Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ba992136
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ba992136
编写于
8月 08, 2023
作者:
L
leolishaohao
提交者:
GitHub
8月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] register multiclass_nms3 and norm xpu kernel to optimize model (#56064)
上级
c271f26b
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
726 addition
and
0 deletion
+726
-0
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+2
-0
paddle/phi/kernels/xpu/multiclass_nms3_kernel.cc
paddle/phi/kernels/xpu/multiclass_nms3_kernel.cc
+206
-0
paddle/phi/kernels/xpu/norm_kernel.cc
paddle/phi/kernels/xpu/norm_kernel.cc
+74
-0
test/xpu/test_multiclass_nms3_op_xpu.py
test/xpu/test_multiclass_nms3_op_xpu.py
+348
-0
test/xpu/test_norm_op_xpu.py
test/xpu/test_norm_op_xpu.py
+96
-0
未找到文件。
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
ba992136
...
@@ -542,6 +542,7 @@ XPUOpMap& get_kl2_ops() {
...
@@ -542,6 +542,7 @@ XPUOpMap& get_kl2_ops() {
phi
::
DataType
::
INT64
})},
phi
::
DataType
::
INT64
})},
{
"multi_encoder_xpu"
,
{
"multi_encoder_xpu"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"multiclass_nms3"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"nearest_interp_v2"
,
{
"nearest_interp_v2"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
FLOAT16
,
...
@@ -549,6 +550,7 @@ XPUOpMap& get_kl2_ops() {
...
@@ -549,6 +550,7 @@ XPUOpMap& get_kl2_ops() {
{
"nearest_interp_v2_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"nearest_interp_v2_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"nll_loss"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"nll_loss"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"nll_loss_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"nll_loss_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"norm"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"not_equal"
,
{
"not_equal"
,
XPUKernelSet
({
phi
::
DataType
::
INT64
,
XPUKernelSet
({
phi
::
DataType
::
INT64
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT32
,
...
...
paddle/phi/kernels/xpu/multiclass_nms3_kernel.cc
0 → 100644
浏览文件 @
ba992136
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/multiclass_nms3_kernel.h"
#include <vector>
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/common/memory_utils.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
MultiClassNMSKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
bboxes
,
const
DenseTensor
&
scores
,
const
paddle
::
optional
<
DenseTensor
>&
rois_num
,
float
score_threshold
,
int
nums_top_k
,
int
keep_top_k
,
float
nms_threshold
,
bool
normalized
,
float
nms_eta
,
int
background_label
,
DenseTensor
*
out
,
DenseTensor
*
index
,
DenseTensor
*
nms_rois_num
)
{
using
XPUT
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
XPUT
*
bboxes_data
=
reinterpret_cast
<
const
XPUT
*>
(
bboxes
.
data
<
T
>
());
const
XPUT
*
scores_data
=
reinterpret_cast
<
const
XPUT
*>
(
scores
.
data
<
T
>
());
bool
return_index
=
index
!=
nullptr
;
bool
has_rois_num
=
rois_num
.
get_ptr
()
!=
nullptr
;
bool
return_rois_num
=
nms_rois_num
!=
nullptr
;
auto
score_dims
=
phi
::
vectorize
<
int
>
(
scores
.
dims
());
auto
score_size
=
score_dims
.
size
();
bool
is_lod
=
score_size
==
2
?
true
:
false
;
int
n
=
0
;
int
b
=
0
;
int
class_num
=
scores
.
dims
()[
1
];
int
out_dim
=
bboxes
.
dims
()[
2
]
+
2
;
int
boxes_count
=
0
;
std
::
vector
<
int
>
rois_num_vec
;
rois_num_vec
.
clear
();
if
(
is_lod
)
{
if
(
has_rois_num
)
{
n
=
rois_num
.
get_ptr
()
->
numel
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
rois_num_vec
.
push_back
(
rois_num
.
get_ptr
()
->
data
<
int
>
()[
i
]);
boxes_count
+=
rois_num
.
get_ptr
()
->
data
<
int
>
()[
i
];
}
}
else
{
auto
lod
=
bboxes
.
lod
().
back
();
boxes_count
=
lod
[
lod
.
size
()
-
1
];
n
=
lod
.
size
()
-
1
;
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
rois_num_vec
.
push_back
(
lod
[
i
+
1
]
-
lod
[
i
]);
}
}
PADDLE_ENFORCE_EQ
(
boxes_count
==
bboxes
.
dims
()[
0
],
true
,
phi
::
errors
::
InvalidArgument
(
"boxes_count should equal boxes->dims()[0]."
,
"But received: (%d) and (%d)"
,
boxes_count
,
bboxes
.
dims
()[
0
]));
PADDLE_ENFORCE_EQ
(
boxes_count
==
score_dims
[
0
],
true
,
phi
::
errors
::
InvalidArgument
(
"boxes_count shuold equal score_dims[0]."
,
"But received: (%d) and (%d)"
,
boxes_count
,
score_dims
[
0
]));
}
else
{
n
=
bboxes
.
dims
()[
0
];
b
=
bboxes
.
dims
()[
1
];
boxes_count
=
n
*
b
;
}
std
::
vector
<
T
>
outs_vec_
;
std
::
vector
<
int
>
out_index_vec_
;
outs_vec_
.
resize
(
boxes_count
*
out_dim
);
out_index_vec_
.
resize
(
boxes_count
);
std
::
vector
<
size_t
>
batch_starts
;
int
r
=
0
;
r
=
xpu
::
multiclass_nms
<
T
,
int
>
(
ctx
.
x_context
(),
bboxes_data
,
scores_data
,
rois_num_vec
,
outs_vec_
,
out_index_vec_
,
batch_starts
,
n
,
b
,
class_num
,
out_dim
,
nums_top_k
,
score_threshold
,
keep_top_k
,
nms_threshold
,
background_label
,
normalized
,
nms_eta
,
return_index
,
is_lod
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"multiclass_nms"
);
uint64_t
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
if
(
return_index
)
{
// out_dim may be zero when there is no object in picture, so add some
// zeros to it
// caution: results may differ between cpu and xpu due to this operation
out
->
Resize
({
1
,
out_dim
});
ctx
.
template
Alloc
<
T
>(
out
);
T
*
out_ptr
=
out
->
template
data
<
T
>();
std
::
vector
<
T
>
temp_value
(
out_dim
,
0.0
f
);
memory_utils
::
Copy
(
ctx
.
GetPlace
(),
out_ptr
,
phi
::
CPUPlace
(),
temp_value
.
data
(),
1
*
out_dim
*
sizeof
(
T
));
index
->
Resize
({
1
,
1
});
ctx
.
template
Alloc
<
int
>(
index
);
int
*
out_index_ptr
=
index
->
template
data
<
int
>();
std
::
vector
<
int
>
temp_idx
(
1
,
0
);
memory_utils
::
Copy
(
ctx
.
GetPlace
(),
out_index_ptr
,
phi
::
CPUPlace
(),
temp_idx
.
data
(),
1
*
sizeof
(
int
));
}
else
{
out
->
Resize
({
1
,
1
});
T
*
od
=
ctx
.
template
Alloc
<
T
>(
out
);
od
[
0
]
=
-
1
;
batch_starts
=
{
0
,
1
};
}
}
else
{
out
->
Resize
({
static_cast
<
int64_t
>
(
num_kept
),
out_dim
});
ctx
.
template
Alloc
<
T
>(
out
);
T
*
out_ptr
=
out
->
template
data
<
T
>();
memory_utils
::
Copy
(
ctx
.
GetPlace
(),
out_ptr
,
phi
::
CPUPlace
(),
outs_vec_
.
data
(),
num_kept
*
out_dim
*
sizeof
(
T
));
if
(
return_index
)
{
index
->
Resize
({
static_cast
<
int64_t
>
(
num_kept
),
1
});
ctx
.
template
Alloc
<
int
>(
index
);
int
*
out_index_ptr
=
index
->
template
data
<
int
>();
memory_utils
::
Copy
(
ctx
.
GetPlace
(),
out_index_ptr
,
phi
::
CPUPlace
(),
out_index_vec_
.
data
(),
num_kept
*
sizeof
(
int
));
}
}
if
(
return_rois_num
)
{
nms_rois_num
->
Resize
({
n
});
ctx
.
template
Alloc
<
int
>(
nms_rois_num
);
DenseTensor
nms_rois_num_cpu
;
nms_rois_num_cpu
.
Resize
({
nms_rois_num
->
numel
()});
ctx
.
template
HostAlloc
<
int
>(
&
nms_rois_num_cpu
);
int
*
nms_rois_num_cpu_data
=
nms_rois_num_cpu
.
data
<
int
>
();
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
{
nms_rois_num_cpu_data
[
i
-
1
]
=
batch_starts
[
i
]
-
batch_starts
[
i
-
1
];
}
phi
::
Copy
(
ctx
,
nms_rois_num_cpu
,
nms_rois_num
->
place
(),
true
,
nms_rois_num
);
}
LoD
lod
;
if
(
num_kept
==
0
)
{
batch_starts
[
batch_starts
.
size
()
-
1
]
=
1
;
}
lod
.
emplace_back
(
batch_starts
);
if
(
return_index
)
{
index
->
set_lod
(
lod
);
}
out
->
set_lod
(
lod
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
multiclass_nms3
,
XPU
,
ALL_LAYOUT
,
phi
::
MultiClassNMSKernel
,
float
)
{
kernel
->
OutputAt
(
1
).
SetDataType
(
phi
::
DataType
::
INT32
);
kernel
->
OutputAt
(
2
).
SetDataType
(
phi
::
DataType
::
INT32
);
}
paddle/phi/kernels/xpu/norm_kernel.cc
0 → 100644
浏览文件 @
ba992136
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/norm_kernel.h"
#include <vector>
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
NormKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
int
axis
,
float
epsilon
,
bool
is_test
,
DenseTensor
*
out
,
DenseTensor
*
norm
)
{
ctx
.
template
Alloc
<
T
>(
out
);
ctx
.
template
Alloc
<
T
>(
norm
);
std
::
vector
<
int
>
xshape
;
auto
x_dims
=
x
.
dims
();
auto
x_dims_size
=
x_dims
.
size
();
xshape
.
resize
(
x_dims_size
);
if
(
axis
<
0
)
{
axis
+=
x_dims_size
;
}
PADDLE_ENFORCE_GE
(
axis
,
0
,
phi
::
errors
::
InvalidArgument
(
"axis must be greater than or equal to 0."
"But received axis: %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
x_dims_size
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value must be less than rank of Input(X)"
"But received axis: %d, rank: %d."
,
axis
,
x_dims_size
));
for
(
int
i
=
0
;
i
<
x_dims_size
;
i
++
)
{
xshape
[
i
]
=
static_cast
<
int
>
(
x_dims
[
i
]);
}
int
r
=
xpu
::
l2_norm
<
T
>
(
ctx
.
x_context
(),
x
.
data
<
T
>
(),
out
->
data
<
T
>
(),
norm
->
data
<
T
>
(),
xshape
,
axis
,
epsilon
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"l2_norm"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
norm
,
XPU
,
ALL_LAYOUT
,
phi
::
NormKernel
,
float
)
{}
test/xpu/test_multiclass_nms3_op_xpu.py
0 → 100644
浏览文件 @
ba992136
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
unittest
import
numpy
as
np
from
get_test_cover_info
import
(
XPUOpTestWrapper
,
create_test_class
,
get_xpu_op_support_types
,
)
from
op_test_xpu
import
XPUOpTest
import
paddle
paddle
.
enable_static
()
def
softmax
(
x
):
# clip to shiftx, otherwise, when calc loss with
# log(exp(shiftx)), may get log(0)=INF
shiftx
=
(
x
-
np
.
max
(
x
)).
clip
(
-
64.0
)
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
def
iou
(
box_a
,
box_b
,
norm
):
"""Apply intersection-over-union overlap between box_a and box_b."""
xmin_a
=
min
(
box_a
[
0
],
box_a
[
2
])
ymin_a
=
min
(
box_a
[
1
],
box_a
[
3
])
xmax_a
=
max
(
box_a
[
0
],
box_a
[
2
])
ymax_a
=
max
(
box_a
[
1
],
box_a
[
3
])
xmin_b
=
min
(
box_b
[
0
],
box_b
[
2
])
ymin_b
=
min
(
box_b
[
1
],
box_b
[
3
])
xmax_b
=
max
(
box_b
[
0
],
box_b
[
2
])
ymax_b
=
max
(
box_b
[
1
],
box_b
[
3
])
area_a
=
(
ymax_a
-
ymin_a
+
(
not
norm
))
*
(
xmax_a
-
xmin_a
+
(
not
norm
))
area_b
=
(
ymax_b
-
ymin_b
+
(
not
norm
))
*
(
xmax_b
-
xmin_b
+
(
not
norm
))
if
area_a
<=
0
and
area_b
<=
0
:
return
0.0
xa
=
max
(
xmin_a
,
xmin_b
)
ya
=
max
(
ymin_a
,
ymin_b
)
xb
=
min
(
xmax_a
,
xmax_b
)
yb
=
min
(
ymax_a
,
ymax_b
)
inter_area
=
max
(
xb
-
xa
+
(
not
norm
),
0.0
)
*
max
(
yb
-
ya
+
(
not
norm
),
0.0
)
iou_ratio
=
inter_area
/
(
area_a
+
area_b
-
inter_area
)
return
iou_ratio
def
nms
(
boxes
,
scores
,
score_threshold
,
nms_threshold
,
top_k
=
200
,
normalized
=
True
,
eta
=
1.0
,
):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
scores: (tensor) The class predscores for the img, Shape:[num_priors].
score_threshold: (float) The confidence thresh for filtering low
confidence boxes.
nms_threshold: (float) The overlap thresh for suppressing unnecessary
boxes.
top_k: (int) The maximum number of box preds to consider.
eta: (float) The parameter for adaptive NMS.
Return:
The indices of the kept boxes with respect to num_priors.
"""
all_scores
=
copy
.
deepcopy
(
scores
)
all_scores
=
all_scores
.
flatten
()
selected_indices
=
np
.
argwhere
(
all_scores
>
score_threshold
)
selected_indices
=
selected_indices
.
flatten
()
all_scores
=
all_scores
[
selected_indices
]
sorted_indices
=
np
.
argsort
(
-
all_scores
,
axis
=
0
,
kind
=
'mergesort'
)
sorted_scores
=
all_scores
[
sorted_indices
]
sorted_indices
=
selected_indices
[
sorted_indices
]
if
top_k
>
-
1
and
top_k
<
sorted_indices
.
shape
[
0
]:
sorted_indices
=
sorted_indices
[:
top_k
]
sorted_scores
=
sorted_scores
[:
top_k
]
selected_indices
=
[]
adaptive_threshold
=
nms_threshold
for
i
in
range
(
sorted_scores
.
shape
[
0
]):
idx
=
sorted_indices
[
i
]
keep
=
True
for
k
in
range
(
len
(
selected_indices
)):
if
keep
:
kept_idx
=
selected_indices
[
k
]
overlap
=
iou
(
boxes
[
idx
],
boxes
[
kept_idx
],
normalized
)
keep
=
True
if
overlap
<=
adaptive_threshold
else
False
else
:
break
if
keep
:
selected_indices
.
append
(
idx
)
if
keep
and
eta
<
1
and
adaptive_threshold
>
0.5
:
adaptive_threshold
*=
eta
return
selected_indices
def
multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
,
shared
,
):
if
shared
:
class_num
=
scores
.
shape
[
0
]
priorbox_num
=
scores
.
shape
[
1
]
else
:
box_num
=
scores
.
shape
[
0
]
class_num
=
scores
.
shape
[
1
]
selected_indices
=
{}
num_det
=
0
for
c
in
range
(
class_num
):
if
c
==
background
:
continue
if
shared
:
indices
=
nms
(
boxes
,
scores
[
c
],
score_threshold
,
nms_threshold
,
nms_top_k
,
normalized
,
)
else
:
indices
=
nms
(
boxes
[:,
c
,
:],
scores
[:,
c
],
score_threshold
,
nms_threshold
,
nms_top_k
,
normalized
,
)
selected_indices
[
c
]
=
indices
num_det
+=
len
(
indices
)
if
keep_top_k
>
-
1
and
num_det
>
keep_top_k
:
score_index
=
[]
for
c
,
indices
in
selected_indices
.
items
():
for
idx
in
indices
:
if
shared
:
score_index
.
append
((
scores
[
c
][
idx
],
c
,
idx
))
else
:
score_index
.
append
((
scores
[
idx
][
c
],
c
,
idx
))
sorted_score_index
=
sorted
(
score_index
,
key
=
lambda
tup
:
tup
[
0
],
reverse
=
True
)
sorted_score_index
=
sorted_score_index
[:
keep_top_k
]
selected_indices
=
{}
for
_
,
c
,
_
in
sorted_score_index
:
selected_indices
[
c
]
=
[]
for
s
,
c
,
idx
in
sorted_score_index
:
selected_indices
[
c
].
append
(
idx
)
if
not
shared
:
for
labels
in
selected_indices
:
selected_indices
[
labels
].
sort
()
num_det
=
keep_top_k
return
selected_indices
,
num_det
def
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
=
True
,
gpu_logic
=
False
,
):
batch_size
=
scores
.
shape
[
0
]
num_boxes
=
scores
.
shape
[
2
]
det_outs
=
[]
index_outs
=
[]
lod
=
[]
for
n
in
range
(
batch_size
):
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
boxes
[
n
],
scores
[
n
],
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
,
shared
=
True
,
)
lod
.
append
(
nmsed_num
)
if
nmsed_num
==
0
:
continue
tmp_det_out
=
[]
for
c
,
indices
in
nmsed_outs
.
items
():
for
idx
in
indices
:
xmin
,
ymin
,
xmax
,
ymax
=
boxes
[
n
][
idx
][:]
tmp_det_out
.
append
(
[
c
,
scores
[
n
][
c
][
idx
],
xmin
,
ymin
,
xmax
,
ymax
,
idx
+
n
*
num_boxes
,
]
)
if
gpu_logic
:
sorted_det_out
=
sorted
(
tmp_det_out
,
key
=
lambda
tup
:
tup
[
1
],
reverse
=
True
)
else
:
sorted_det_out
=
sorted
(
tmp_det_out
,
key
=
lambda
tup
:
tup
[
0
],
reverse
=
False
)
det_outs
.
extend
(
sorted_det_out
)
return
det_outs
,
lod
class
TestIOU
(
unittest
.
TestCase
):
def
test_iou
(
self
):
box1
=
np
.
array
([
4.0
,
3.0
,
7.0
,
5.0
]).
astype
(
'float32'
)
box2
=
np
.
array
([
3.0
,
4.0
,
6.0
,
8.0
]).
astype
(
'float32'
)
expt_output
=
np
.
array
([
2.0
/
16.0
]).
astype
(
'float32'
)
calc_output
=
np
.
array
([
iou
(
box1
,
box2
,
True
)]).
astype
(
'float32'
)
np
.
testing
.
assert_allclose
(
calc_output
,
expt_output
,
rtol
=
1e-05
)
class
XPUTestMulticlassNMS3Op
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'multiclass_nms3'
self
.
use_dynamic_create_class
=
False
class
TestXpuMulticlassNMS3Op
(
XPUOpTest
):
def
set_argument
(
self
):
self
.
score_threshold
=
0.01
def
setUp
(
self
):
self
.
op_type
=
"multiclass_nms3"
self
.
dtype
=
self
.
in_type
self
.
set_argument
()
N
=
7
M
=
1200
C
=
21
BOX_SIZE
=
4
background
=
0
nms_threshold
=
0.3
nms_top_k
=
400
keep_top_k
=
(
200
if
not
hasattr
(
self
,
'keep_top_k'
)
else
self
.
keep_top_k
)
score_threshold
=
self
.
score_threshold
scores
=
np
.
random
.
random
((
N
*
M
,
C
)).
astype
(
self
.
dtype
)
scores
=
np
.
apply_along_axis
(
softmax
,
1
,
scores
)
scores
=
np
.
reshape
(
scores
,
(
N
,
M
,
C
))
scores
=
np
.
transpose
(
scores
,
(
0
,
2
,
1
))
boxes
=
np
.
random
.
random
((
N
,
M
,
BOX_SIZE
)).
astype
(
self
.
dtype
)
boxes
[:,
:,
0
:
2
]
=
boxes
[:,
:,
0
:
2
]
*
0.5
boxes
[:,
:,
2
:
4
]
=
boxes
[:,
:,
2
:
4
]
*
0.5
+
0.5
det_outs
,
lod
=
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
gpu_logic
=
self
.
gpu_logic
if
hasattr
(
self
,
'gpu_logic'
)
else
None
,
)
det_outs
=
np
.
array
(
det_outs
)
nmsed_outs
=
(
det_outs
[:,
:
-
1
].
astype
(
self
.
dtype
)
if
len
(
det_outs
)
else
np
.
array
([],
dtype
=
np
.
float32
).
reshape
([
0
,
BOX_SIZE
+
2
])
)
index_outs
=
(
det_outs
[:,
-
1
:].
astype
(
'int'
)
if
len
(
det_outs
)
else
np
.
array
([],
dtype
=
'int'
).
reshape
([
0
,
1
])
)
self
.
inputs
=
{
'BBoxes'
:
boxes
,
'Scores'
:
scores
}
self
.
outputs
=
{
'Out'
:
nmsed_outs
,
'Index'
:
index_outs
,
'NmsRoisNum'
:
np
.
array
(
lod
).
astype
(
'int32'
),
}
self
.
attrs
=
{
'background_label'
:
0
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'nms_eta'
:
1.0
,
'normalized'
:
True
,
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
paddle
.
XPUPlace
(
0
))
support_types
=
get_xpu_op_support_types
(
'multiclass_nms3'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestMulticlassNMS3Op
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
test/xpu/test_norm_op_xpu.py
0 → 100644
浏览文件 @
ba992136
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
get_test_cover_info
import
(
XPUOpTestWrapper
,
create_test_class
,
get_xpu_op_support_types
,
)
from
op_test_xpu
import
XPUOpTest
import
paddle
paddle
.
enable_static
()
def
l2_norm
(
x
,
axis
,
epsilon
):
x2
=
x
**
2
s
=
np
.
sum
(
x2
,
axis
=
axis
,
keepdims
=
True
)
r
=
np
.
sqrt
(
s
+
epsilon
)
y
=
x
/
np
.
broadcast_to
(
r
,
x
.
shape
)
return
y
,
r
class
XPUTestNormOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
"norm"
self
.
use_dynamic_create_class
=
False
class
TestXPUNormOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"norm"
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
init_test_case
()
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
,
norm
=
l2_norm
(
x
,
self
.
axis
,
self
.
epsilon
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'epsilon'
:
self
.
epsilon
,
'axis'
:
self
.
axis
}
self
.
outputs
=
{
'Out'
:
y
,
'Norm'
:
norm
}
def
init_test_case
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
axis
=
1
self
.
epsilon
=
1e-8
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestXPUNormOp2
(
TestXPUNormOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
5
,
3
,
9
,
7
]
self
.
axis
=
0
self
.
epsilon
=
1e-8
class
TestXPUNormOp3
(
TestXPUNormOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
5
,
3
,
2
,
7
]
self
.
axis
=
-
1
self
.
epsilon
=
1e-8
class
TestXPUNormOp4
(
TestXPUNormOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
128
,
1024
,
14
,
14
]
self
.
axis
=
2
self
.
epsilon
=
1e-8
class
TestXPUNormOp5
(
TestXPUNormOp
):
def
init_test_case
(
self
):
self
.
shape
=
[
2048
,
2048
]
self
.
axis
=
1
self
.
epsilon
=
1e-8
support_types
=
get_xpu_op_support_types
(
'norm'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestNormOp
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录