deb包编译问题,Patch号加一,返回第二步。 - * 使用Regression Test List作为检查列表,测试Docker镜像/ubuntu安装包的功能正确性 - * 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,返回第二步 * 编译这个版本的python wheel包,并发布到pypi。 * 由于pypi.python.org目前遵循[严格的命名规范PEP 513](https://www.python.org/dev/peps/pep-0513),在使用twine上传之前,需要重命名wheel包中platform相关的后缀,比如将`linux_x86_64`修改成`manylinux1_x86_64`。 * pypi上的package名称为paddlepaddle和paddlepaddle_gpu,如果要上传GPU版本的包,需要修改build/python/setup.py中,name: "paddlepaddle_gpu"并重新打包wheel包:`python setup.py bdist_wheel`。 @@ -21,8 +19,8 @@ PaddlePaddle每次发新的版本,遵循以下流程: pip install twine twine upload dist/[package to upload] ``` + * 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步 1. 第三步完成后,将`release/版本号`分支合入master分支,并删除`release/版本号`分支。将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。最后删除`release/版本号`分支。 -1. 编译master分支的Docker发行镜像,发布到dockerhub。编译ubuntu的deb包,发布到github release页面 1. 协同完成Release Note的书写 @@ -31,6 +29,30 @@ PaddlePaddle每次发新的版本,遵循以下流程: * `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试PaddlePaddle的行为。 * 在`release/版本号`分支存在的时候,如果有bugfix的行为,需要将bugfix的分支同时merge到`master`, `develop`和`release/版本号`这三个分支。 +## 发布wheel包到pypi + +使用[PaddlePaddle CI](https://paddleci.ngrok.io/project.html?projectId=Manylinux1&tab=projectOverview) +完成自动化二进制编译,参考下图,选择需要发布的版本(通常包含一个CPU版本和一个GPU版本),点击"run"右侧的"..."按钮,可以 +弹出下面的选择框,在第二个tab (Changes)里选择需要发布的分支,这里选择0.11.0,然后点击"Run Build"按钮。等待编译完成后 +可以在此页面的"Artifacts"下拉框中找到生成的3个二进制文件,分别对应CAPI,`cp27m`和`cp27mu`的版本。然后按照上述的方法 +使用`twine`工具上传即可。 + + + +* 注:CI环境使用 https://github.com/PaddlePaddle/buildtools 这里的DockerImage作为编译环境以支持更多的Linux + 发型版,如果需要手动编译,也可以使用这些镜像。这些镜像也可以从 https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/ 下载得到。 +* pypi不支持覆盖上传,所以一个版本号的wheel包发布之后,不可以更改。下一个wheel包需要更新版本号才可以上传。 + +## 发布Docker镜像 + +上述PaddlePaddle CI编译wheel完成后会自动将Docker镜像push到DockerHub,所以,发布Docker镜像只需要对自动push的镜像打上 +版本号对应的tag即可: + +1. 进入 https://hub.docker.com/r/paddlepaddle/paddle/tags/ 查看latest tag的更新时间是否在上述编译wheel包完成后是否最新。 +1. 执行 `docker pull paddlepaddle/paddle:[latest tag]`,latest tag可以是latest或latest-gpu等。 +1. 执行 `docker tag paddlepaddle/paddle:[latest tag] paddlepaddle/paddle:[version]` +1. 执行 `docker push paddlepaddle/paddle:[version]` + ## PaddlePaddle 分支规范 PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 221186d780ec907d10dc3d9025d1abe969be6eb9..af4079875a50ffe6eb627492f834fb601bbee716 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -32,7 +32,9 @@ cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool) cc_library(scope SRCS scope.cc DEPS glog threadpool) cc_test(scope_test SRCS scope_test.cc DEPS scope) -cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor framework_proto) +cc_library(device_data_transform SRCS device_data_transform.cc DEPS tensor) + +cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor framework_proto selected_rows device_data_transform) cc_test(data_transform_test SRCS data_transform_test.cc DEPS data_transform device_context) cc_library(attribute SRCS attribute.cc DEPS framework_proto) @@ -41,7 +43,7 @@ device_context) cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute) cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) -cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute) +cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context) cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog shape_inference data_transform) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry init) @@ -73,9 +75,10 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry cc_library(selected_rows SRCS selected_rows.cc DEPS tensor) cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows) - -cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece) +cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece operator) cc_test(init_test SRCS init_test.cc DEPS init) cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto) cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc) +nv_test(device_data_transform_test SRCS device_data_transform_test.cu + DEPS operator op_registry init math_function) diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index eaf13ddcefcd8dc5a6b0438f765d8d325925aa30..85e693434af863bfc3bde29989dbbfc69678d3b7 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -427,7 +427,8 @@ std::vector> MakeBlockBackward( VLOG(5) << "Making backward " << (*it)->Type() << " op"; std::vector> op_grads; - if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") { + if ((*it)->Type() == "recurrent" || (*it)->Type() == "while" || + (*it)->Type() == "parallel_do") { int step_block_idx = (*it)->GetBlockAttr("sub_block"); BlockDesc* backward_block = CreateStepBlock(program_desc, no_grad_vars, grad_to_var, step_block_idx); diff --git a/paddle/framework/data_transform.cc b/paddle/framework/data_transform.cc index ac6e40a3ae8f6655eecc8279543d6afe6bbb1399..55825c5b7d2155df5a80fc15933579441aea75a8 100644 --- a/paddle/framework/data_transform.cc +++ b/paddle/framework/data_transform.cc @@ -14,7 +14,9 @@ limitations under the License. */ #include #include "paddle/framework/data_transform.h" +#include "paddle/framework/device_data_transform.h" #include "paddle/framework/lod_tensor.h" +#include "paddle/framework/selected_rows.h" #include "paddle/platform/device_context.h" namespace paddle { @@ -25,6 +27,37 @@ DataTransformFnMap& DataTransformFnMap::Instance() { return data_transform_map; } +Tensor* DataTransform(const OpKernelType& expected_kernel_type, + const OpKernelType& kernel_type_for_var, + const Tensor& input_tensor) { + Tensor* out = nullptr; + if (!platform::is_same_place(kernel_type_for_var.place_, + expected_kernel_type.place_)) { + out = DeviceTransform(input_tensor, expected_kernel_type.place_); + } + PADDLE_ENFORCE_NOT_NULL(out, "out should not be null"); + return out; +} + +void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor, + Variable& out_var) { + if (in_var.IsType()) { + auto& in_lod_tensor = in_var.Get(); + auto* tran_lod_tensor = out_var.GetMutable(); + tran_lod_tensor->set_lod(in_lod_tensor.lod()); + tran_lod_tensor->set_layout(in_lod_tensor.layout()); + tran_lod_tensor->ShareDataWith(tensor); + } else if (in_var.IsType()) { + auto& in_selected_rows = in_var.Get(); + auto* trans_selected_rows = out_var.GetMutable(); + trans_selected_rows->set_height(in_selected_rows.height()); + trans_selected_rows->set_rows(in_selected_rows.rows()); + trans_selected_rows->mutable_value()->ShareDataWith(tensor); + } else { + PADDLE_THROW("unknown var type"); + } +} + auto KernelFP32 = OpKernelType(proto::DataType::FP32, platform::CPUPlace(), DataLayout::kNHWC, LibraryType::kPlain); @@ -37,6 +70,28 @@ auto KernelNHWC = OpKernelType(proto::DataType::FP64, platform::CPUPlace(), auto KernelNCHW = OpKernelType(proto::DataType::FP64, platform::CPUPlace(), DataLayout::kNCHW, LibraryType::kPlain); +// TODO(dzhwinter): Only for testing multiple op kernel. +// Dummy transform function for library_type +// should be removed. +auto KernelPlain = OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0), + DataLayout::kAnyLayout, LibraryType::kPlain); + +auto KernelCUDNN = OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0), + DataLayout::kAnyLayout, LibraryType::kCUDNN); + +void DummyTrans(const platform::DeviceContext* ctx, + const KernelTypePair& kernel_pair, const Variable& in, + Variable* out) { + PADDLE_ENFORCE(in.IsType(), "Only Support Tensor transform!."); + PADDLE_ENFORCE( + platform::places_are_same_class(kernel_pair.first.place_, + kernel_pair.second.place_), + "TransDataType Only Support DataType transform on same place!"); + auto src = in.Get(); + auto* dst = out->GetMutable(); + *dst = src; +} + void TransDataType(const platform::DeviceContext* ctx, const KernelTypePair& kernel_pair, const Variable& in, Variable* out) { @@ -121,6 +176,8 @@ std::vector NCHW2NHWC = {0, 2, 3, 1}; } REGISTER_DATA_TRANSFORM_FN(f::KernelFP32, f::KernelFP64, f::TransDataType); +REGISTER_DATA_TRANSFORM_FN(f::KernelPlain, f::KernelCUDNN, f::DummyTrans); +REGISTER_DATA_TRANSFORM_FN(f::KernelCUDNN, f::KernelPlain, f::DummyTrans); REGISTER_DATA_TRANSFORM_FN(f::KernelNHWC, f::KernelNCHW, std::bind(f::TransDataLayout, NHWC2NCHW, std::placeholders::_1, diff --git a/paddle/framework/data_transform.h b/paddle/framework/data_transform.h index 56ebc80f4386958608213f30e745f2d9528e9e5e..42fc5f4d7e84a0f62092c423524aae518f348a97 100644 --- a/paddle/framework/data_transform.h +++ b/paddle/framework/data_transform.h @@ -19,6 +19,7 @@ limitations under the License. */ #include #include "paddle/framework/op_kernel_type.h" +#include "paddle/framework/selected_rows.h" #include "paddle/framework/tensor.h" #include "paddle/framework/variable.h" #include "paddle/operators/math/math_function.h" @@ -49,6 +50,13 @@ struct KernelTypePairHash { } }; +Tensor* DataTransform(const OpKernelType& expected_kernel_type, + const OpKernelType& kernel_type_for_var, + const Tensor& input_tensor); + +void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor, + Variable& out_var); + template struct CastDataTypeFunctor { HOSTDEVICE inline OutType operator()(InType in) const { diff --git a/paddle/framework/device_data_transform.cc b/paddle/framework/device_data_transform.cc new file mode 100644 index 0000000000000000000000000000000000000000..4f9b7e96a284c148ca6a5e141d513342c92df3d4 --- /dev/null +++ b/paddle/framework/device_data_transform.cc @@ -0,0 +1,46 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/device_data_transform.h" + +namespace paddle { +namespace framework { + +static const platform::DeviceContext* GetDeviceContext( + const platform::Place& src_place, const platform::Place& dst_place) { + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + + if (platform::is_gpu_place(src_place) && platform::is_cpu_place(dst_place)) { + return pool.Get(src_place); + } else if (platform::is_cpu_place(src_place) && + platform::is_gpu_place(dst_place)) { + return pool.Get(dst_place); + } else { + PADDLE_THROW( + "Currently, model parallelism is only supported between CPU and CUDA"); + } +} + +Tensor* DeviceTransform(const Tensor& in, const platform::Place& dst_place) { + VLOG(3) << "DeviceTransform in, src_place " << in.place() + << " dst_place: " << dst_place; + Tensor* out = new Tensor(); + auto* dev_ctx = GetDeviceContext(in.place(), dst_place); + dev_ctx->Wait(); + CopyFrom(in, dst_place, *dev_ctx, out); + dev_ctx->Wait(); + return out; +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/device_data_transform.h b/paddle/framework/device_data_transform.h new file mode 100644 index 0000000000000000000000000000000000000000..bebf0d1b320183f46ab226dc6493ba09a365fc35 --- /dev/null +++ b/paddle/framework/device_data_transform.h @@ -0,0 +1,27 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/tensor.h" +#include "paddle/framework/tensor_util.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace framework { + +Tensor* DeviceTransform(const Tensor& in, const platform::Place& dst_place); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/device_data_transform_test.cu b/paddle/framework/device_data_transform_test.cu new file mode 100644 index 0000000000000000000000000000000000000000..e9100053d520184e716bcaa04ac348f03018b744 --- /dev/null +++ b/paddle/framework/device_data_transform_test.cu @@ -0,0 +1,168 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "gtest/gtest.h" + +#include "paddle/framework/init.h" +#include "paddle/framework/lod_tensor.h" +#include "paddle/framework/op_info.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/elementwise_op_function.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace framework { + +template +struct AddFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a + b; } +}; + +class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { + public: + OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("input", "input1 of test op"); + AddOutput("output", "output of test op"); + AddAttr("use_gpu", "force to use gpu kernel").SetDefault(false); + AddComment("This is test op"); + } +}; + +class TestOpWithKernel : public OperatorWithKernel { + public: + using OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override {} + OpKernelType GetExpectedKernelType( + const ExecutionContext& ctx) const override { + if (Attr("use_gpu")) { + VLOG(3) << "force use gpu kernel"; + return OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0)); + } else { + VLOG(3) << "use default kernel"; + return OpKernelType(proto::DataType::FP32, + ctx.Input("input")->place()); + } + } +}; + +template +class TestKernel : public OpKernel { + public: + void Compute(const ExecutionContext& ctx) const { + std::cout << ctx.op().DebugString() << std::endl; + + const Tensor* input = ctx.Input("input"); + + std::cout << "input place:" << input->place() << std::endl; + auto* output = ctx.Output("output"); + output->Resize(input->dims()); + output->mutable_data(ctx.GetPlace()); + + operators::TransformFunctor, T, DeviceContext> functor( + input, input, output, ctx.template device_context(), + AddFunctor()); + functor.Run(); + } +}; + +} // namespace framework +} // namespace paddle + +REGISTER_OP_WITHOUT_GRADIENT( + test_op, paddle::framework::TestOpWithKernel, + paddle::framework::OpKernelTestProtoAndCheckerMaker); +REGISTER_OP_CPU_KERNEL( + test_op, + paddle::framework::TestKernel); +REGISTER_OP_CUDA_KERNEL( + test_op, + paddle::framework::TestKernel); + +static void BuildVar(const std::string& param_name, + std::initializer_list arguments, + paddle::framework::proto::OpDesc::Var* var) { + var->set_parameter(param_name); + for (auto& arg_name : arguments) { + *var->mutable_arguments()->Add() = arg_name; + } +} + +TEST(Operator, CPUtoGPU) { + using namespace paddle::framework; + using namespace paddle::platform; + + ASSERT_EQ(InitDevices({"CPU", "GPU:0"}), true); + + paddle::framework::Scope scope; + paddle::platform::CPUPlace cpu_place; + + // create an op to run on CPU + paddle::framework::proto::OpDesc cpu_op_desc; + cpu_op_desc.set_type("test_op"); + BuildVar("input", {"IN1"}, cpu_op_desc.add_inputs()); + BuildVar("output", {"OUT1"}, cpu_op_desc.add_outputs()); + + auto cpu_op = paddle::framework::OpRegistry::CreateOp(cpu_op_desc); + // prepare input + auto* in_t = scope.Var("IN1")->GetMutable(); + auto* src_ptr = in_t->mutable_data({2, 3}, CPUPlace()); + for (int i = 0; i < 2 * 3; ++i) { + src_ptr[i] = static_cast(i); + } + + // get output + auto* output = scope.Var("OUT1"); + cpu_op->Run(scope, cpu_place); + + auto* output_ptr = output->Get().data(); + for (int i = 0; i < 2 * 3; ++i) { + ASSERT_EQ(output_ptr[i], static_cast(i) * 2); + } + + // create an op to run on GPU + paddle::framework::proto::OpDesc gpu_op_desc; + gpu_op_desc.set_type("test_op"); + BuildVar("input", {"OUT1"}, gpu_op_desc.add_inputs()); + BuildVar("output", {"OUT2"}, gpu_op_desc.add_outputs()); + + auto attr = gpu_op_desc.mutable_attrs()->Add(); + attr->set_name("use_gpu"); + attr->set_type(paddle::framework::proto::AttrType::BOOLEAN); + attr->set_b(true); + + auto gpu_op = paddle::framework::OpRegistry::CreateOp(gpu_op_desc); + + paddle::platform::CUDAPlace cuda_place(0); + // get output + auto* output2 = scope.Var("OUT2"); + gpu_op->Run(scope, cuda_place); + + // auto* output2_ptr = output2->Get().data(); + DeviceContextPool& pool = DeviceContextPool::Instance(); + auto dev_ctx = pool.Get(cuda_place); + + paddle::framework::Tensor output_tensor; + CopyFrom(output2->Get(), paddle::platform::CPUPlace(), *dev_ctx, + &output_tensor); + + dev_ctx->Wait(); + float* output2_ptr = output_tensor.data(); + for (int i = 0; i < 2 * 3; ++i) { + ASSERT_EQ(output2_ptr[i], static_cast(i) * 4); + } +} diff --git a/paddle/framework/executor.cc b/paddle/framework/executor.cc index bf1f0471ccbfccf13cb6f74c8088da7acd68ec0b..844d98916ea5b1ffd88615825d79af37ba7d128e 100644 --- a/paddle/framework/executor.cc +++ b/paddle/framework/executor.cc @@ -111,7 +111,7 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, for (auto& op_desc : block.AllOps()) { auto op = paddle::framework::OpRegistry::CreateOp(*op_desc); - VLOG(3) << op->DebugString(); + VLOG(3) << op->DebugStringEx(local_scope); op->Run(*local_scope, place_); if (FLAGS_check_nan_inf) { for (auto& vname : op->OutputVars(true)) { diff --git a/paddle/framework/init.cc b/paddle/framework/init.cc index 3bea8f3d0a31a54ef9eebe5731696b64ceed13f8..7ec8d18b0e886948f4fb951e17875584413771db 100644 --- a/paddle/framework/init.cc +++ b/paddle/framework/init.cc @@ -15,6 +15,7 @@ limitations under the License. */ #include #include "paddle/framework/init.h" +#include "paddle/framework/operator.h" #include "paddle/platform/device_context.h" #include "paddle/platform/place.h" #include "paddle/string/piece.h" @@ -24,7 +25,6 @@ namespace framework { std::once_flag gflags_init_flag; -// TODO(qijun) move init gflags to init.cc void InitGflags(std::vector &argv) { std::call_once(gflags_init_flag, [&]() { int argc = argv.size(); @@ -72,6 +72,7 @@ bool InitDevices(const std::vector &devices) { LOG(WARNING) << "Not specified CPU device, create CPU by Default."; } platform::DeviceContextPool::Init(places); + framework::UseALL(); return true; } diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index 8f6944c2417dcddfcc9c1a7bc6c4c9fc9cab5ea5..ef85ed69dbe87d4b5b1b1b5d6a04220a5266a635 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -43,6 +43,22 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) { return os; } +std::ostream &operator<<(std::ostream &os, const LoDTensor &t) { + PADDLE_ENFORCE(platform::is_cpu_place(t.place())); + PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code()); + + os << "dim: " << t.dims() << "\n"; + os << "lod: " << t.lod() << "\n"; + + // only print first ten elements + int64_t size = t.numel() < 10 ? t.numel() : 10; + for (int64_t i = 0; i < size; ++i) { + os << t.data()[i] << " "; + } + + return os; +} + LoD SliceLevels(const LoD &in, size_t level_begin, size_t level_end) { LoD new_lod; new_lod.reserve(level_end - level_begin); @@ -244,5 +260,69 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor, DeserializeFromStream(is, static_cast(tensor), dev_ctx); } +std::vector LoDTensor::SplitLoDTensor( + const std::vector places) const { + check_memory_size(); + // PADDLE_ENFORCE(lod().empty() || (lod().size() == 1 && lod()[0].empty()) + // , "Disable parallel lod for now"); + PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now"); + PADDLE_ENFORCE(dims()[0] % places.size() == 0, + "Batch size should be divided by places size"); + + std::vector lods; + for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { + size_t begin = place_idx * dims()[0] / places.size(); + size_t end = (place_idx + 1) * dims()[0] / places.size(); + auto src = Slice(static_cast(begin), static_cast(end)); + + LoDTensor dst; + dst.Resize(src.dims()); + auto &dst_place = places[place_idx]; + auto dst_ptr = dst.mutable_data(dst_place, src.type()); + + // TODO(tonyyang-svail): + // change the following to framework::CopyFrom + auto src_place = src.place(); + auto src_ptr = src.data(); + auto size = src.numel() * SizeOfType(src.type()); + if (platform::is_cpu_place(src_place) && + platform::is_cpu_place(dst_place)) { + memory::Copy(boost::get(dst_place), dst_ptr, + boost::get(src_place), src_ptr, size); + } else { + PADDLE_THROW("Not Implemented"); + } + + lods.emplace_back(dst); + } + + return lods; +} + +void LoDTensor::MergeLoDTensor( + const std::vector &lod_tensors, platform::Place place) { + PADDLE_ENFORCE(platform::is_cpu_place(place)); + PADDLE_ENFORCE(!lod_tensors.empty()); + + framework::DDim new_dim = lod_tensors[0]->dims(); + std::type_index new_type = lod_tensors[0]->type(); + for (auto *lod : lod_tensors) { + PADDLE_ENFORCE(new_dim == lod->dims()); + PADDLE_ENFORCE(new_type == lod->type()); + PADDLE_ENFORCE(platform::is_cpu_place(lod->place())); + } + new_dim[0] *= lod_tensors.size(); + Resize(new_dim); + + auto *dst_ptr = reinterpret_cast(mutable_data(place, new_type)); + for (auto *src : lod_tensors) { + auto size = src->numel() * SizeOfType(src->type()); + memory::Copy(boost::get(place), dst_ptr, + boost::get(src->place()), + src->data(), size); + dst_ptr += size; + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index d0b6befffe32d2e364e955a44d81ae1b09477572..b27936c1986d13d33786035adeebe14da92b190e 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -58,6 +58,7 @@ using Vector = thrust::host_vector< using LoD = std::vector>; std::ostream& operator<<(std::ostream& os, const LoD& lod); +std::ostream& operator<<(std::ostream& os, const LoDTensor& t); /* * Slice levels from a LoD. @@ -144,6 +145,12 @@ class LoDTensor : public Tensor { */ void ShrinkInLevel(size_t level, size_t elem_begin, size_t elem_end); + std::vector SplitLoDTensor( + const std::vector places) const; + + void MergeLoDTensor(const std::vector& lod_tensors, + platform::Place place); + private: LoD lod_; }; diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index cef530c6e639f6e2188869fa57d114ec6b885aa8..f7a10ada809e6943e60c2d8cde05b8a9e2a7a2c2 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -12,13 +12,16 @@ See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/framework/op_registry.h" +#include #include +#include "paddle/framework/op_registry.h" + namespace pd = paddle::framework; namespace paddle { namespace framework { + class CosineOp : public OperatorBase { public: using OperatorBase::OperatorBase; @@ -215,7 +218,7 @@ class OpWithKernelTest : public OperatorWithKernel { protected: void InferShape(InferShapeContext* ctx) const override {} - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(proto::DataType::FP32, ctx.device_context()); } @@ -252,7 +255,6 @@ TEST(OperatorRegistrar, CPU) { op->Run(scope, cpu_place); } -#ifdef PADDLE_WITH_CUDA TEST(OperatorRegistrar, CUDA) { paddle::framework::proto::OpDesc op_desc; paddle::platform::CUDAPlace cuda_place(0); @@ -263,4 +265,127 @@ TEST(OperatorRegistrar, CUDA) { op->Run(scope, cuda_place); } -#endif + +static int op_test_value = 0; + +using paddle::platform::DeviceContext; +using paddle::platform::CPUDeviceContext; +using paddle::platform::CUDADeviceContext; + +namespace paddle { +namespace framework { + +class OpWithMultiKernelTest : public OperatorWithKernel { + public: + using OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(InferShapeContext* ctx) const override {} + + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + proto::DataType::FP32, platform::CUDAPlace(0), DataLayout::kAnyLayout, + framework::LibraryType::kCUDNN); + } +}; + +template +class OpMultiKernelTest : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const; +}; + +template +class OpMultiKernelTest + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + ++op_test_value; + } +}; + +template +class OpMultiKernelTest + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + --op_test_value; + } +}; + +template +class OpMultiKernelTest2 : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const; +}; + +template +class OpMultiKernelTest2 + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + op_test_value += 10; + } +}; + +template +class OpMultiKernelTest2 + : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const { + op_test_value -= 10; + } +}; + +} // namespace framework +} // namespace paddle + +REGISTER_OP_WITHOUT_GRADIENT(op_with_multi_kernel, + paddle::framework::OpWithMultiKernelTest, + paddle::framework::OpKernelTestMaker); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CPU, paddle::platform::CPUPlace, + paddle::framework::OpMultiKernelTest); +REGISTER_OP_KERNEL( + op_with_multi_kernel, MKLDNN, paddle::platform::CPUPlace, + paddle::framework::OpMultiKernelTest2); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CUDA, paddle::platform::CUDAPlace, + paddle::framework::OpMultiKernelTest); +REGISTER_OP_KERNEL( + op_with_multi_kernel, CUDNN, paddle::platform::CUDAPlace, + paddle::framework::OpMultiKernelTest2); + +TEST(OperatorRegistrar, OpWithMultiKernel) { + paddle::framework::proto::OpDesc op_desc; + paddle::platform::CUDAPlace cuda_place(0); + paddle::platform::CPUPlace cpu_place; + paddle::framework::Scope scope; + + op_desc.set_type("op_with_multi_kernel"); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc); + + // TODO(qiao) add priority back + // use all available kernels + paddle::framework::UseALL(); + op->Run(scope, cuda_place); + EXPECT_EQ(op_test_value, -10); + + // remove cuda kernels + paddle::framework::UseCPU(); + op->Run(scope, cpu_place); + + EXPECT_EQ(op_test_value, -20); + + // add cuda kernels + paddle::framework::UseCUDA(); + op->Run(scope, cuda_place); + + EXPECT_EQ(op_test_value, -30); + + // use cudnn kernel + paddle::framework::UseCUDNN(); + op->Run(scope, cuda_place); + EXPECT_EQ(op_test_value, -40); +} diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index fc7091f1c89f8b3f998f6d1b68f032b76bad2197..adc85b1049f982449e7bf9c8aea1f096c974693d 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -11,13 +11,13 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include #include -#include #include "paddle/framework/data_transform.h" +#include "paddle/framework/device_data_transform.h" #include "paddle/framework/executor.h" -#include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/operator.h" #include "paddle/framework/shape_inference.h" #include "paddle/framework/var_type.h" @@ -25,6 +25,64 @@ limitations under the License. */ namespace paddle { namespace framework { +std::vector> kKernelPriority; + +void UseCPU() { + kKernelPriority.clear(); + /*Plain CPU*/ + auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kPlain); + kKernelPriority.insert(kKernelPriority.begin(), pair0); +} + +void UseMKLDNN() { + UseCPU(); +#if PADDLE_WITH_MKLML + { + /*MKLDNN Kernel*/ + auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN); + kKernelPriority.insert(kKernelPriority.begin(), pair0); + } +#endif +} + +void UseCUDA() { + UseMKLDNN(); +#if PADDLE_WITH_CUDA + /*Plain GPU*/ + auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain); + kKernelPriority.insert(kKernelPriority.begin(), pair0); +#endif +} + +void UseCUDNN() { + UseCUDA(); +#if PADDLE_WITH_CUDA + if (platform::dynload::HasCUDNN()) { + /*CUDNN Kernel*/ + auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN); + kKernelPriority.insert(kKernelPriority.begin(), pair0); + } +#endif +} + +void UseALL() { + UseCPU(); + UseMKLDNN(); + UseCUDA(); + UseCUDNN(); +} + +static DDim GetDims(const Scope& scope, const std::string& name) { + Variable* var = scope.FindVar(name); + if (var->IsType()) { + return var->Get().dims(); + } else if (var->IsType()) { + return var->Get().GetCompleteDims(); + } else { + return DDim({-1}); + } +} + std::string OperatorBase::Input(const std::string& name) const { auto& ins = Inputs(name); PADDLE_ENFORCE_LE(ins.size(), 1UL, @@ -57,7 +115,7 @@ const std::vector& OperatorBase::Outputs( return it->second; } -std::string OperatorBase::DebugString() const { +std::string OperatorBase::DebugStringEx(const Scope* scope) const { std::stringstream ss; ss << "Op(" << type_ << "), inputs:{"; for (auto it = inputs_.begin(); it != inputs_.end();) { @@ -65,6 +123,9 @@ std::string OperatorBase::DebugString() const { ss << input.first << "["; for (size_t i = 0; i < input.second.size(); ++i) { ss << input.second[i]; + if (scope) { + ss << "(" << GetDims(*scope, input.second[i]) << ")"; + } if (i != input.second.size() - 1) { ss << ", "; } @@ -81,6 +142,9 @@ std::string OperatorBase::DebugString() const { ss << output.first << "["; for (size_t i = 0; i < output.second.size(); ++i) { ss << output.second[i]; + if (scope) { + ss << "(" << GetDims(*scope, output.second[i]) << ")"; + } if (i != output.second.size() - 1) { ss << ", "; } @@ -178,6 +242,10 @@ void OperatorBase::GenerateTemporaryNames() { } } +static bool VarIsTensor(const Variable* var) { + return var->IsType() || var->IsType(); +} + static const Tensor* GetTensorFromVar(const Variable* var) { const Tensor* t = nullptr; if (var->IsType()) { @@ -185,7 +253,8 @@ static const Tensor* GetTensorFromVar(const Variable* var) { } else if (var->IsType()) { t = &(var->Get().value()); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", + var->Type().name()); } return t; } @@ -197,7 +266,8 @@ static Tensor* GetMutableTensorFromVar(Variable* var) { } else if (var->IsType()) { t = var->GetMutable()->mutable_value(); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.", + var->Type().name()); } return t; } @@ -359,7 +429,8 @@ class RuntimeInferShapeContext : public InferShapeContext { } else if (var->IsType()) { return var->Get().GetCompleteDims(); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", + name, var->Type().name()); } } @@ -370,7 +441,8 @@ class RuntimeInferShapeContext : public InferShapeContext { } else if (var->IsType()) { var->GetMutable()->set_height(dim[0]); } else { - PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); + PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", + name, var->Type().name()); } } @@ -384,24 +456,6 @@ class RuntimeInferShapeContext : public InferShapeContext { const Scope& scope_; }; -const platform::DeviceContext* GetDeviceContext( - framework::KernelTypePair& kernel_pair) { - auto& actual_kernel_key = kernel_pair.first; - auto& expected_kernel_key = kernel_pair.second; - platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); - - if (platform::is_gpu_place(actual_kernel_key.place_) && - platform::is_cpu_place(expected_kernel_key.place_)) { - return pool.Get(actual_kernel_key.place_); - } else if (platform::is_cpu_place(actual_kernel_key.place_) && - platform::is_gpu_place(expected_kernel_key.place_)) { - return pool.Get(expected_kernel_key.place_); - } else { - PADDLE_THROW( - "Currently, model parallelism is only supported between CPU and CUDA"); - } -} - void OperatorWithKernel::Run(const Scope& scope, const platform::Place& place) const { RuntimeInferShapeContext infer_shape_ctx(*this, scope); @@ -417,71 +471,43 @@ void OperatorWithKernel::Run(const Scope& scope, "There are no kernels which are registered in the %s operator.", type_); } - // check if op[type] have kernel for kernel_key - OpKernelMap& kernels = kernels_iter->second; - ExecutionContext ctx(*this, scope, *dev_ctx); - auto actual_kernel_key = GetActualKernelType(ctx); - auto expected_kernel_key = GetExpectedKernelType(actual_kernel_key); - auto kernel_iter = kernels.find(expected_kernel_key); - - if (kernel_iter == kernels.end()) { - PADDLE_THROW("The operator %s does not support %s", type_, - expected_kernel_key); - } - - if (actual_kernel_key == expected_kernel_key) { - PADDLE_ENFORCE_EQ(actual_kernel_key.place_, expected_kernel_key.place_, - "Currently, model parallelism is only supported between " - "CPU and other devices. For example, multi-GPU model " - "parallelism will failed."); - } else { - auto kernel_pair = std::make_pair(actual_kernel_key, expected_kernel_key); - const DataTransformFn* trans_fun = - DataTransformFnMap::Instance().GetNullable(kernel_pair); - if (trans_fun) { - auto input_vars = this->InputVars(); - // TODO(qijun) filter the input vars that do not need to be transformed - - // filter vars that has been transformed - std::vector need_trans; - for (auto var_name : input_vars) { - auto var_name_trans = - var_name + framework::KernelTypeToString(expected_kernel_key); - if (!scope.FindVar(var_name_trans)) { - const_cast(scope).Var(var_name_trans); - need_trans.push_back(var_name); + auto expected_kernel_key = this->GetExpectedKernelType(ctx); + + Scope& new_scope = scope.NewScope(); + + for (auto& var_name_item : this->Inputs()) { + for (auto& var_name : var_name_item.second) { + auto* var = scope.FindVar(var_name); + if (var && VarIsTensor(var)) { + auto* tensor_in = GetTensorFromVar(var); + if (tensor_in->IsInitialized()) { + auto kernel_type_for_var = this->GetKernelTypeForVar( + var_name_item.first, *tensor_in, expected_kernel_key); + if (kernel_type_for_var != expected_kernel_key) { + auto out_var_names = OutputVars(true); + if (std::find(out_var_names.begin(), out_var_names.end(), + var_name) != out_var_names.end()) { + PADDLE_THROW( + "var %s is both input and output, " + "does not support transform", + var_name); + } + VLOG(3) << "need to do transform for var " << var_name; + auto* trans_var = new_scope.Var(var_name); + auto* out = DataTransform(expected_kernel_key, kernel_type_for_var, + *tensor_in); + CopyVariableWithTensor(*var, *out, *trans_var); + } } } - - if (!need_trans.empty()) { - auto trans_dev_ctx = GetDeviceContext(kernel_pair); - - // Wait for transform starting - dev_ctx->Wait(); - - for (auto var_name : need_trans) { - (*trans_fun)(trans_dev_ctx, kernel_pair, *(scope.FindVar(var_name)), - scope.FindVar(var_name + framework::KernelTypeToString( - expected_kernel_key))); - } - // Wait for data transform finishing - trans_dev_ctx->Wait(); - } } } - kernel_iter->second->Compute(ctx); -} - -OpKernelType OperatorWithKernel::GetActualKernelType( - const ExecutionContext& ctx) const { - return OpKernelType(IndicateDataType(ctx), ctx.GetPlace()); -} + OpKernelMap& kernels = kernels_iter->second; + auto kernel_iter = kernels.find(expected_kernel_key); -OpKernelType OperatorWithKernel::GetExpectedKernelType( - const OpKernelType& actual_kernel_type) const { - return actual_kernel_type; + kernel_iter->second->Compute(ExecutionContext(*this, new_scope, *dev_ctx)); } proto::DataType OperatorWithKernel::IndicateDataType( @@ -513,5 +539,16 @@ proto::DataType OperatorWithKernel::IndicateDataType( return static_cast(data_type); } +OpKernelType OperatorWithKernel::GetExpectedKernelType( + const ExecutionContext& ctx) const { + return OpKernelType(IndicateDataType(ctx), ctx.GetPlace()); +} + +OpKernelType OperatorWithKernel::GetKernelTypeForVar( + const std::string& var_name, const Tensor& tensor, + const OpKernelType& expected_kernel_type) const { + return OpKernelType(expected_kernel_type.data_type_, tensor.place()); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index d0a9b643d565d6651fd7ec0b515f088362852ba3..d5feb598649c97a9517b7c2b1764fd54ff9f8693 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -17,6 +17,7 @@ limitations under the License. */ #include #include #include +#include #include #include @@ -52,10 +53,33 @@ constexpr char kGradVarSuffix[] = "@GRAD"; /// Variables with this suffix are supposed to be filled up with zeros. constexpr char kZeroVarSuffix[] = "@ZERO"; -// define some kernel hint -const std::string kUseCPU = "use_cpu"; -const std::string kUseCUDNN = "use_cudnn"; -const std::string kUseMKLDNN = "use_mkldnn"; +// define some kernel priority +extern std::vector> kKernelPriority; + +/** + * @brief Use cpu kernel only + */ +void UseCPU(); + +/** + * @brief Perfer MKLDNN kernel than Plain CPU kernel + */ +void UseMKLDNN(); + +/** + * @brief Perfer CUDA kernel than Plain CPU kernel + */ +void UseCUDA(); + +/** + * @brief Perfer cudnn kernel than Plain CUDA kernel + */ +void UseCUDNN(); + +/** + * @brief Use all available kernels + */ +void UseALL(); inline std::string GradVarName(const std::string& var_name) { return var_name + kGradVarSuffix; @@ -84,7 +108,10 @@ class OperatorBase { return boost::get(attrs_.at(name)); } - virtual std::string DebugString() const; + /// if scope is not null, also show dimensions of arguments + virtual std::string DebugStringEx(const Scope* scope) const; + + std::string DebugString() const { return DebugStringEx(nullptr); } /// Net will call this function to Run an op. virtual void Run(const Scope& scope, const platform::Place& place) const = 0; @@ -381,9 +408,10 @@ class OperatorWithKernel : public OperatorBase { } protected: - virtual OpKernelType GetActualKernelType(const ExecutionContext& ctx) const; - virtual OpKernelType GetExpectedKernelType( - const OpKernelType& actual_kernel_type) const; + virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const; + virtual OpKernelType GetKernelTypeForVar( + const std::string& var_name, const Tensor& tensor, + const OpKernelType& expected_kernel_type) const; private: // indicate kernel DataType by input data. Defaultly all input data must be diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 4d38a7ada91af834aa1a19b49e36d606ebe786ba..d002f3f238862a53ad7286570e2d0bbd2334c584 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -114,7 +114,8 @@ class OpWithKernelTest : public OperatorWithKernel { protected: void InferShape(framework::InferShapeContext* ctx) const override {} - OpKernelType GetActualKernelType(const ExecutionContext& ctx) const override { + OpKernelType GetExpectedKernelType( + const ExecutionContext& ctx) const override { return OpKernelType(proto::DataType::FP32, ctx.GetPlace()); } }; diff --git a/paddle/framework/scope.cc b/paddle/framework/scope.cc index 4e80e3d974e2b646ad62d26991e4629f8c450578..2bd0ac8f5a9eb6439a4196dd9c61e13797c1a8e3 100644 --- a/paddle/framework/scope.cc +++ b/paddle/framework/scope.cc @@ -109,6 +109,7 @@ std::string Scope::Rename(const std::string& origin_name) const { Rename(origin_name, var_name); return var_name; } + Variable* Scope::FindVarLocally(const std::string& name) const { auto it = vars_.find(name); if (it != vars_.end()) return it->second; diff --git a/paddle/framework/scope.h b/paddle/framework/scope.h index 10143326dfa201894c777b3e5e226d5ca5015eda..a1da81cc7977d2f31b99c41fb3db3ec03188f954 100644 --- a/paddle/framework/scope.h +++ b/paddle/framework/scope.h @@ -75,9 +75,9 @@ class Scope { // Rename variable to a new name and return the new name std::string Rename(const std::string& origin_name) const; - private: Variable* FindVarLocally(const std::string& name) const; + private: // Call Scope::NewScope for a sub-scope. explicit Scope(Scope const* parent) : parent_(parent) {} diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 341a6949beeb2dfa64b23d2079bd8f48750a94f8..4aaa29d794c95592832a1fe990e2dce274eba9d5 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -55,6 +55,10 @@ class Tensor { template inline const T* data() const; + inline bool IsInitialized() const; + + inline void switch_place(platform::Place new_place); + /** * @brief Return a pointer to mutable memory block. * @note If not exist, then allocation. @@ -200,6 +204,15 @@ class Tensor { size_t offset_; }; +inline void Tensor::switch_place(platform::Place new_place) { + if (holder_->place() == new_place) { + return; + } + + // TODO(tonyyang-svail): do memcpy here. + PADDLE_THROW("Not Implemented"); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index 6c6f298edc187a87677089e54c4c9046821282df..1340c5e48520ccdd537e694abf452fd79129df99 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -84,6 +84,8 @@ inline const T* Tensor::data() const { reinterpret_cast(holder_->ptr()) + offset_); } +inline bool Tensor::IsInitialized() const { return holder_ != nullptr; } + template inline T* Tensor::data() { check_memory_size(); diff --git a/paddle/framework/variable.h b/paddle/framework/variable.h index e5a94759f9230ab4ce9d2cc24849a2debb8a5e2f..36b76fb196cfd4c7b3697dcf0cda9a23ff53deb3 100644 --- a/paddle/framework/variable.h +++ b/paddle/framework/variable.h @@ -32,6 +32,8 @@ class Variable { return *static_cast(holder_->Ptr()); } + bool IsInitialized() const { return holder_ != nullptr; } + template T* GetMutable() { if (!IsType()) { diff --git a/paddle/inference/inference.cc b/paddle/inference/inference.cc index 48a51efcd25afeb499ab9389c2f27c8bd2515cd8..49e39358e81bbee64a618be88ee0fca6aa438b93 100644 --- a/paddle/inference/inference.cc +++ b/paddle/inference/inference.cc @@ -38,23 +38,16 @@ void InferenceEngine::LoadInferenceModel( LOG(INFO) << "program_desc_str's size: " << program_desc_str.size(); // PicklingTools cannot parse the vector of strings correctly. #else - // program_desc_str - // the inference.model is stored by following python codes: - // inference_program = fluid.io.get_inference_program(predict) - // model_filename = "recognize_digits_mlp.inference.model/inference.model" - // with open(model_filename, "w") as f: - // program_str = inference_program.desc.serialize_to_string() - // f.write(struct.pack('q', len(program_str))) - // f.write(program_str) - std::string model_filename = dirname + "/inference.model"; + std::string model_filename = dirname + "/__model__.dat"; LOG(INFO) << "loading model from " << model_filename; - std::ifstream fs(model_filename, std::ios_base::binary); - int64_t size = 0; - fs.read(reinterpret_cast(&size), sizeof(int64_t)); - LOG(INFO) << "program_desc_str's size: " << size; + std::ifstream inputfs(model_filename, std::ios::in | std::ios::binary); std::string program_desc_str; - program_desc_str.resize(size); - fs.read(&program_desc_str[0], size); + inputfs.seekg(0, std::ios::end); + program_desc_str.resize(inputfs.tellg()); + inputfs.seekg(0, std::ios::beg); + LOG(INFO) << "program_desc_str's size: " << program_desc_str.size(); + inputfs.read(&program_desc_str[0], program_desc_str.size()); + inputfs.close(); #endif program_ = new framework::ProgramDesc(program_desc_str); GenerateLoadProgram(dirname); diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 77b52eb1760c7b79aa47efb447a4c99b6ab5e027..f1ce52332327ed2a9f290ccf412199fd5a6bbb67 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -152,6 +152,7 @@ op_library(conv_transpose_op DEPS vol2col) op_library(gru_op DEPS sequence2batch gru_compute) op_library(recurrent_op DEPS executor) op_library(cos_sim_op DEPS cos_sim_functor) +op_library(parallel_do_op DEPS executor) # FIXME(typhoonzero): save/load depends lodtensor serialization functions op_library(save_op DEPS lod_tensor) op_library(load_op DEPS lod_tensor) diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc index d7baa6e90538484b400f32587a052d394a8d10d5..8e8a3c7dd3036317fac29b709d7a29e18f017503 100644 --- a/paddle/operators/accuracy_op.cc +++ b/paddle/operators/accuracy_op.cc @@ -53,7 +53,7 @@ class AccuracyOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Out")->type()), diff --git a/paddle/operators/adagrad_op.h b/paddle/operators/adagrad_op.h index 0d77dbcbacd4efb6c1900e57b5c4ea9e9b136771..66f5b0f449a4f11a3c734c98a6a97833763348a1 100644 --- a/paddle/operators/adagrad_op.h +++ b/paddle/operators/adagrad_op.h @@ -47,8 +47,7 @@ class AdagradOpKernel : public framework::OpKernel { *ctx.Input("Grad")); auto moment = framework::EigenVector::Flatten( *ctx.Input("Moment")); - auto lr = framework::EigenVector::Flatten( - *ctx.Input("LearningRate")); + auto* learning_rate = ctx.Input("LearningRate"); auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); @@ -56,8 +55,16 @@ class AdagradOpKernel : public framework::OpKernel { moment_out.device(*place) = moment + grad * grad; Eigen::DSizes m_dsize(moment_out_tensor->numel()); - param_out.device(*place) = - param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); + if (platform::is_cpu_place(ctx.GetPlace())) { + auto* lr = learning_rate->data(); + param_out.device(*place) = + param - lr[0] * grad / (moment_out.sqrt() + epsilon); + } else { + auto lr = framework::EigenVector::Flatten(*learning_rate); + param_out.device(*place) = + param - + lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); + } } else if (grad_var->IsType()) { auto* param_tensor = ctx.Input("Param"); PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor); diff --git a/paddle/operators/auc_op.cc b/paddle/operators/auc_op.cc index c16bc11931e6733d567107913521eafc34a30066..b6494f95097bdc87081950815e910beda5d6850d 100644 --- a/paddle/operators/auc_op.cc +++ b/paddle/operators/auc_op.cc @@ -39,7 +39,7 @@ class AucOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Out")->type()), diff --git a/paddle/operators/batch_norm_op.cc b/paddle/operators/batch_norm_op.cc index dd7b038b00813b192177c05dc06aa165a60b5156..0e984c38ba78bddc232ce43bd0982408e837abe3 100644 --- a/paddle/operators/batch_norm_op.cc +++ b/paddle/operators/batch_norm_op.cc @@ -306,7 +306,7 @@ class BatchNormGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { const auto *var = ctx.InputVar(framework::GradVarName("Y")); if (var == nullptr) { diff --git a/paddle/operators/chunk_eval_op.cc b/paddle/operators/chunk_eval_op.cc index a040404266c3cd44230b141cfed1aaede3f05187..44f667aead9ac88fee57310e06e3192732a8d908 100644 --- a/paddle/operators/chunk_eval_op.cc +++ b/paddle/operators/chunk_eval_op.cc @@ -55,10 +55,10 @@ class ChunkEvalOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType(framework::proto::DataType::FP32, - ctx.device_context()); + platform::CPUPlace()); } }; diff --git a/paddle/operators/chunk_eval_op.h b/paddle/operators/chunk_eval_op.h index 74ab435c860b22b2ee3f485743540976a7a31b96..300aff90c0af666a95b7d4a0329de709e48ceddb 100644 --- a/paddle/operators/chunk_eval_op.h +++ b/paddle/operators/chunk_eval_op.h @@ -145,6 +145,7 @@ class ChunkEvalKernel : public framework::OpKernel { context.Attr>("excluded_chunk_types").end()); auto* inference = context.Input("Inference"); + auto place = inference->place(); auto* label = context.Input("Label"); auto* precision = context.Output("Precision"); auto* recall = context.Output("Recall"); @@ -155,15 +156,15 @@ class ChunkEvalKernel : public framework::OpKernel { const int64_t* inference_data = inference->data(); const int64_t* label_data = label->data(); - T* precision_data = precision->mutable_data(context.GetPlace()); - T* racall_data = recall->mutable_data(context.GetPlace()); - T* f1_data = f1->mutable_data(context.GetPlace()); + T* precision_data = precision->mutable_data(place); + T* racall_data = recall->mutable_data(place); + T* f1_data = f1->mutable_data(place); int64_t* num_infer_chunks_data = - num_infer_chunks->mutable_data(context.GetPlace()); + num_infer_chunks->mutable_data(place); int64_t* num_label_chunks_data = - num_label_chunks->mutable_data(context.GetPlace()); + num_label_chunks->mutable_data(place); int64_t* num_correct_chunks_data = - num_correct_chunks->mutable_data(context.GetPlace()); + num_correct_chunks->mutable_data(place); *num_infer_chunks_data = 0; *num_label_chunks_data = 0; *num_correct_chunks_data = 0; diff --git a/paddle/operators/compare_op.cc b/paddle/operators/compare_op.cc index 44665b7872acab8178552e5504916408cf566d13..daa2c193b48fe216ff284169a3dce1b4cd40a791 100644 --- a/paddle/operators/compare_op.cc +++ b/paddle/operators/compare_op.cc @@ -66,9 +66,9 @@ class CompareOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { - framework::OpKernelType kt = OperatorWithKernel::GetActualKernelType(ctx); + framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); // CompareOp kernel's device type is decided by input tensor place kt.place_ = ctx.Input("X")->place(); return kt; diff --git a/paddle/operators/conv_cudnn_op.cu.cc b/paddle/operators/conv_cudnn_op.cu.cc index 0aa7dd48cafc3e2387ac902882d84ce9029cfcd0..0c5ed3e4e80304c6fd174975166804347feb18b1 100644 --- a/paddle/operators/conv_cudnn_op.cu.cc +++ b/paddle/operators/conv_cudnn_op.cu.cc @@ -315,10 +315,7 @@ class CudnnConvGradOpKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_KERNEL(conv2d, CUDNN, paddle::platform::CUDAPlace, - paddle::operators::CudnnConvOpKernel, - paddle::operators::CudnnConvOpKernel); - +// TODO(dzhwinter) : below register should be removed REGISTER_OP_CUDA_KERNEL(conv2d_cudnn, paddle::operators::CudnnConvOpKernel, paddle::operators::CudnnConvOpKernel); diff --git a/paddle/operators/crf_decoding_op.cc b/paddle/operators/crf_decoding_op.cc index 024e1d061a5b2eabc27110d5379cb8226a104079..30626028c137a4ac3acf67f37ba5c5bb75215b3a 100644 --- a/paddle/operators/crf_decoding_op.cc +++ b/paddle/operators/crf_decoding_op.cc @@ -120,17 +120,11 @@ class CRFDecodingOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Emission")->type()), - ctx.device_context()); - } - - framework::OpKernelType GetExpectedKernelType( - const framework::OpKernelType& actual_kernel_type) const override { - return framework::OpKernelType(actual_kernel_type.data_type_, - platform::CPUPlace()); + platform::CPUPlace()); } }; } // namespace operators diff --git a/paddle/operators/crf_decoding_op.h b/paddle/operators/crf_decoding_op.h index f6827b7b1128251b2bb7e0a6a032389e5adc1371..ce2f4e6622c21e1e5383b4a3aefc2987bf155aec 100644 --- a/paddle/operators/crf_decoding_op.h +++ b/paddle/operators/crf_decoding_op.h @@ -28,9 +28,6 @@ template class CRFDecodingOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), - "The crf_decoding operator can only run on CPU."); - auto* emission_weights = ctx.Input("Emission"); auto* transition_weights = ctx.Input("Transition"); auto* label = ctx.Input("Label"); diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index fe39cb481aa63fa401603d97778b337282511ab5..7abd5b1c61d610f4f723b13ad6ce61791b96d06d 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -51,7 +51,7 @@ class CrossEntropyOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of computation kernel of cross_entropy // is determined by its input "X". - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -101,7 +101,7 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of computation kernel of cross_entropy // is determined by its input "X". - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/fill_constant_batch_size_like_op.cc b/paddle/operators/fill_constant_batch_size_like_op.cc index 852ecdfe45e7f4737a505c1f722d25457ad6ad32..c74a5b6ced3af27847dd36511aeab0ee9614415a 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.cc +++ b/paddle/operators/fill_constant_batch_size_like_op.cc @@ -49,7 +49,7 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( static_cast(ctx.Attr("dtype")), diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index 45e9d8df702403e66f9100e4edaf5c17470eb20d..597fdad0794ec076669a0b2e6157e5c74c80d735 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -40,7 +40,7 @@ class GatherOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -57,7 +57,7 @@ class GatherGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index 9ed493a7d027e1bd3e8c5fca376678fd5fcf14f1..2dca05760ecc98f822b8c426af3152d365526d2b 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -60,7 +60,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( static_cast(ctx.Attr("dtype")), diff --git a/paddle/operators/linear_chain_crf_op.cc b/paddle/operators/linear_chain_crf_op.cc index 666207ea07628ca5f2a8313fa3f5febda140a294..975e394c78db037a125adeb2c86e3c74dc0eb6f8 100644 --- a/paddle/operators/linear_chain_crf_op.cc +++ b/paddle/operators/linear_chain_crf_op.cc @@ -183,7 +183,7 @@ class LinearChainCRFOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of computation kernel of linear_chain_crf // is determined by its input "Emission". - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Emission")->type()), @@ -242,7 +242,7 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel { protected: // Explicitly set that the data type of output of the linear_chain_crf_grad // operator is determined by its input: gradients of LogLikelihood. - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType( diff --git a/paddle/operators/lod_reset_op.cc b/paddle/operators/lod_reset_op.cc index f3c0badf2a74431b980abd532e51ba3d251524a1..3d7b15edcfece84ffea539591a4db2690bd82029 100644 --- a/paddle/operators/lod_reset_op.cc +++ b/paddle/operators/lod_reset_op.cc @@ -38,7 +38,7 @@ class LoDResetOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -97,7 +97,7 @@ class LoDResetGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/logical_op.cc b/paddle/operators/logical_op.cc index 7417192479a13ca9537e2d40f9779a3bf5f1eb61..fedd325cf4f7b5a779d17e0259a16d5cf39b77b7 100644 --- a/paddle/operators/logical_op.cc +++ b/paddle/operators/logical_op.cc @@ -99,9 +99,9 @@ class LogicalOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { - framework::OpKernelType kt = OperatorWithKernel::GetActualKernelType(ctx); + framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); // LogicalOp kernel's device type is decided by input tensor place kt.place_ = ctx.Input("X")->place(); return kt; diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index 6e5cbd6f8cefc965d6c8d24b16eb3bafde55cc49..bb03def4391da80c6219f7863d300fd3c8d8c7ac 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -41,7 +41,7 @@ class LookupTableOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("W")->type()), @@ -98,7 +98,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("W")->type()), diff --git a/paddle/operators/lstm_op.cc b/paddle/operators/lstm_op.cc index b8fcec0f29b46e838f91ad1ee0fded8e42f27bd5..3b90b64b4effacf7240fb1bee8c0aa44251ad727 100644 --- a/paddle/operators/lstm_op.cc +++ b/paddle/operators/lstm_op.cc @@ -92,7 +92,7 @@ class LSTMOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), @@ -260,7 +260,7 @@ class LSTMGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), diff --git a/paddle/operators/multiplex_op.cc b/paddle/operators/multiplex_op.cc index 11e047b5d57b6bc18e6d6f4a1d122e18dfc6e357..78263da2fbf843f6a5af2ba95aa0b219a7523b52 100644 --- a/paddle/operators/multiplex_op.cc +++ b/paddle/operators/multiplex_op.cc @@ -51,7 +51,7 @@ class MultiplexOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.MultiInput("X")[0]->type()), @@ -102,7 +102,7 @@ class MultiplexGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.MultiInput("X")[0]->type()), diff --git a/paddle/operators/nce_op.cc b/paddle/operators/nce_op.cc index d39ca87d53518963f652f7b8c8cb289a6fef70fd..84ba3ead2b52547b989a4541f31ea31ffcce6c63 100644 --- a/paddle/operators/nce_op.cc +++ b/paddle/operators/nce_op.cc @@ -63,7 +63,7 @@ class NCEOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), @@ -166,7 +166,7 @@ class NCEOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index 78b5e2767842312722fac3509e843a05fe194559..03302f5cbf5674dca1d22a84137579090b4d5eac 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -56,11 +56,11 @@ void NetOp::CompleteAddOp(bool calc) { std::copy(output_set.begin(), output_set.end(), std::back_inserter(outputs)); } -std::string NetOp::DebugString() const { +std::string NetOp::DebugStringEx(const framework::Scope* scope) const { std::ostringstream os; - os << OperatorBase::DebugString() << std::endl; + os << OperatorBase::DebugStringEx(scope) << std::endl; for (auto& op : ops_) { - std::istringstream is(op->DebugString()); + std::istringstream is(op->DebugStringEx(scope)); for (std::string line; std::getline(is, line);) { os << " " << line << std::endl; } diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index 85d0153b32c0ba53bfe0912fc2682c8b635ba172..b24042f5ef5822eabcada8ed9d21c552579e8064 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -106,7 +106,8 @@ class NetOp : public framework::OperatorBase { void CompleteAddOp(bool calculate = true); - std::string DebugString() const override; + std::string DebugStringEx( + const framework::Scope* scope = nullptr) const override; bool IsNetOp() const override; std::vector OutputVars(bool has_intermediate) const override; diff --git a/paddle/operators/parallel_do_op.cc b/paddle/operators/parallel_do_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..077245cd83b2535b45927c8350ca7bc14c541d21 --- /dev/null +++ b/paddle/operators/parallel_do_op.cc @@ -0,0 +1,293 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include + +#include "paddle/framework/executor.h" +#include "paddle/framework/op_registry.h" +#include "paddle/framework/threadpool.h" + +namespace paddle { +namespace operators { + +static constexpr char kInputs[] = "inputs"; +static constexpr char kParameters[] = "parameters"; +static constexpr char kPlaces[] = "places"; + +static constexpr char kOutputs[] = "outputs"; +static constexpr char kParallelScopes[] = "parallel_scopes"; + +static constexpr char kParallelBlock[] = "sub_block"; + +// using ParallelScopeVar = std::vector; +using LoDTensor = framework::LoDTensor; +using OperatorBase = framework::OperatorBase; + +void SplitTensorAndMoveTensorToScopes( + const framework::Scope &scope, + const std::vector &sub_scopes, + const std::vector &places, + const std::vector &names) { + for (auto &argu : names) { + auto *var = scope.FindVar(argu); + const auto &tensor = var->Get(); + auto lod_tensors = tensor.SplitLoDTensor(places); + + for (auto &lod : lod_tensors) { + VLOG(3) << lod.dims(); + } + + for (size_t i = 0; i < sub_scopes.size(); ++i) { + *sub_scopes[i]->Var(argu)->GetMutable() = lod_tensors[i]; + } + } +} + +class ParallelDoOp : public framework::OperatorBase { + public: + ParallelDoOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(place); + + auto *block = Attr(kParallelBlock); + auto *program = block->Program(); + + // TODO(tonyyang-svail): get places from input + std::vector places; + places.emplace_back(platform::CPUPlace()); + places.emplace_back(platform::CPUPlace()); + + auto &sub_scopes = *scope.FindVar(Output(kParallelScopes)) + ->GetMutable>(); + for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { + sub_scopes.push_back(&scope.NewScope()); + } + + SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places, + Inputs(kInputs)); + + std::vector> workers; + workers.reserve(places.size()); + for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { + VLOG(3) << "Run " << place_idx; + + auto &place = places[place_idx]; + auto *cur_scope = sub_scopes[place_idx]; + + // copy parameter + // some version of boost lacks != for boost::variant + if (!(dev_ctx.GetPlace() == place)) { + PADDLE_THROW("Not Implemented"); + } + + workers.emplace_back(framework::Async([program, cur_scope, place, block] { + framework::Executor executor(place); + executor.Run(*program, cur_scope, block->ID(), + false /*create_local_scope*/); + })); + } + for (auto &worker : workers) { + worker.wait(); + } + + // merge output + for (auto &o_name : Outputs(kOutputs)) { + std::vector lod_tensors; + lod_tensors.reserve(sub_scopes.size()); + for (auto *sub_scope : sub_scopes) { + lod_tensors.emplace_back(&sub_scope->FindVar(o_name)->Get()); + } + + auto *lod_tensor_to_be_merged = + scope.FindVar(o_name)->GetMutable(); + lod_tensor_to_be_merged->MergeLoDTensor(lod_tensors, dev_ctx.GetPlace()); + } + } +}; + +class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker { + public: + ParallelDoOpProtoMaker(OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput(kInputs, "").AsDuplicable(); + AddInput(kParameters, "").AsDuplicable(); + AddInput(kPlaces, ""); + AddOutput(kOutputs, "").AsDuplicable(); + AddOutput(kParallelScopes, ""); + AddAttr(kParallelBlock, ""); + AddComment(R"DOC( +ParallelDo Operator. +)DOC"); + } +}; + +class ParallelDoGradOp : public OperatorBase { + public: + ParallelDoGradOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + void Run(const framework::Scope &scope, + const platform::Place &place) const override { + // // get device context from pool + // platform::DeviceContextPool &pool = + // platform::DeviceContextPool::Instance(); + // auto &dev_ctx = *pool.Get(place); + + auto *block = Attr(kParallelBlock); + auto *program = block->Program(); + + auto &sub_scopes = scope.FindVar(Input(kParallelScopes)) + ->Get>(); + + // TODO(tonyyang-svail): get places from input + std::vector places; + places.emplace_back(platform::CPUPlace()); + places.emplace_back(platform::CPUPlace()); + + // feed output@grad + SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places, + Inputs(framework::GradVarName(kOutputs))); + + for (auto &s : Inputs(framework::GradVarName(kOutputs))) { + VLOG(3) << s; + VLOG(3) << scope.FindVar(s)->Get(); + for (auto *sub_scope : sub_scopes) { + VLOG(3) << sub_scope->FindVar(s)->Get(); + } + } + + // exe run + std::vector> workers; + for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) { + VLOG(3) << "Run " << place_idx; + + auto &place = places[place_idx]; + auto *cur_scope = sub_scopes[place_idx]; + + // execute + workers.emplace_back(framework::Async([program, cur_scope, place, block] { + framework::Executor executor(place); + executor.Run(*program, cur_scope, block->ID(), + false /*create_local_scope*/); + })); + } + for (auto &worker : workers) { + worker.wait(); + } + + // merge grad + for (auto &s : Outputs(framework::GradVarName(kParameters))) { + VLOG(3) << s; + + auto &t = sub_scopes[0]->FindVar(s)->Get(); + VLOG(3) << t; + + std::string s_buf = s + "@BUF"; + auto *t_buf = sub_scopes[0]->Var(s_buf)->GetMutable(); + + for (size_t place_idx = 1; place_idx < places.size(); ++place_idx) { + auto &tt = sub_scopes[place_idx]->FindVar(s)->Get(); + VLOG(3) << place_idx; + VLOG(3) << tt; + framework::CopyFrom(tt, places[0], t_buf); + + auto sum_op = framework::OpRegistry::CreateOp( + "sum", {{"X", {s, s_buf}}}, {{"Out", {s}}}, + framework::AttributeMap{}); + sum_op->Run(*sub_scopes[0], place); + } + + VLOG(3) << t; + framework::CopyFrom(t, place, scope.FindVar(s)->GetMutable()); + } + } +}; + +class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + virtual std::unique_ptr Apply() const { + auto *grad = new framework::OpDesc(); + grad->SetType("parallel_do_grad"); + for (auto &input_param : this->InputNames()) { + VLOG(3) << input_param; + grad->SetInput(input_param, this->Input(input_param)); + grad->SetOutput(framework::GradVarName(input_param), + this->InputGrad(input_param, false)); + } + + for (auto &output_param : this->OutputNames()) { + if (output_param == kParallelScopes) { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(framework::GradVarName(output_param), + this->Output(output_param)); + } else { + grad->SetInput(output_param, this->Output(output_param)); + grad->SetInput(framework::GradVarName(output_param), + this->OutputGrad(output_param)); + } + } + grad->SetAttrMap(this->Attrs()); + grad->SetBlockAttr(kParallelBlock, *grad_block_[0]); + + return std::unique_ptr(grad); + } +}; + +class ParallelDoGradOpShapeInference : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *ctx) const override { + std::vector input{kParameters, kInputs}; + std::vector output{kOutputs}; + for (auto &s : input) { + PADDLE_ENFORCE(ctx->HasInputs(s)); + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s)), + "Cannot find the gradient variable %s", + framework::GradVarName(s)); + } + for (auto &s : output) { + PADDLE_ENFORCE(ctx->HasInputs(s)); + } + for (auto &s : input) { + ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s)); + } + if (ctx->HasInputs(kParameters)) { + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters))); + ctx->SetOutputsDim(framework::GradVarName(kParameters), + ctx->GetInputsDim(kParameters)); + } + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OPERATOR(parallel_do, paddle::operators::ParallelDoOp, + paddle::operators::ParallelDoOpProtoMaker, + paddle::operators::ParallelDoGradOpDescMaker); +REGISTER_OPERATOR(parallel_do_grad, paddle::operators::ParallelDoGradOp, + paddle::operators::ParallelDoGradOpShapeInference); diff --git a/paddle/operators/pool_with_index_op.cc b/paddle/operators/pool_with_index_op.cc index 76c5123527c3ff5b7e6c7eec39f4eb1d612759d3..1d31d813af4ec4eb829b906fa9add38cc71d54f3 100644 --- a/paddle/operators/pool_with_index_op.cc +++ b/paddle/operators/pool_with_index_op.cc @@ -69,7 +69,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -90,7 +90,7 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/positive_negative_pair_op.cc b/paddle/operators/positive_negative_pair_op.cc index a6b23c995b8b9104f2da9d3d29ceb3eb88e7da63..5aa5167dbb83c9caf2e754859938e51700d8ec3f 100644 --- a/paddle/operators/positive_negative_pair_op.cc +++ b/paddle/operators/positive_negative_pair_op.cc @@ -85,7 +85,7 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Score")->type()), diff --git a/paddle/operators/precision_recall_op.cc b/paddle/operators/precision_recall_op.cc index c5753147effd17c012683e1058e34af46288f366..f1598d53cae2a58acd0207a20938b4f744ba0efe 100644 --- a/paddle/operators/precision_recall_op.cc +++ b/paddle/operators/precision_recall_op.cc @@ -80,7 +80,7 @@ class PrecisionRecallOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("MaxProbs")->type()), diff --git a/paddle/operators/roi_pool_op.cc b/paddle/operators/roi_pool_op.cc index ef1804d9762200686ac8537140af046c21443779..a7351f11c5da7b850681346942ad699aba85a8e0 100644 --- a/paddle/operators/roi_pool_op.cc +++ b/paddle/operators/roi_pool_op.cc @@ -68,7 +68,7 @@ class ROIPoolOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -89,7 +89,7 @@ class ROIPoolGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc index 806dccc6ca78bf64da828fe13e08e043097bd939..b65334890633f54e70179bfa8fe5463901f7947e 100644 --- a/paddle/operators/scatter_op.cc +++ b/paddle/operators/scatter_op.cc @@ -49,7 +49,7 @@ class ScatterOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Ref")->type()), @@ -68,7 +68,7 @@ class ScatterGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Ref")->type()), diff --git a/paddle/operators/sequence_pool_op.cc b/paddle/operators/sequence_pool_op.cc index aea98744d8fc1fc59a07250d57f76f26fb9f3634..34e1a12591515e2363651a2722f52963f7ae43b5 100644 --- a/paddle/operators/sequence_pool_op.cc +++ b/paddle/operators/sequence_pool_op.cc @@ -107,7 +107,7 @@ class SequencePoolGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/sequence_slice_op.cc b/paddle/operators/sequence_slice_op.cc index 98bd8854903e5abf6d27432a2af0aaae980c0b1d..f79106ff0f7a3d0918bc3a5c428179cb170ffc79 100644 --- a/paddle/operators/sequence_slice_op.cc +++ b/paddle/operators/sequence_slice_op.cc @@ -48,7 +48,7 @@ class SequenceSliceOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -69,7 +69,7 @@ class SequenceSliceGradOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/operators/softmax_with_cross_entropy_op.cc b/paddle/operators/softmax_with_cross_entropy_op.cc index 41e65b701e62bd2e671f3590869a5d7fed90701c..7135780c92dca00503ab098dc6930afd8fac0be8 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/operators/softmax_with_cross_entropy_op.cc @@ -118,7 +118,7 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Logits")->type()), @@ -159,7 +159,7 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType( diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index b86e8266425ca094a51d224fd39ce33700057f13..a4c08430d85ae418ec6a0c0e8e954415711cd23f 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -53,7 +53,7 @@ class SumOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto x_vars = ctx.MultiInputVar("X"); if (x_vars[0]->IsType()) { diff --git a/paddle/operators/tensor.save b/paddle/operators/tensor.save deleted file mode 100644 index c24308a7d0131b84c28c0a9857cce4949afb2091..0000000000000000000000000000000000000000 Binary files a/paddle/operators/tensor.save and /dev/null differ diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index 4d5dd86cb8103a76247913cc088db4cff6b6ff43..3a314bdb9b058f5dfc61b35795000298c40551e6 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -63,7 +63,7 @@ class UniformRandomOp : public framework::OperatorWithKernel { } protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( static_cast(ctx.Attr("dtype")), diff --git a/paddle/operators/unpool_op.cc b/paddle/operators/unpool_op.cc index aeed9679b2a3cce744189809c223a5b0d581ccdd..50cee11a7a2d6a2483c6851e888b61475cba1376 100644 --- a/paddle/operators/unpool_op.cc +++ b/paddle/operators/unpool_op.cc @@ -71,7 +71,7 @@ int OutputSize(int input_size, int ksize, int padding, int stride) { class UnpoolOp : public framework::OperatorWithKernel { protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), @@ -110,7 +110,7 @@ class UnpoolOp : public framework::OperatorWithKernel { class UnpoolOpGrad : public framework::OperatorWithKernel { protected: - framework::OpKernelType GetActualKernelType( + framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), diff --git a/paddle/platform/CMakeLists.txt b/paddle/platform/CMakeLists.txt index 8c4803b9739bb54cae89de62468a47631a5dde94..44f6d85cd1510f309595ca711de2e0f767219580 100644 --- a/paddle/platform/CMakeLists.txt +++ b/paddle/platform/CMakeLists.txt @@ -21,10 +21,16 @@ ELSE() set(GPU_CTX_DEPS) ENDIF() +IF(WITH_MKLDNN) + set(MKLDNN_CTX_DEPS mkldnn) +ELSE() + set(MKLDNN_CTX_DEPS) +ENDIF() + # memcpy deoends on device_context, here add deps individually for # avoiding cycle dependencies cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator - system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS}) + system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS}) nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_info) nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda) diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index 4bf643e048dcf97f7888dcc78eb1b4fa4feee046..9d9348079a0179418ab1a1474cfd8b69136f26b2 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -168,5 +168,69 @@ cudaStream_t CUDADeviceContext::stream() const { return stream_; } #endif +#ifdef PADDLE_WITH_MKLDNN +MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place) + : CPUDeviceContext(place), ready_(false) { + stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager)); + engine_.reset(new mkldnn::engine(mkldnn::engine::cpu, 0)); +} + +template +void MKLDNNDeviceContext::AddElement(const std::string& op_key, + const T& value) { + if (GetElement(op_key)) { + return; + } + GetElementPool().emplace(op_key, std::move(value)); +} + +template +const T& MKLDNNDeviceContext::GetElement(const std::string& op_key) const { + auto it = GetElementPool().find(op_key); + return it == GetElementPool().end() ? nullptr : it->second; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return memory_pool_; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return primitive_pool_; +} + +template <> +const std::unordered_map>& +MKLDNNDeviceContext::GetElementPool() const { + return primitive_desc_pool_; +} + +void MKLDNNDeviceContext::Execute(bool block) { + if (pipeline_.empty()) { + return; + } + ResetStream(); + stream_->submit(pipeline_).wait(block); + ready_ = false; + pipeline_.clear(); +} + +void MKLDNNDeviceContext::ResetStream() { + if (ready_) { + return; + } + // TODO(TJ): change me when mkldnn have specific method to reset this state + stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager)); + ready_ = true; +} + +#endif + } // namespace platform } // namespace paddle diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index 609ea4bd3ad50e2eefa908539339903ed1f0a807..7a0040c9c229af79ea8be1049dfd6c0d1b4d19cf 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -21,6 +21,10 @@ limitations under the License. */ #define EIGEN_USE_GPU #endif +#ifdef PADDLE_WITH_MKLDNN +#include "paddle/platform/mkldnn_helper.h" +#endif + #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" #include "unsupported/Eigen/CXX11/Tensor" @@ -105,6 +109,54 @@ struct DefaultDeviceContextType { #endif +#ifdef PADDLE_WITH_MKLDNN +class MKLDNNDeviceContext : public CPUDeviceContext { + public: + explicit MKLDNNDeviceContext(CPUPlace place); + + /* \brief Add new element: memory, primitive or primitive desc */ + template + void AddElement(const std::string& op_key, const T& value); + + /* \brief Get existed element: memory, primitive or primitive desc */ + template + const T& GetElement(const std::string& op_key) const; + + /* \brief Get element pool: memory, primitive or primitive desc pool */ + template + const std::unordered_map>& + GetElementPool() const; + + /* \brief Get the active engine */ + const MKLDNNEngine& engine() const { return *engine_; } + + /* \brief Submit primitive to pipeline */ + void Submit(const MKLDNNPrimitivePtr& p) { pipeline_.push_back(*p); } + + /*! \brief Execute all submitted primitives in pipeline */ + void Execute(bool block = true); + + protected: + /*! \brief Reset the stream to prepare next exectue */ + void ResetStream(); + + private: + std::unordered_map> + memory_pool_; + std::unordered_map> + primitive_pool_; + std::unordered_map> + primitive_desc_pool_; + std::vector pipeline_; + MKLDNNStreamPtr stream_; + MKLDNNEnginePtr engine_; + bool ready_; +}; +#endif + /*! \brief device context pool singleton */ class DeviceContextPool { public: diff --git a/paddle/platform/mkldnn_helper.h b/paddle/platform/mkldnn_helper.h new file mode 100644 index 0000000000000000000000000000000000000000..cd52a8b4c434071a030a8e7a8a70fc3adba8460c --- /dev/null +++ b/paddle/platform/mkldnn_helper.h @@ -0,0 +1,35 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include + +namespace paddle { +namespace platform { + +using MKLDNNStream = mkldnn::stream; +using MKLDNNEngine = mkldnn::engine; +using MKLDNNMemory = mkldnn::memory; +using MKLDNNPrimitive = mkldnn::primitive; +using MKLDNNPrimitiveDesc = mkldnn::handle; + +typedef std::unique_ptr MKLDNNStreamPtr; +typedef std::unique_ptr MKLDNNEnginePtr; +typedef std::unique_ptr MKLDNNMemoryPtr; +typedef std::unique_ptr MKLDNNPrimitivePtr; +typedef std::unique_ptr MKLDNNPrimitiveDescPtr; + +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/place.cc b/paddle/platform/place.cc index 249527e3e136992970033c44ad490a1744bfed35..f05260ccac4c2b11e5568d484141720fa4792d13 100644 --- a/paddle/platform/place.cc +++ b/paddle/platform/place.cc @@ -51,6 +51,18 @@ bool places_are_same_class(const Place &p1, const Place &p2) { return p1.which() == p2.which(); } +bool is_same_place(const Place &p1, const Place &p2) { + if (places_are_same_class(p1, p2)) { + if (is_cpu_place(p1)) { + return true; + } else { + return boost::get(p1) == boost::get(p2); + } + } else { + return false; + } +} + std::ostream &operator<<(std::ostream &os, const Place &p) { detail::PlacePrinter printer(os); boost::apply_visitor(printer, p); diff --git a/paddle/platform/place.h b/paddle/platform/place.h index 76b5c502cc48431a4e9b13b07505978884576e1d..ba32dd3be6199371bf4624be60a2955a320dc22c 100644 --- a/paddle/platform/place.h +++ b/paddle/platform/place.h @@ -61,6 +61,7 @@ const CPUPlace default_cpu(); bool is_gpu_place(const Place &); bool is_cpu_place(const Place &); bool places_are_same_class(const Place &, const Place &); +bool is_same_place(const Place &, const Place &); std::ostream &operator<<(std::ostream &, const Place &); diff --git a/paddle/platform/profiler.cc b/paddle/platform/profiler.cc index 4e89e5c600bf7f6e23faf8d62bc7c72f7ee8ca7a..4283724d28afcbdeaceb36e6eafa3e0e2fd9f1f9 100644 --- a/paddle/platform/profiler.cc +++ b/paddle/platform/profiler.cc @@ -13,12 +13,17 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/platform/profiler.h" +#include +#include +#include "glog/logging.h" namespace paddle { namespace platform { // The profiler state, the initial value is ProfilerState::kDisabled static ProfilerState g_state = ProfilerState::kDisabled; +// To record which timer the profiler used, CUDA or CPU. +static std::string g_profiler_place = ""; // The thread local event list only can be accessed by the specific thread // The thread index of each thread static thread_local int32_t g_thread_id; @@ -43,10 +48,7 @@ inline uint64_t GetTimeInNsec() { Event::Event(EventKind kind, std::string name, uint32_t thread_id, DeviceContext* dev_ctx) - : kind_(kind), - name_(std::move(name)), - thread_id_(thread_id), - has_cuda_(false) { + : kind_(kind), name_(name), thread_id_(thread_id), has_cuda_(false) { #ifdef PADDLE_WITH_CUDA auto* cuda_dev_ctx = static_cast(dev_ctx); if (cuda_dev_ctx) { @@ -72,11 +74,11 @@ std::string Event::kind() const { PADDLE_THROW("Unknown EventKind."); } -double Event::CpuElapsedUs(const Event& e) const { - return (e.cpu_ns_ - cpu_ns_) / (1000.0); +double Event::CpuElapsedMs(const Event& e) const { + return (e.cpu_ns_ - cpu_ns_) / (1000000.0); } -double Event::CudaElapsedUs(const Event& e) const { +double Event::CudaElapsedMs(const Event& e) const { #ifdef PADDLE_WITH_CUDA PADDLE_ENFORCE(e.has_cuda() && has_cuda()); PADDLE_ENFORCE(e.device() == device()); @@ -84,7 +86,7 @@ double Event::CudaElapsedUs(const Event& e) const { PADDLE_ENFORCE(cudaEventSynchronize(e.event())); float ms; PADDLE_ENFORCE(cudaEventElapsedTime(&ms, event_, e.event())); - return ms * 1000.0; + return ms; #else PADDLE_THROW("CUDA is not enabled"); #endif @@ -113,21 +115,27 @@ inline EventList& GetEventList() { } void Mark(const std::string& name, DeviceContext* dev_ctx) { - GetEventList().Record(EventKind::kMark, std::move(name), g_thread_id, - dev_ctx); + GetEventList().Record(EventKind::kMark, name, g_thread_id, dev_ctx); +} + +void PushEvent(const std::string& name, DeviceContext* dev_ctx) { + GetEventList().Record(EventKind::kPushRange, name, g_thread_id, dev_ctx); +} + +void PopEvent(const std::string& name, DeviceContext* dev_ctx) { + GetEventList().Record(EventKind::kPopRange, name, g_thread_id, dev_ctx); } RecordEvent::RecordEvent(const std::string& name, DeviceContext* dev_ctx) { if (g_state == ProfilerState::kDisabled) return; dev_ctx_ = dev_ctx; - GetEventList().Record(EventKind::kPushRange, std::move(name), g_thread_id, - dev_ctx_); + name_ = name; + PushEvent(name_, dev_ctx_); } RecordEvent::~RecordEvent() { if (g_state == ProfilerState::kDisabled) return; - GetEventList().Record(EventKind::kPopRange, std::string(), g_thread_id, - dev_ctx_); + PopEvent(name_, dev_ctx_); } void EnableProfiler(ProfilerState state) { @@ -138,6 +146,7 @@ void EnableProfiler(ProfilerState state) { "The profiling state should be disabled when calling ", "EnableProfiler."); g_state = state; + g_profiler_place = (g_state == ProfilerState::kCUDA) ? "CUDA" : "CPU"; #ifdef PADDLE_WITH_CUDA if (g_state == ProfilerState::kCUDA) { // Generate some dummy evenets first to reduce the startup overhead. @@ -169,5 +178,152 @@ std::vector> DisableProfiler() { return result; } +void ParseEvents(std::vector>& events, + EventSortingKey sorted_by) { + if (g_profiler_place == "") return; + + std::string sorted_domain; + std::function sorted_func; + switch (sorted_by) { + case EventSortingKey::kCalls: + sorted_domain = "number of calls"; + sorted_func = [](EventItem& a, EventItem& b) { + return a.calls > b.calls; + }; + break; + case EventSortingKey::kTotal: + sorted_domain = "total time"; + sorted_func = [](EventItem& a, EventItem& b) { + return a.total_time > b.total_time; + }; + break; + case EventSortingKey::kMin: + sorted_domain = "minimum time"; + sorted_func = [](EventItem& a, EventItem& b) { + return a.min_time > b.min_time; + }; + break; + case EventSortingKey::kMax: + sorted_domain = "maximum time"; + sorted_func = [](EventItem& a, EventItem& b) { + return a.max_time > b.max_time; + }; + break; + case EventSortingKey::kAve: + sorted_domain = "average time"; + sorted_func = [](EventItem& a, EventItem& b) { + return a.ave_time > b.ave_time; + }; + break; + default: + sorted_domain = "event end time"; + } + + std::vector> events_table; + size_t max_name_width = 0; + for (size_t i = 0; i < events.size(); i++) { + std::list pushed_events; + std::vector event_items; + std::unordered_map event_idx; + + for (size_t j = 0; j < events[i].size(); j++) { + if (events[i][j].kind() == "push") { + pushed_events.push_back(events[i][j]); + } else if (events[i][j].kind() == "pop") { + std::list::reverse_iterator rit = pushed_events.rbegin(); + while (rit != pushed_events.rend() && + rit->name() != events[i][j].name()) { + ++rit; + } + + if (rit != pushed_events.rend()) { + double event_time = (g_profiler_place == "CUDA") + ? rit->CudaElapsedMs(events[i][j]) + : rit->CpuElapsedMs(events[i][j]); + std::string event_name = + "thread" + std::to_string(rit->thread_id()) + "::" + rit->name(); + max_name_width = std::max(max_name_width, event_name.size()); + + if (event_idx.find(event_name) == event_idx.end()) { + event_idx[event_name] = event_items.size(); + EventItem event_item = {event_name, 1, event_time, + event_time, event_time, event_time}; + event_items.push_back(event_item); + } else { + int index = event_idx[event_name]; + event_items[index].calls += 1; + // total time + event_items[index].total_time += event_time; + // min time + event_items[index].min_time = + std::min(event_time, event_items[index].min_time); + // max time + event_items[index].max_time = + std::max(event_time, event_items[index].max_time); + } + + // remove the push marker from the list + pushed_events.erase((++rit).base()); + } else { + LOG(WARNING) << "Cannot find the push marker of event \'" + << events[i][j].name() + << "\', which will be ignored in profiling report."; + } + } + } + // average time + for (auto& item : event_items) { + item.ave_time = item.total_time / item.calls; + } + // sort + if (sorted_by != EventSortingKey::kDefault) { + std::sort(event_items.begin(), event_items.end(), sorted_func); + } + + events_table.push_back(event_items); + // log warning if there are events with `push` but without `pop` + std::list::reverse_iterator rit = pushed_events.rbegin(); + while (rit != pushed_events.rend()) { + LOG(WARNING) << "Cannot find the pop marker of event \'" << rit->name() + << "\', which will be ignored in profiling report."; + ++rit; + } + } + + // Print report + PrintProfilingReport(events_table, sorted_domain, max_name_width + 4, 12); +} + +void PrintProfilingReport(std::vector>& events_table, + std::string& sorted_domain, const size_t name_width, + const size_t data_width) { + // Output header information + std::cout << "\n------------------------->" + << " Profiling Report " + << "<-------------------------\n\n"; + std::cout << "Place: " << g_profiler_place << std::endl; + std::cout << "Time unit: ms" << std::endl; + std::cout << "Sorted by " << sorted_domain + << " in descending order in the same thread\n\n"; + // Output events table + std::cout.setf(std::ios::left); + std::cout << std::setw(name_width) << "Event" << std::setw(data_width) + << "Calls" << std::setw(data_width) << "Total" + << std::setw(data_width) << "Min." << std::setw(data_width) + << "Max." << std::setw(data_width) << "Ave." << std::endl; + for (size_t i = 0; i < events_table.size(); ++i) { + for (size_t j = 0; j < events_table[i].size(); ++j) { + EventItem& event_item = events_table[i][j]; + std::cout << std::setw(name_width) << event_item.name + << std::setw(data_width) << event_item.calls + << std::setw(data_width) << event_item.total_time + << std::setw(data_width) << event_item.min_time + << std::setw(data_width) << event_item.max_time + << std::setw(data_width) << event_item.ave_time << std::endl; + } + } + std::cout << std::endl; +} + } // namespace platform } // namespace paddle diff --git a/paddle/platform/profiler.h b/paddle/platform/profiler.h index 47104ea9d08dad373888c0af463d2b1dbe72a269..6df48ef8806e865f473b4317ac0283863c3c6f64 100644 --- a/paddle/platform/profiler.h +++ b/paddle/platform/profiler.h @@ -33,6 +33,7 @@ class Event { std::string kind() const; std::string name() const { return name_; } + uint32_t thread_id() const { return thread_id_; } bool has_cuda() const { return has_cuda_; } #ifdef PADDLE_WITH_CUDA @@ -40,8 +41,8 @@ class Event { int device() const { return device_; } #endif - double CpuElapsedUs(const Event& e) const; - double CudaElapsedUs(const Event& e) const; + double CpuElapsedMs(const Event& e) const; + double CudaElapsedMs(const Event& e) const; private: EventKind kind_; @@ -94,6 +95,10 @@ enum ProfilerState { void Mark(const std::string& name, DeviceContext* dev_ctx); +void PushEvent(const std::string& name, DeviceContext* dev_ctx); + +void PopEvent(const std::string& name, DeviceContext* dev_ctx); + struct RecordEvent { explicit RecordEvent(const std::string& name, DeviceContext* dev_ctx); @@ -101,6 +106,8 @@ struct RecordEvent { // The device context is used by Event to get the current cuda stream. DeviceContext* dev_ctx_; + // Event name + std::string name_; }; // Enable the profiling function. @@ -110,5 +117,26 @@ void EnableProfiler(ProfilerState state); // event_lists, event_lists[i][j] represents the j-th Event of i-th thread. std::vector> DisableProfiler(); +// The information of each event given in the profiling report +struct EventItem { + std::string name; + int calls; + double total_time; + double min_time; + double max_time; + double ave_time; +}; + +// Candidate keys to sort the profiling report +enum EventSortingKey { kDefault, kCalls, kTotal, kMin, kMax, kAve }; + +// Parse the event list and output the profiling report +void ParseEvents(std::vector>&, + EventSortingKey sorted_by = EventSortingKey::kDefault); + +// Print results +void PrintProfilingReport(std::vector>& events_table, + std::string& sorted_domain, const size_t name_width, + const size_t data_width); } // namespace platform } // namespace paddle diff --git a/paddle/platform/profiler_test.cc b/paddle/platform/profiler_test.cc index 47cf7be146121c54300df928fe329268ed975373..13dea713c71e147ed5dd8d090e92d86c96256c09 100644 --- a/paddle/platform/profiler_test.cc +++ b/paddle/platform/profiler_test.cc @@ -26,7 +26,7 @@ TEST(Event, CpuElapsedTime) { counter++; } Event stop_event(EventKind::kPopRange, "test", 0, nullptr); - EXPECT_GT(start_event.CpuElapsedUs(stop_event), 0); + EXPECT_GT(start_event.CpuElapsedMs(stop_event), 0); } #ifdef PADDLE_WITH_CUDA @@ -45,7 +45,7 @@ TEST(Event, CudaElapsedTime) { counter++; } Event stop_event(EventKind::kPopRange, "test", 0, dev_ctx); - EXPECT_GT(start_event.CudaElapsedUs(stop_event), 0); + EXPECT_GT(start_event.CudaElapsedMs(stop_event), 0); } #endif @@ -55,6 +55,7 @@ TEST(RecordEvent, RecordEvent) { using paddle::platform::EventKind; using paddle::platform::RecordEvent; using paddle::platform::ProfilerState; + using paddle::platform::EventSortingKey; ProfilerState state = ProfilerState::kCPU; DeviceContext* dev_ctx = nullptr; @@ -67,13 +68,45 @@ TEST(RecordEvent, RecordEvent) { #endif EnableProfiler(state); + /* Usage 1: + * PushEvent(evt_name, dev_ctx); + * ... + * code to be analyzed + * ... + * PopEvent(evt_name, dev_ctx); + */ + for (int loop = 0; loop < 3; ++loop) { + for (int i = 1; i < 5; ++i) { + std::string name = "op_" + std::to_string(i); + PushEvent(name, dev_ctx); + int counter = 1; + while (counter != i * 1000) counter++; + PopEvent(name, dev_ctx); + } + } + + /* Usage 2: + * { + * RecordEvent record_event(name, dev_ctx); + * ... + * code to be analyzed + * ... + * } + */ for (int i = 1; i < 5; ++i) { - std::string name = "op_" + std::to_string(i); + std::string name = "evs_op_" + std::to_string(i); RecordEvent record_event(name, dev_ctx); int counter = 1; while (counter != i * 1000) counter++; } + + // Bad Usage: + PushEvent("event_without_pop", dev_ctx); + PopEvent("event_without_push", dev_ctx); std::vector> events = paddle::platform::DisableProfiler(); + // Will remove parsing-related code from test later + ParseEvents(events, EventSortingKey::kTotal); + int cuda_startup_count = 0; int start_profiler_count = 0; int stop_profiler_count = 0; @@ -85,9 +118,9 @@ TEST(RecordEvent, RecordEvent) { if (events[i][j].name() == "push") { EXPECT_EQ(events[i][j + 1].name(), "pop"); #ifdef PADDLE_WITH_CUDA - EXPECT_GT(events[i][j].CudaElapsedUs(events[i][j + 1]), 0); + EXPECT_GT(events[i][j].CudaElapsedMs(events[i][j + 1]), 0); #else - EXPECT_GT(events[i][j].CpuElapsedUs(events[i][j + 1]), 0); + EXPECT_GT(events[i][j].CpuElapsedMs(events[i][j + 1]), 0); #endif } } diff --git a/paddle/pybind/const_value.cc b/paddle/pybind/const_value.cc index 761635aa5e5eac445c2ec8331b0dc37ffd11248c..b13ad42ea29453354798d88bff8ef47339d1a614 100644 --- a/paddle/pybind/const_value.cc +++ b/paddle/pybind/const_value.cc @@ -23,11 +23,6 @@ void BindConstValue(pybind11::module& m) { m.def("kTempVarName", [] { return framework::kTempVarName; }); m.def("kGradVarSuffix", [] { return framework::kGradVarSuffix; }); m.def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; }); - - // for kernel_hint key - m.def("kUseCPU", [] { return framework::kUseCPU; }); - m.def("kUseCUDNN", [] { return framework::kUseCUDNN; }); - m.def("kUseMKLDNN", [] { return framework::kUseMKLDNN; }); } } // namespace pybind diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index 364db62cba6acd7ac380b5017d09f22eefa24813..5d170c66e97f56440968ba568167e6845631e1cc 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -430,6 +430,12 @@ All parameter, weight, gradient are variables in Paddle. m.def("init_glog", framework::InitGLOG); m.def("init_devices", &framework::InitDevices); + m.def("use_cpu", framework::UseCPU); + m.def("use_mkldnn", framework::UseMKLDNN); + m.def("use_cuda", framework::UseCUDA); + m.def("use_cudnn", framework::UseCUDNN); + m.def("use_all", framework::UseALL); + m.def("is_compile_gpu", IsCompileGPU); m.def("set_feed_variable", framework::SetFeedVariable); m.def("get_fetch_variable", framework::GetFetchVariable); diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 92039ec6b05d224e702f0ba5dc05c057a492287e..e70d04d9017e9e36bbd55d6a28889d9ba7fb2a13 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -193,6 +193,16 @@ EOF EOF } +function gen_capi_package() { + if [[ ${WITH_C_API} == "ON" ]]; then + install_prefix="/paddle/build/capi_output" + rm -rf $install_prefix + make DESTDIR="$install_prefix" install + cd $install_prefix/usr/local + ls | egrep -v "^Found.*item$" | xargs tar -cf /paddle/build/paddle.tgz + fi +} + set -xe cmake_gen ${PYTHON_ABI:-""} @@ -200,6 +210,11 @@ run_build run_test gen_docs gen_dockerfile - -printf "If you need to install PaddlePaddle in develop docker image," -printf "please make install or pip install build/python/dist/*.whl.\n" +gen_capi_package + +if [[ ${WITH_C_API:-OFF} == "ON" ]]; then + printf "PaddlePaddle C-API libraries was generated on build/paddle.tgz\n" +else + printf "If you need to install PaddlePaddle in develop docker image," + printf "please make install or pip install build/python/dist/*.whl.\n" +fi diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 6f589e916979584897863db72924c885c258d4b2..36919ab00bf6fc1f9aee350074e5532bfdc7d45e 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -29,8 +29,8 @@ if(WITH_MKLML) endif() if(WITH_MKLDNN) - list(APPEND MKL_SHARED_LIBS "${MKLDNN_LIB}" "${MKLDNN_LIB}.0") - list(APPEND MKL_DEPENDS mkldnn) + list(APPEND MKL_SHARED_LIBS "${MKLDNN_SHARED_LIB}") + list(APPEND MKL_DEPENDS mkldnn mkldnn_shared_lib) endif() if(WITH_GPU) diff --git a/python/paddle/trainer_config_helpers/attrs.py b/python/paddle/trainer_config_helpers/attrs.py index ecba87191045cff6c05014010e60575741238f8d..e6f87ce61b1d16d4f98f111626776aa52c2ec35b 100644 --- a/python/paddle/trainer_config_helpers/attrs.py +++ b/python/paddle/trainer_config_helpers/attrs.py @@ -58,12 +58,12 @@ def is_compatible_with(x, Type): class HookAttribute(object): """ - Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs + Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs during training process of a layer with parameters, such as img_conv layer, fc layer. - :param type: Hook type, currently supported types: + :param type: Hook type, currently supported types: 'pruning' : user specify a sparsity_ratio before training started, and the - network will prune the parameters based on the sparsity_ratio. + network will prune the parameters based on the sparsity_ratio. eg: The definition of Hook object can be hk = HookAttribute('pruning', 0.6) The specific usage can be paddle.layer.img_conv(input=img, filter_size=3, num_channels=3, num_filters=64, @@ -71,10 +71,10 @@ class HookAttribute(object): The pruning details can be found https://arxiv.org/pdf/1506.02626.pdf :type type: string - :param sparsity_ratio: Must be specified if hook type is 'pruning', + :param sparsity_ratio: Must be specified if hook type is 'pruning', it represents the ratio of the zero elements to be set by the Parameter. :type sparsity_ratio: float or None - + """ def __init__(self, type, sparsity_ratio=None): @@ -130,10 +130,12 @@ class ParameterAttribute(object): :param sparse_update: Enable sparse update for this parameter. It will enable both local and remote sparse update. :type sparse_update: bool + :param update_hooks: A HookAttribute object. + :type update_hooks: HookAttribute :param initializer: If not None, it should be a callable object which accepts a parameter name and returns numpy array for the initial value of the parameter - :param initializer: callable object + :type initializer: callable object """ def __init__(self, diff --git a/python/paddle/v2/fluid/backward.py b/python/paddle/v2/fluid/backward.py index ac60bf543600008fd5339c1a378951374afc4ad6..66a7f737574c438a2b945bd4a49d8317bd460c80 100644 --- a/python/paddle/v2/fluid/backward.py +++ b/python/paddle/v2/fluid/backward.py @@ -7,7 +7,7 @@ __all__ = ['append_backward'] def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None): """ - Traverse all ops in op_descs[begin_idx : end_idx], + Traverse all ops in op_descs[begin_idx : end_idx], if any op has inputs/outputs named "old_name", rename it as 'new_name' """ if begin_idx is None: @@ -162,7 +162,7 @@ def _remove_no_grad_branch_(op_descs, no_grad_set): if core.grad_var_suffix() in arg and arg in no_grad_set: to_insert.append((_create_op_desc_("fill_zeros_like", { "X": [_strip_grad_suffix_(arg)] - }, {"Y": [arg]}, {}), idx)) + }, {"Out": [arg]}, {}), idx)) map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert)) @@ -182,7 +182,7 @@ def _append_backward_ops_(target, target(Variable): the target variable of forward pass block(Block): the block where forward ops are target_block(Block): the block which is going to hold new generated grad ops - no_grad_dict(dict): + no_grad_dict(dict): key(int) block index val(set) a set of varibale names. These varibales have no gradient grad_to_var(dict)(output argument): @@ -205,6 +205,7 @@ def _append_backward_ops_(target, # Getting op's corresponding grad_op grad_op_desc, op_grad_to_var = core.get_grad_op_desc( op.desc, no_grad_dict[block.idx], grad_sub_block_list) + grad_op_descs.extend(grad_op_desc) grad_to_var.update(op_grad_to_var) @@ -275,8 +276,8 @@ def append_backward(loss, parameter_list=None, no_grad_set=None): loss(Variable): The variable generated by cost function. parameter_list(list): Parameters that need to be updated by optimizer. If None, it means all parameters need to be updated. - no_grad_set(set): Variables that have no gradients in Block 0. - If None, the set will be generated inside the function and + no_grad_set(set): Variables that have no gradients in Block 0. + If None, the set will be generated inside the function and contains all variables with `step_gradient=True` from all blocks. Return: diff --git a/python/paddle/v2/fluid/framework.py b/python/paddle/v2/fluid/framework.py index b66a8bce5f4f15539007876c113afd3f878b00bc..2dfb8b624160499492b7247f0e1dd1fba793817e 100644 --- a/python/paddle/v2/fluid/framework.py +++ b/python/paddle/v2/fluid/framework.py @@ -17,10 +17,6 @@ TEMP_VAR_NAME = core.kTempVarName() GRAD_VAR_SUFFIX = core.kGradVarSuffix() ZERO_VAR_SUFFIX = core.kZeroVarSuffix() -USE_CPU = core.kUseCPU() -USE_CUDNN = core.kUseMKLDNN() -USE_MKLDNN = core.kUseMKLDNN() - def grad_var_name(var_name): """ @@ -452,7 +448,7 @@ class Operator(object): no_kernel_op_set = { 'feed', 'fetch', 'save', 'load', 'recurrent', 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', - 'recv' + 'recv', 'parallel_do' } if type not in no_kernel_op_set: self.desc.infer_var_type(self.block.desc) diff --git a/python/paddle/v2/fluid/io.py b/python/paddle/v2/fluid/io.py index 926327b70c70d250766c2640d808bb3e3516d37b..c63567601accd8c072368351f2838857bb61c818 100644 --- a/python/paddle/v2/fluid/io.py +++ b/python/paddle/v2/fluid/io.py @@ -212,6 +212,11 @@ def save_inference_model(dirname, "fetch_var_names": fetch_var_names }, f, -1) + # Save only programDesc of inference_program in binary format + # in another file: __model__.dat + with open(model_file_name + ".dat", "wb") as fp: + fp.write(inference_program.desc.serialize_to_string()) + save_params(executor, dirname, main_program) diff --git a/python/paddle/v2/fluid/layers/control_flow.py b/python/paddle/v2/fluid/layers/control_flow.py index acc22bef98b6eac4291bb2181e6d5cd7dbe2a768..948a67524490ec7dcf84ef9af48be54f0fc0f908 100644 --- a/python/paddle/v2/fluid/layers/control_flow.py +++ b/python/paddle/v2/fluid/layers/control_flow.py @@ -6,12 +6,13 @@ import contextlib from ..registry import autodoc __all__ = [ - 'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', 'StaticRNNGuard', - 'StaticRNNMemoryLink', 'WhileGuard', 'While', 'lod_rank_table', - 'max_sequence_len', 'topk', 'lod_tensor_to_array', 'array_to_lod_tensor', - 'increment', 'array_write', 'create_array', 'less_than', 'array_read', - 'shrink_memory', 'array_length', 'IfElse', 'DynamicRNN', 'ConditionalBlock', - 'StaticRNN', 'reorder_lod_tensor_by_rank' + 'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', + 'BlockGuardWithCompletion', 'StaticRNNMemoryLink', 'WhileGuard', 'While', + 'lod_rank_table', 'max_sequence_len', 'topk', 'lod_tensor_to_array', + 'array_to_lod_tensor', 'increment', 'array_write', 'create_array', + 'less_than', 'array_read', 'shrink_memory', 'array_length', 'IfElse', + 'DynamicRNN', 'ConditionalBlock', 'StaticRNN', 'reorder_lod_tensor_by_rank', + 'ParallelDo' ] @@ -132,29 +133,129 @@ class BlockGuard(object): return True -class StaticRNNGuard(BlockGuard): +class ParallelDo(object): """ - StaticRNNGuard class. + ParallelDo class. - StaticRNNGuard class is used to create a StaticRNN block in a program. + ParallelDo class is used to create a ParallelDo. + """ + + def __init__(self, places, name=None): + self.helper = LayerHelper("parallel_do", name=name) + self.inputs = [] + self.places = places + self.outputs = [] + self.status = StaticRNN.BEFORE_RNN_BLOCK + + def do(self): + return BlockGuardWithCompletion(self) + + def parent_block(self): + prog = self.helper.main_program + parent_idx = prog.current_block().parent_idx + assert parent_idx >= 0 + parent_block = prog.block(parent_idx) + return parent_block + + def __call__(self, *args, **kwargs): + if self.status != StaticRNN.AFTER_RNN_BLOCK: + raise ValueError("RNN output can only be retrieved after rnn block") + if len(self.outputs) == 0: + raise ValueError("RNN has no output") + elif len(self.outputs) == 1: + return self.outputs[0] + else: + return self.outputs + + def read_input(self, var): + self.inputs.append(var) + return var + + def write_output(self, var): + self.outputs.append(var) + + def get_parameters(self): + main_program = self.helper.main_program + current_block = main_program.current_block() + parent_block = self.parent_block() + + local_inputs = set() + + for op in current_block.ops: + for oname in op.output_names: + for out_var_name in op.output(oname): + local_inputs.add(out_var_name) + + for var in self.inputs: + local_inputs.add(var.name) + + params = list() + for op in current_block.ops: + for iname in op.input_names: + for in_var_name in op.input(iname): + if in_var_name not in local_inputs: + params.append(in_var_name) + + return [parent_block.var(name) for name in params] + + def complete_op(self): + main_program = self.helper.main_program + current_block = main_program.current_block() + parent_block = self.parent_block() + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + + self.outputs = [ + parent_block.create_var( + name=o.name, + shape=o.shape, + dtype=o.dtype, + lod_level=o.lod_level, + persistable=o.persistable, + stop_gradient=o.stop_gradient) for o in self.outputs + ] + + inputs = [parent_block.var(i.name) for i in self.inputs] + outputs = [parent_block.var(o.name) for o in self.outputs] + + parent_block.append_op( + type='parallel_do', + inputs={ + 'inputs': inputs, + 'parameters': self.get_parameters(), + 'places': self.places + }, + outputs={'outputs': outputs, + 'parallel_scopes': [step_scope]}, + attrs={'sub_block': current_block}) + + +class BlockGuardWithCompletion(BlockGuard): + """ + BlockGuardWithCompletion class. + + BlockGuardWithCompletion class is used to create an op with a block in a program. """ def __init__(self, rnn): - if not isinstance(rnn, StaticRNN): - raise TypeError("StaticRNNGuard takes a StaticRNN") - super(StaticRNNGuard, self).__init__(rnn.helper.main_program) + if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)): + raise TypeError( + "BlockGuardWithCompletion takes a StaticRNN or ParallelDo") + super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program) self.rnn = rnn def __enter__(self): self.rnn.status = StaticRNN.IN_RNN_BLOCK - return super(StaticRNNGuard, self).__enter__() + return super(BlockGuardWithCompletion, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.rnn.status = StaticRNN.AFTER_RNN_BLOCK - self.rnn.complete_rnn_op() - return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb) + self.rnn.complete_op() + return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val, + exc_tb) class StaticRNNMemoryLink(object): @@ -200,7 +301,7 @@ class StaticRNN(object): self.seq_len = None def step(self): - return StaticRNNGuard(self) + return BlockGuardWithCompletion(self) def _assert_in_rnn_block_(self, method): if self.status != StaticRNN.IN_RNN_BLOCK: @@ -316,7 +417,7 @@ class StaticRNN(object): else: return self.outputs - def complete_rnn_op(self): + def complete_op(self): main_program = self.helper.main_program rnn_block = main_program.current_block() parent_block = self.parent_block() @@ -897,7 +998,7 @@ class ConditionalBlock(object): out_list = [ parent_block.var(var_name) for var_name in parent_block.vars - if var_name not in intermediate + if var_name in intermediate ] step_scope = parent_block.create_var( diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index 6883630ac6a28176258272996ed7d0e73652a40b..7feb479d2e3bc396eac53045888175ba54864b66 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -64,14 +64,14 @@ def fc(input, is flattened: the first `num_flatten_dims` dimensions will be flatten to form the first dimension of the final matrix (height of the - matrix), and the rest `rank(X) - num_col_dims` + matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to form the second dimension of the final matrix (width of the matrix). For example, suppose `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and - `x_num_col_dims` = 3. Then, the flattened matrix + `num_flatten_dims` = 3. Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. - By default, `x_num_col_dims` is set to 1. + By default, `num_flatten_dims` is set to 1. param_attr(ParamAttr|list): The parameter attribute for learnable parameters/weights of the fully connected layer. @@ -243,18 +243,21 @@ def gru_unit(input, r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r) - ch_t & = actNode(xc_t + W_c dot(r_t, h_{t-1}) + b_c) + m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m) - h_t & = dot((1-u_t), ch_{t-1}) + dot(u_t, h_t) + h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1}) The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms of the equation above, the :math:`z_t` is split into 3 parts - - :math:`xu_t`, :math:`xr_t` and :math:`xc_t`. This means that in order to + :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to implement a full GRU unit operator for an input, a fully connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`. - This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t - 1})` - and concatenation of :math:`u_t`, :math:`r_t` and :math:`ch_t`. + The terms :math:`u_t` and :math:`r_t` represent the update and reset gates + of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is + an intermediate candidate hidden output, which is denoted by :math:`m_t`. + This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})` + and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`. Args: input (Variable): The fc transformed input value of current step. diff --git a/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py b/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py index 8acd470c5ed5fa8eeda396f1e9182db4ecdd7016..74ca56182c47de2e74e80a56bf84dcf90ca6c104 100644 --- a/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py +++ b/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py @@ -4,6 +4,7 @@ import numpy as np import paddle.v2 as paddle import paddle.v2.dataset.conll05 as conll05 import paddle.v2.fluid as fluid +import time word_dict, verb_dict, label_dict = conll05.get_dict() word_dict_len = len(word_dict) @@ -160,7 +161,8 @@ def main(): paddle.reader.shuffle( paddle.dataset.conll05.test(), buf_size=8192), batch_size=BATCH_SIZE) - place = fluid.CPUPlace() + #place = fluid.CPUPlace() + place = fluid.CUDAPlace(0) feeder = fluid.DataFeeder( feed_list=[ word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target @@ -174,6 +176,7 @@ def main(): embedding_param.set( load_parameter(conll05.get_embedding(), word_dict_len, word_dim), place) + start_time = time.time() batch_id = 0 for pass_id in xrange(PASS_NUM): chunk_evaluator.reset(exe) @@ -191,6 +194,9 @@ def main(): f1_score) + " pass_precision:" + str( pass_precision) + " pass_recall:" + str(pass_recall) + " pass_f1_score:" + str(pass_f1_score)) + if batch_id != 0: + print("second per batch: " + str((time.time() - start_time) + / batch_id)) # exit early for CI exit(0) diff --git a/python/paddle/v2/fluid/tests/test_conv2d_op.py b/python/paddle/v2/fluid/tests/test_conv2d_op.py index e82e3ab0c9c0bc75a13a8948fda925bc4f0b6512..958300e655e012b91598360105ca2734c3bd2c37 100644 --- a/python/paddle/v2/fluid/tests/test_conv2d_op.py +++ b/python/paddle/v2/fluid/tests/test_conv2d_op.py @@ -1,5 +1,7 @@ import unittest import numpy as np + +import paddle.v2.fluid.core as core from op_test import OpTest @@ -47,6 +49,7 @@ def conv2d_forward_naive(input, filter, group, conv_param): class TestConv2dOp(OpTest): def setUp(self): + core.use_cuda() self.init_op_type() self.init_group() self.init_dilation() @@ -167,26 +170,31 @@ class TestWithDilation(TestConv2dOp): #----------------Conv2dCudnn---------------- class TestCudnn(TestConv2dOp): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" class TestCudnnWithPad(TestWithPad): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" class TestCudnnWithStride(TestWithStride): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" class TestCudnnWithGroup(TestWithGroup): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" class TestCudnnWith1x1(TestWith1x1): def init_op_type(self): + core.use_cudnn() self.op_type = "conv2d_cudnn" diff --git a/python/paddle/v2/fluid/tests/test_parallel_op.py b/python/paddle/v2/fluid/tests/test_parallel_op.py new file mode 100644 index 0000000000000000000000000000000000000000..2788f4e519b31b45250fbb923b2309e8bb1f6fa1 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_parallel_op.py @@ -0,0 +1,46 @@ +import unittest + +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid as fluid +from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.executor import Executor +from paddle.v2.fluid.backward import append_backward +import numpy as np +import paddle.v2.fluid.core as core + + +class ParallelOpTest(unittest.TestCase): + def setUp(self): + x = layers.data( + shape=[-1, 30, 40], + dtype='float32', + name='x', + append_batch_size=False, + stop_gradient=False) + + places = fluid.default_main_program().global_block().create_var() + pd = layers.ParallelDo(places=places) + + with pd.do(): + data = pd.read_input(x) + hidden = layers.fc(input=data, size=7) + pd.write_output(hidden) + data = pd() + loss = layers.mean(x=data) + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) + sgd_optimizer.minimize(loss) + + exe = fluid.Executor(fluid.CPUPlace()) + exe.run(fluid.default_startup_program()) + exe.run(fluid.default_main_program(), + feed={ + x.name: np.random.uniform(0.1, 0.6, + (20, 30, 40)).astype("float32") + }) + + def test_forward(self): + pass + + +if __name__ == '__main__': + unittest.main()