From bd29052e332f2e562e2feac2e228fa078202285c Mon Sep 17 00:00:00 2001 From: lijianshe02 <48898730+lijianshe02@users.noreply.github.com> Date: Fri, 11 Dec 2020 10:23:05 +0800 Subject: [PATCH] fix random seed in nll_loss unitest test=develop (#29538) * fix random seed in nll_loss unitest test=develop --- .../fluid/tests/unittests/test_nll_loss.py | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/python/paddle/fluid/tests/unittests/test_nll_loss.py b/python/paddle/fluid/tests/unittests/test_nll_loss.py index aa64a35564b..ee7e3a65283 100644 --- a/python/paddle/fluid/tests/unittests/test_nll_loss.py +++ b/python/paddle/fluid/tests/unittests/test_nll_loss.py @@ -72,6 +72,7 @@ def nll_loss_2d(logs, targets, weight=None, reduction='mean', class TestNLLLoss(unittest.TestCase): def test_NLLLoss_1D_mean(self): + np.random.seed(200) input_np = np.random.random(size=(10, 10)).astype(np.float64) label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64) prog = fluid.Program() @@ -105,6 +106,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_1D_sum(self): + np.random.seed(200) input_np = np.random.random(size=(10, 10)).astype(np.float64) label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64) prog = fluid.Program() @@ -138,6 +140,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_1D_with_weight_mean(self): + np.random.seed(200) input_np = np.random.random(size=(10, 10)).astype(np.float64) label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64) weight_np = np.random.random(size=(10, )).astype(np.float64) @@ -176,6 +179,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_1D_with_weight_sum(self): + np.random.seed(200) input_np = np.random.random(size=(10, 10)).astype(np.float64) label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64) weight_np = np.random.random(size=(10, )).astype(np.float64) @@ -215,6 +219,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_1D_with_weight_mean_cpu(self): + np.random.seed(200) input_np = np.random.random(size=(10, 10)).astype(np.float64) label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64) weight_np = np.random.random(size=(10, )).astype(np.float64) @@ -251,6 +256,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_1D_with_weight_no_reduce_cpu(self): + np.random.seed(200) input_np = np.random.random(size=(10, 10)).astype(np.float64) label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64) weight_np = np.random.random(size=(10, )).astype(np.float64) @@ -288,6 +294,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_2D_mean(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64) prog = fluid.Program() @@ -323,6 +330,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_2D_sum(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64) prog = fluid.Program() @@ -358,6 +366,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_2D_with_weight_mean(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64) weight_np = np.random.random(size=(3, )).astype(np.float64) @@ -399,6 +408,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_2D_with_weight_mean_cpu(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64) weight_np = np.random.random(size=(3, )).astype(np.float64) @@ -438,6 +448,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_2D_with_weight_sum(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64) weight_np = np.random.random(size=(3, )).astype(np.float64) @@ -479,6 +490,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_in_dims_not_2or4_mean(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64) prog = fluid.Program() @@ -519,6 +531,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_in_dims_not_2or4_with_weight_mean(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64) weight_np = np.random.random(size=(3, )).astype(np.float64) @@ -565,6 +578,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_in_dims_not_2or4_with_weight_sum(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64) weight_np = np.random.random(size=(3, )).astype(np.float64) @@ -614,6 +628,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_in_dims_not_2or4_with_weight_no_reduce(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64) weight_np = np.random.random(size=(3, )).astype(np.float64) @@ -664,6 +679,7 @@ class TestNLLLoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_NLLLoss_in_dims_not_2or4_with_weight_no_reduce_cpu(self): + np.random.seed(200) input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64) label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64) weight_np = np.random.random(size=(3, )).astype(np.float64) @@ -717,6 +733,7 @@ class TestNLLLossOp1DWithReduce(OpTest): self.init_test_case() self.op_type = "nll_loss" self.with_weight = False + np.random.seed(200) input_np = np.random.uniform(0.1, 0.8, self.input_shape).astype("float64") label_np = np.random.randint(0, self.input_shape[1], @@ -758,6 +775,7 @@ class TestNLLLossOp1DNoReduce(OpTest): self.init_test_case() self.op_type = "nll_loss" self.with_weight = False + np.random.seed(200) input_np = np.random.uniform(0.1, 0.8, self.input_shape).astype("float64") label_np = np.random.randint(0, self.input_shape[1], @@ -844,6 +862,7 @@ class TestNLLLossOp2DNoReduce(OpTest): self.init_test_case() self.op_type = "nll_loss" self.with_weight = False + np.random.seed(200) input_np = np.random.uniform(0.1, 0.8, self.input_shape).astype("float64") label_np = np.random.randint(0, self.input_shape[1], -- GitLab