Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ba868854
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ba868854
编写于
11月 17, 2017
作者:
T
Tao Luo
提交者:
GitHub
11月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5345 from luotao1/ProtoDataProvider
remove usused ProtoDataProvider related codes
上级
3375e3e2
e01b0941
变更
24
隐藏空白更改
内联
并排
Showing
24 changed file
with
220 addition
and
2690 deletion
+220
-2690
paddle/gserver/CMakeLists.txt
paddle/gserver/CMakeLists.txt
+0
-1
paddle/gserver/dataproviders/DataProvider.cpp
paddle/gserver/dataproviders/DataProvider.cpp
+1
-3
paddle/gserver/dataproviders/ProtoDataProvider.cpp
paddle/gserver/dataproviders/ProtoDataProvider.cpp
+0
-932
paddle/gserver/dataproviders/ProtoDataProvider.h
paddle/gserver/dataproviders/ProtoDataProvider.h
+0
-179
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+21
-11
paddle/gserver/tests/proto_files.txt
paddle/gserver/tests/proto_files.txt
+0
-2
paddle/gserver/tests/proto_files_compressed.txt
paddle/gserver/tests/proto_files_compressed.txt
+0
-2
paddle/gserver/tests/sequence_lstm.conf
paddle/gserver/tests/sequence_lstm.conf
+64
-0
paddle/gserver/tests/sequence_recurrent.py
paddle/gserver/tests/sequence_recurrent.py
+56
-0
paddle/gserver/tests/sequence_recurrent_group.py
paddle/gserver/tests/sequence_recurrent_group.py
+70
-0
paddle/gserver/tests/test_CompareSparse.cpp
paddle/gserver/tests/test_CompareSparse.cpp
+1
-2
paddle/gserver/tests/test_CompareTwoNets.cpp
paddle/gserver/tests/test_CompareTwoNets.cpp
+7
-4
paddle/gserver/tests/test_ProtoDataProvider.cpp
paddle/gserver/tests/test_ProtoDataProvider.cpp
+0
-732
paddle/trainer/tests/CMakeLists.txt
paddle/trainer/tests/CMakeLists.txt
+0
-28
paddle/trainer/tests/mnist.list
paddle/trainer/tests/mnist.list
+0
-1
paddle/trainer/tests/mnist_bin_part
paddle/trainer/tests/mnist_bin_part
+0
-0
paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data
...vider_wrapper_dir/test_pydata_provider_wrapper.proto_data
+0
-0
paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.protolist
...ovider_wrapper_dir/test_pydata_provider_wrapper.protolist
+0
-1
paddle/trainer/tests/sample_trainer_config_compare_sparse.conf
...e/trainer/tests/sample_trainer_config_compare_sparse.conf
+0
-154
paddle/trainer/tests/sample_trainer_config_qb_rnn.conf
paddle/trainer/tests/sample_trainer_config_qb_rnn.conf
+0
-154
paddle/trainer/tests/sample_trainer_config_rnn.conf
paddle/trainer/tests/sample_trainer_config_rnn.conf
+0
-180
paddle/trainer/tests/testPyDataWrapper.py
paddle/trainer/tests/testPyDataWrapper.py
+0
-24
paddle/trainer/tests/test_CompareTwoOpts.cpp
paddle/trainer/tests/test_CompareTwoOpts.cpp
+0
-184
paddle/trainer/tests/test_PyDataProviderWrapper.cpp
paddle/trainer/tests/test_PyDataProviderWrapper.cpp
+0
-96
未找到文件。
paddle/gserver/CMakeLists.txt
浏览文件 @
ba868854
...
...
@@ -73,7 +73,6 @@ if(MOBILE_INFERENCE)
list
(
REMOVE_ITEM GSERVER_SOURCES
dataproviders/DataProvider.cpp
dataproviders/MultiDataProvider.cpp
dataproviders/ProtoDataProvider.cpp
dataproviders/PyDataProvider2.cpp
dataproviders/PyDataProvider.cpp
)
...
...
paddle/gserver/dataproviders/DataProvider.cpp
浏览文件 @
ba868854
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include <unistd.h>
#include <algorithm>
#include "ProtoDataProvider.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/StringUtil.h"
#include "paddle/utils/Util.h"
...
...
@@ -164,8 +164,6 @@ DataProvider* DataProvider::create(const DataConfig& config,
REGISTER_DATA_PROVIDER
(
simple
,
SimpleDataProvider
);
REGISTER_DATA_PROVIDER
(
dummy
,
DummyDataProvider
);
REGISTER_DATA_PROVIDER
(
proto
,
ProtoDataProvider
);
REGISTER_DATA_PROVIDER
(
proto_sequence
,
ProtoSequenceDataProvider
);
int64_t
DataProvider
::
getNextBatch
(
int64_t
size
,
DataBatch
*
batch
)
{
int64_t
batchSize
=
doubleBuffer_
?
getNextBatchFromBuffer
(
size
,
batch
)
...
...
paddle/gserver/dataproviders/ProtoDataProvider.cpp
已删除
100644 → 0
浏览文件 @
3375e3e2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ProtoDataProvider.h"
#include <algorithm>
#include <fstream>
#include <istream>
#include "paddle/utils/StringUtil.h"
#include "paddle/utils/Util.h"
#include "DataProviderGroup.h"
#include "paddle/utils/Logging.h"
DEFINE_double
(
memory_threshold_on_load_data
,
1.0
,
"stop loading data when memory is not sufficient"
);
namespace
paddle
{
REGISTER_DATA_PROVIDER
(
proto_group
,
DataProviderGroup
<
ProtoDataProvider
>
);
REGISTER_DATA_PROVIDER
(
proto_sequence_group
,
DataProviderGroup
<
ProtoSequenceDataProvider
>
);
ProtoDataProvider
::
ProtoDataProvider
(
const
DataConfig
&
config
,
bool
useGpu
,
bool
loadDataAll
)
:
DataProvider
(
config
,
useGpu
),
sampleNums_
(
0
),
currentSequenceIndex_
(
0
)
{
if
(
loadDataAll
)
{
loadData
(
config_
.
files
());
}
}
void
ProtoDataProvider
::
loadData
(
const
std
::
vector
<
std
::
string
>&
fileList
)
{
for
(
auto
&
file
:
fileList
)
{
if
(
FLAGS_memory_threshold_on_load_data
<
1.0
)
{
double
memUsage
=
getMemoryUsage
();
if
(
memUsage
>
FLAGS_memory_threshold_on_load_data
)
{
LOG
(
INFO
)
<<
"memUsage is "
<<
memUsage
<<
", > "
<<
FLAGS_memory_threshold_on_load_data
<<
" therefore SKIP ALL REMAINING file."
;
break
;
}
}
LOG
(
INFO
)
<<
"load data file "
<<
file
;
loadDataFile
(
file
);
}
if
(
sequenceStartPositions_
.
size
()
==
sampleNums_
)
{
// This means that each sample is one sequence
shuffledSequenceIds_
.
swap
(
sequenceStartPositions_
);
}
else
{
sequenceStartPositions_
.
push_back
(
sampleNums_
);
shuffledSequenceIds_
.
reserve
(
sequenceStartPositions_
.
size
()
-
1
);
for
(
size_t
i
=
0
;
i
<
sequenceStartPositions_
.
size
()
-
1
;
++
i
)
{
shuffledSequenceIds_
.
push_back
(
i
);
}
}
LOG
(
INFO
)
<<
"read done, num of instance="
<<
sampleNums_
;
showDataStats
();
}
void
ProtoDataProvider
::
loadData
(
const
std
::
string
&
fileName
)
{
std
::
vector
<
std
::
string
>
fileList
;
loadFileList
(
fileName
,
fileList
);
loadData
(
fileList
);
}
void
ProtoDataProvider
::
checkDataHeader
(
const
DataHeader
&
header
)
{
if
(
header_
.
slot_defs_size
())
{
// header_ is already set. Need to check consistency.
CHECK_EQ
(
header_
.
slot_defs_size
(),
header
.
slot_defs_size
())
<<
"Different header"
;
for
(
int
i
=
0
;
i
<
header
.
slot_defs_size
();
++
i
)
{
CHECK_EQ
(
header_
.
slot_defs
(
i
).
type
(),
header
.
slot_defs
(
i
).
type
());
CHECK_EQ
(
header_
.
slot_defs
(
i
).
dim
(),
header
.
slot_defs
(
i
).
dim
());
}
return
;
}
// header_ is not set before
CHECK
(
header
.
slot_defs_size
())
<<
"Invalid header: no slot is defined"
;
int
i
;
for
(
i
=
0
;
i
<
header
.
slot_defs_size
();
++
i
)
{
if
(
header
.
slot_defs
(
i
).
type
()
==
SlotDef
::
INDEX
||
header
.
slot_defs
(
i
).
type
()
==
SlotDef
::
VAR_MDIM_INDEX
)
{
break
;
}
constexpr
int
kBufLen
=
100
;
char
buf
[
kBufLen
];
snprintf
(
buf
,
kBufLen
,
"slot%d_nnz"
,
i
);
nnzStats_
.
push_back
(
getStat
(
buf
));
}
numVecSlots_
=
i
;
// Check that INDEX slots are after VECTOR slots
for
(
int
i
=
numVecSlots_
;
i
<
header
.
slot_defs_size
();
++
i
)
{
CHECK
(
header
.
slot_defs
(
i
).
type
()
==
SlotDef
::
INDEX
||
header
.
slot_defs
(
i
).
type
()
==
SlotDef
::
VAR_MDIM_INDEX
);
}
slots_
.
clear
();
slots_
.
reserve
(
header
.
slot_defs_size
());
for
(
int
i
=
0
;
i
<
header
.
slot_defs_size
();
++
i
)
{
slots_
.
emplace_back
();
slots_
.
back
().
type
=
header
.
slot_defs
(
i
).
type
();
slots_
.
back
().
dim
=
header
.
slot_defs
(
i
).
dim
();
if
(
SlotDef
::
VECTOR_SPARSE_NON_VALUE
==
header
.
slot_defs
(
i
).
type
()
||
SlotDef
::
VECTOR_SPARSE_VALUE
==
header
.
slot_defs
(
i
).
type
())
{
slots_
.
back
().
indices
.
push_back
(
0
);
}
}
header_
=
header
;
}
void
ProtoDataProvider
::
checkSample
(
const
DataSample
&
sample
)
{
CHECK_EQ
(
numVecSlots_
,
sample
.
vector_slots_size
());
CHECK
(
header_
.
slot_defs_size
()
==
numVecSlots_
+
sample
.
id_slots_size
()
||
header_
.
slot_defs_size
()
==
numVecSlots_
+
sample
.
var_id_slots_size
());
for
(
int
i
=
0
;
i
<
numVecSlots_
;
++
i
)
{
uint32_t
dim
=
header_
.
slot_defs
(
i
).
dim
();
switch
(
header_
.
slot_defs
(
i
).
type
())
{
case
SlotDef
::
VECTOR_DENSE
:
{
CHECK_EQ
(
static_cast
<
int
>
(
dim
),
sample
.
vector_slots
(
i
).
values_size
());
CHECK_EQ
(
0
,
sample
.
vector_slots
(
i
).
ids_size
());
break
;
}
case
SlotDef
::
VECTOR_SPARSE_NON_VALUE
:
{
if
(
0
==
sample
.
vector_slots
(
i
).
ids_size
())
{
break
;
}
CHECK_LT
(
0
,
sample
.
vector_slots
(
i
).
ids_size
());
CHECK_EQ
(
0
,
sample
.
vector_slots
(
i
).
values_size
());
auto
maxId
=
*
std
::
max_element
(
sample
.
vector_slots
(
i
).
ids
().
begin
(),
sample
.
vector_slots
(
i
).
ids
().
end
());
CHECK_GT
(
dim
,
maxId
);
break
;
}
case
SlotDef
::
VECTOR_SPARSE_VALUE
:
{
if
(
0
==
sample
.
vector_slots
(
i
).
ids_size
())
{
CHECK_EQ
(
0
,
sample
.
vector_slots
(
i
).
values_size
());
break
;
}
CHECK_LT
(
0
,
sample
.
vector_slots
(
i
).
values_size
());
CHECK_GE
(
static_cast
<
int
>
(
dim
),
sample
.
vector_slots
(
i
).
values_size
());
CHECK_EQ
(
sample
.
vector_slots
(
i
).
values_size
(),
sample
.
vector_slots
(
i
).
ids_size
());
auto
maxId
=
*
std
::
max_element
(
sample
.
vector_slots
(
i
).
ids
().
begin
(),
sample
.
vector_slots
(
i
).
ids
().
end
());
CHECK_GT
(
dim
,
maxId
);
break
;
}
case
SlotDef
::
VAR_MDIM_DENSE
:
{
if
(
static_cast
<
int
>
(
dim
)
!=
0
)
{
CHECK_EQ
(
static_cast
<
int
>
(
dim
),
sample
.
vector_slots
(
i
).
values_size
());
if
(
sample
.
vector_slots
(
i
).
dims_size
()
!=
0
)
{
int
totalDim
=
sample
.
vector_slots
(
i
).
dims
(
0
);
for
(
int
j
=
1
;
j
<
sample
.
vector_slots
(
i
).
dims_size
();
++
j
)
{
totalDim
*=
sample
.
vector_slots
(
i
).
dims
(
j
);
}
CHECK_EQ
(
static_cast
<
int
>
(
dim
),
totalDim
);
}
}
else
{
CHECK_NE
(
sample
.
vector_slots
(
i
).
dims_size
(),
0
);
int
totalDim
=
sample
.
vector_slots
(
i
).
dims
(
0
);
for
(
int
j
=
1
;
j
<
sample
.
vector_slots
(
i
).
dims_size
();
++
j
)
{
totalDim
*=
sample
.
vector_slots
(
i
).
dims
(
j
);
}
CHECK_EQ
(
totalDim
,
sample
.
vector_slots
(
i
).
values_size
());
}
break
;
}
case
SlotDef
::
STRING
:
{
CHECK_EQ
(
static_cast
<
int
>
(
1
),
sample
.
vector_slots
(
i
).
strs_size
());
CHECK_EQ
(
0
,
sample
.
vector_slots
(
i
).
ids_size
());
CHECK_EQ
(
0
,
sample
.
vector_slots
(
i
).
values_size
());
break
;
}
default:
LOG
(
FATAL
)
<<
"BUG: Should not reach here"
;
}
}
for
(
int
i
=
numVecSlots_
;
i
<
header_
.
slot_defs_size
();
++
i
)
{
if
(
header_
.
slot_defs
(
i
).
type
()
!=
SlotDef
::
VAR_MDIM_INDEX
)
{
uint32_t
id
=
sample
.
id_slots
(
i
-
numVecSlots_
);
if
(
id
==
-
1U
)
continue
;
CHECK_LT
(
id
,
header_
.
slot_defs
(
i
).
dim
());
}
else
{
for
(
int
j
=
0
;
j
<
sample
.
var_id_slots
(
i
-
numVecSlots_
).
ids_size
();
++
j
)
{
uint32_t
id
=
sample
.
var_id_slots
(
i
-
numVecSlots_
).
ids
(
j
);
CHECK_LT
(
id
,
header_
.
slot_defs
(
i
).
dim
());
}
}
}
}
void
ProtoDataProvider
::
loadDataFile
(
const
std
::
string
&
fileName
)
{
std
::
ifstream
is
(
fileName
);
CHECK
(
is
)
<<
"Fail to open "
<<
fileName
;
bool
dataCompression
=
str
::
endsWith
(
fileName
,
".gz"
);
std
::
unique_ptr
<
ProtoReader
>
reader
(
new
ProtoReader
(
&
is
,
dataCompression
));
CHECK
(
reader
)
<<
"Fail to create proto data input stream"
;
DataHeader
header
;
CHECK
(
reader
->
read
(
&
header
));
checkDataHeader
(
header
);
DataSample
sample
;
do
{
if
(
!
reader
->
read
(
&
sample
))
{
break
;
}
checkSample
(
sample
);
if
(
sample
.
is_beginning
())
{
sequenceStartPositions_
.
push_back
(
sampleNums_
);
}
fillSlots
(
sample
);
++
sampleNums_
;
}
while
(
true
);
CHECK
(
is
.
eof
())
<<
"Fail to read file"
;
reader
.
reset
(
nullptr
);
is
.
close
();
}
// checkSample has done before, no check here
void
ProtoDataProvider
::
fillSlots
(
const
DataSample
&
sample
)
{
for
(
size_t
i
=
0
;
i
<
slots_
.
size
();
++
i
)
{
auto
&
slot
=
slots_
[
i
];
int
dim
=
slot
.
dim
;
switch
(
slot
.
type
)
{
case
SlotDef
::
VECTOR_DENSE
:
{
size_t
oldSize
=
slot
.
denseData
.
size
();
slot
.
denseData
.
resize
(
oldSize
+
dim
);
const
float
*
values
=
sample
.
vector_slots
(
i
).
values
().
data
();
#ifdef PADDLE_TYPE_DOUBLE
std
::
copy
(
values
,
values
+
dim
,
slot
.
denseData
.
begin
()
+
oldSize
);
#else
memcpy
(
slot
.
denseData
.
data
()
+
oldSize
,
values
,
sizeof
(
real
)
*
dim
);
#endif
break
;
}
case
SlotDef
::
VECTOR_SPARSE_NON_VALUE
:
{
int
slotSize
=
sample
.
vector_slots
(
i
).
ids_size
();
int
subSlotSize
=
0
;
int
id
=
0
;
// the slot id
// find whether this vector_slots has subseq. If not has subseq,
// subSlotSize = 0.
for
(
id
=
0
;
id
<
sample
.
subseq_slots_size
();
id
++
)
{
if
(
sample
.
subseq_slots
(
id
).
slot_id
()
==
i
)
{
subSlotSize
=
sample
.
subseq_slots
(
id
).
lens_size
();
break
;
}
}
if
(
subSlotSize
&&
slot
.
subIndices
.
size
()
==
0UL
)
{
// If has subSeq, the first element of subIndices = 0.
slot
.
subIndices
.
push_back
(
0
);
}
if
(
slotSize
==
0UL
)
{
// if has no id, new indices = old indices.
slot
.
indices
.
push_back
(
slot
.
indices
.
back
());
// if has subSeq, new subIndices = old subIndices.
if
(
slot
.
subIndices
.
size
())
{
slot
.
subIndices
.
push_back
(
slot
.
subIndices
.
back
());
}
break
;
}
slot
.
sparseNonValueData
.
resize
(
slot
.
indices
.
back
()
+
slotSize
);
const
unsigned
int
*
ids
=
sample
.
vector_slots
(
i
).
ids
().
data
();
memcpy
(
slot
.
sparseNonValueData
.
data
()
+
slot
.
indices
.
back
(),
ids
,
sizeof
(
*
ids
)
*
slotSize
);
slot
.
indices
.
push_back
(
slot
.
indices
.
back
()
+
slotSize
);
if
(
subSlotSize
)
{
for
(
int
ii
=
0
;
ii
<
subSlotSize
;
++
ii
)
{
slot
.
subIndices
.
push_back
(
slot
.
subIndices
.
back
()
+
sample
.
subseq_slots
(
id
).
lens
(
ii
));
}
}
break
;
}
case
SlotDef
::
VECTOR_SPARSE_VALUE
:
{
if
(
0
==
sample
.
vector_slots
(
i
).
ids_size
())
{
slot
.
indices
.
push_back
(
slot
.
indices
.
back
());
break
;
}
int
slotSize
=
sample
.
vector_slots
(
i
).
ids_size
();
slot
.
sparseFloatValueData
.
resize
(
slot
.
indices
.
back
()
+
slotSize
);
const
unsigned
int
*
ids
=
sample
.
vector_slots
(
i
).
ids
().
data
();
const
float
*
values
=
sample
.
vector_slots
(
i
).
values
().
data
();
for
(
int
ii
=
0
;
ii
<
slotSize
;
++
ii
)
{
slot
.
sparseFloatValueData
[
slot
.
indices
.
back
()
+
ii
].
col
=
ids
[
ii
];
slot
.
sparseFloatValueData
[
slot
.
indices
.
back
()
+
ii
].
value
=
values
[
ii
];
}
slot
.
indices
.
push_back
(
slot
.
indices
.
back
()
+
slotSize
);
break
;
}
case
SlotDef
::
INDEX
:
{
slot
.
indexData
.
push_back
(
sample
.
id_slots
(
i
-
numVecSlots_
));
break
;
}
case
SlotDef
::
VAR_MDIM_DENSE
:
{
size_t
oldSize
=
slot
.
varDenseData
.
size
();
slot
.
varDenseData
.
resize
(
oldSize
+
1
);
size_t
varDim
=
sample
.
vector_slots
(
i
).
values_size
();
slot
.
varDenseData
[
oldSize
].
data
.
resize
(
varDim
);
const
float
*
values
=
sample
.
vector_slots
(
i
).
values
().
data
();
#ifdef PADDLE_TYPE_DOUBLE
std
::
copy
(
values
,
values
+
varDim
,
slot
.
varDenseData
[
oldSize
].
data
.
data
());
#else
memcpy
(
slot
.
varDenseData
[
oldSize
].
data
.
data
(),
values
,
sizeof
(
real
)
*
varDim
);
#endif
slot
.
varDenseData
[
oldSize
].
dims
.
resize
(
sample
.
vector_slots
(
i
).
dims_size
());
memcpy
(
slot
.
varDenseData
[
oldSize
].
dims
.
data
(),
sample
.
vector_slots
(
i
).
dims
().
data
(),
sizeof
(
uint32_t
)
*
sample
.
vector_slots
(
i
).
dims_size
());
break
;
}
case
SlotDef
::
VAR_MDIM_INDEX
:
{
size_t
oldSize
=
slot
.
varIndices
.
size
();
slot
.
varIndices
.
resize
(
oldSize
+
1
);
size_t
varDim
=
sample
.
var_id_slots
(
i
-
numVecSlots_
).
ids_size
();
slot
.
varIndices
[
oldSize
].
resize
(
varDim
);
memcpy
(
slot
.
varIndices
[
oldSize
].
data
(),
sample
.
var_id_slots
(
i
-
numVecSlots_
).
ids
().
data
(),
sizeof
(
uint32_t
)
*
varDim
);
break
;
}
case
SlotDef
::
STRING
:
{
slot
.
strData
.
push_back
(
sample
.
vector_slots
(
i
).
strs
(
0
));
break
;
}
}
}
}
void
ProtoDataProvider
::
showDataStats
()
{
std
::
ostringstream
oss
;
for
(
size_t
i
=
0
;
i
<
slots_
.
size
();
++
i
)
{
auto
&
slot
=
slots_
[
i
];
if
(
slot
.
type
==
SlotDef
::
VECTOR_SPARSE_NON_VALUE
)
{
size_t
nnz
=
slot
.
sparseNonValueData
.
size
();
oss
<<
"slot"
<<
i
<<
":avgNNZ="
<<
((
double
)
nnz
/
sampleNums_
)
<<
"; "
;
}
else
if
(
slot
.
type
==
SlotDef
::
VECTOR_SPARSE_VALUE
)
{
size_t
nnz
=
slot
.
sparseFloatValueData
.
size
();
oss
<<
"slot"
<<
i
<<
":avgNNZ="
<<
((
double
)
nnz
/
sampleNums_
)
<<
"; "
;
}
}
LOG
(
INFO
)
<<
oss
.
str
();
}
void
ProtoDataProvider
::
reset
()
{
currentSequenceIndex_
=
0
;
if
(
!
skipShuffle_
)
{
shuffle
();
}
DataProvider
::
reset
();
}
void
ProtoDataProvider
::
shuffle
()
{
std
::
shuffle
(
shuffledSequenceIds_
.
begin
(),
shuffledSequenceIds_
.
end
(),
ThreadLocalRandomEngine
::
get
());
}
/*
Loop through sequences starting from currentSequenceIndex_
for at most size samples. For each sequence ranging from [begin, end),
op(begin, end) will be called.
return the number of sequences scanned
*/
template
<
class
Op
>
int64_t
ProtoDataProvider
::
sequenceLoop
(
Op
op
,
int64_t
size
)
{
int64_t
sz
=
0
;
size_t
i
;
size_t
sequenceCount
=
shuffledSequenceIds_
.
size
();
if
(
usageRatio_
<
1.0
f
)
{
sequenceCount
=
static_cast
<
int64_t
>
(
sequenceCount
*
usageRatio_
);
}
for
(
i
=
currentSequenceIndex_
;
i
<
sequenceCount
;
++
i
)
{
size_t
id
=
shuffledSequenceIds_
[
i
];
int64_t
begin
=
sequenceStartPositions_
[
id
];
int64_t
end
=
sequenceStartPositions_
[
id
+
1
];
int64_t
len
=
end
-
begin
;
if
(
sz
+
len
>
size
&&
sz
>
0
)
break
;
sz
+=
len
;
op
(
begin
,
end
);
}
return
i
-
currentSequenceIndex_
;
}
/*
Loop through sequences starting from currentSequenceIndex_
for at most size samples. For each sample of each sequence at position
pos, op(pos) will be called.
return the number of sequences scanned
*/
template
<
class
Op
>
int64_t
ProtoDataProvider
::
sampleLoop
(
Op
op
,
int64_t
size
)
{
if
(
iidData
())
{
size
=
std
::
min
<
int64_t
>
(
sampleNums_
-
currentSequenceIndex_
,
size
);
for
(
int64_t
i
=
currentSequenceIndex_
;
i
<
currentSequenceIndex_
+
size
;
++
i
)
{
size_t
pos
=
shuffledSequenceIds_
[
i
];
op
(
pos
);
}
return
size
;
}
else
{
auto
f
=
[
op
](
int64_t
begin
,
int64_t
end
)
{
for
(
int64_t
pos
=
begin
;
pos
<
end
;
++
pos
)
{
op
(
pos
);
}
};
return
sequenceLoop
(
f
,
size
);
}
}
/*
Loop through sub-sequences starting from currentSequenceIndex_
for at most size samples. For each sample of each sub-sequence at position
pos, op(pos) will be called.
return the number of sub-sequences scanned
*/
template
<
class
Op
>
int64_t
ProtoDataProvider
::
subSampleLoop
(
Op
op
,
int64_t
size
,
int
slot
)
{
CHECK
(
iidData
())
<<
"subSampleLoop only accepts iid data"
;
size
=
std
::
min
<
int64_t
>
(
sampleNums_
-
currentSequenceIndex_
,
size
);
int
subSize
=
0
;
for
(
int64_t
i
=
currentSequenceIndex_
;
i
<
currentSequenceIndex_
+
size
;
++
i
)
{
size_t
pos
=
shuffledSequenceIds_
[
i
];
int64_t
*
indexs
=
slots_
[
slot
].
indices
.
data
();
int64_t
*
subIndexs
=
slots_
[
slot
].
subIndices
.
data
();
int64_t
subSeqStart
=
0
;
int64_t
subSeqEnd
=
0
;
for
(
int
j
=
0
;
j
<
(
int
)
slots_
[
slot
].
subIndices
.
size
();
j
++
)
{
if
(
subIndexs
[
j
]
==
indexs
[
pos
])
{
subSeqStart
=
j
;
if
(
subIndexs
[
pos
]
==
subIndexs
[
pos
+
1
])
{
subSeqEnd
=
j
+
1
;
break
;
}
}
else
if
(
subIndexs
[
j
]
==
indexs
[
pos
+
1
])
{
subSeqEnd
=
j
;
break
;
}
}
for
(
int
j
=
subSeqStart
;
j
<
subSeqEnd
;
j
++
)
{
op
(
j
);
}
subSize
+=
subSeqEnd
-
subSeqStart
;
}
return
subSize
;
}
int64_t
ProtoDataProvider
::
getNextBatchInternal
(
int64_t
size
,
DataBatch
*
batch
)
{
int64_t
numSequences
=
0
;
// actual number of sequences in the batch
// the number of sequences scanned, including those skipped because too long
int64_t
numScannedSeqs
=
0
;
std
::
lock_guard
<
RWLock
>
guard
(
lock_
);
if
(
iidData
())
{
size
=
std
::
min
<
int64_t
>
(
getSize
()
-
currentSequenceIndex_
,
size
);
numScannedSeqs
=
numSequences
=
size
;
}
else
{
int64_t
sz
=
0
;
auto
op
=
[
&
sz
,
&
numSequences
](
int64_t
begin
,
int64_t
end
)
{
++
numSequences
;
sz
+=
end
-
begin
;
};
numScannedSeqs
=
sequenceLoop
(
op
,
size
);
VLOG_IF
(
1
,
numScannedSeqs
>
numSequences
)
<<
numScannedSeqs
-
numSequences
<<
" sequences are skipped because longer than "
<<
size
;
size
=
sz
;
}
if
(
size
<=
0
)
return
0
;
DataBatch
&
cpuBatch
=
*
cpuBatch_
;
std
::
vector
<
Argument
>&
cpuArguments
=
cpuBatch
.
getStreams
();
cpuBatch
.
setSize
(
size
);
cpuArguments
.
resize
(
header_
.
slot_defs_size
());
if
(
!
iidData
())
{
ICpuGpuVector
::
resizeOrCreate
(
cpuArguments
[
0
].
sequenceStartPositions
,
numSequences
+
1
,
/* useGpu= */
false
);
int
*
buf
=
cpuArguments
[
0
].
sequenceStartPositions
->
getMutableData
(
false
);
int
pos
=
0
;
int
i
=
0
;
auto
op
=
[
buf
,
&
pos
,
&
i
](
int64_t
begin
,
int64_t
end
)
{
buf
[
i
]
=
pos
;
pos
+=
end
-
begin
;
++
i
;
};
sequenceLoop
(
op
,
size
);
buf
[
i
]
=
size
;
for
(
size_t
slot
=
1
;
slot
<
cpuArguments
.
size
();
++
slot
)
{
cpuArguments
[
slot
].
sequenceStartPositions
=
cpuArguments
[
0
].
sequenceStartPositions
;
}
}
for
(
int
slot
=
0
;
slot
<
header_
.
slot_defs_size
();
++
slot
)
{
size_t
dim
=
header_
.
slot_defs
(
slot
).
dim
();
SlotDef
::
SlotType
slotType
=
header_
.
slot_defs
(
slot
).
type
();
std
::
vector
<
int64_t
>
dataPos
;
dataPos
.
reserve
(
size
);
auto
op
=
[
this
,
&
dataPos
](
int64_t
pos
)
{
dataPos
.
push_back
(
pos
);
};
sampleLoop
(
op
,
size
);
switch
(
slotType
)
{
case
SlotDef
::
VECTOR_DENSE
:
{
Matrix
::
resizeOrCreate
(
cpuArguments
[
slot
].
value
,
size
,
dim
,
false
,
// trans = false
false
);
// useGpu = false
real
*
buf
=
cpuArguments
[
slot
].
value
->
getData
();
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
memcpy
(
buf
+
i
*
dim
,
slots_
[
slot
].
denseData
.
data
()
+
dataPos
[
i
]
*
dim
,
sizeof
(
real
)
*
dim
);
}
break
;
}
case
SlotDef
::
VECTOR_SPARSE_NON_VALUE
:
{
if
(
!
(
cpuArguments
[
slot
].
value
))
{
cpuArguments
[
slot
].
value
=
Matrix
::
createSparseMatrix
(
size
,
dim
,
size
/*DEFAULT_AVG_WIDTH = 1*/
,
NO_VALUE
,
SPARSE_CSR
,
false
,
useGpu_
);
}
auto
mat
=
cpuArguments
[
slot
].
value
;
mat
->
resize
(
size
,
dim
);
if
(
std
::
dynamic_pointer_cast
<
GpuSparseMatrix
>
(
mat
))
{
std
::
dynamic_pointer_cast
<
GpuSparseMatrix
>
(
mat
)
->
copyFrom
(
dataPos
.
data
(),
slots_
[
slot
].
indices
.
data
(),
slots_
[
slot
].
sparseNonValueData
.
data
(),
HPPL_STREAM_1
);
}
else
if
(
std
::
dynamic_pointer_cast
<
CpuSparseMatrix
>
(
mat
))
{
std
::
dynamic_pointer_cast
<
CpuSparseMatrix
>
(
mat
)
->
copyFrom
(
dataPos
.
data
(),
slots_
[
slot
].
indices
.
data
(),
slots_
[
slot
].
sparseNonValueData
.
data
());
}
else
{
LOG
(
FATAL
)
<<
"Not Supported"
;
}
size_t
numElements
=
0
;
for
(
auto
pos
:
dataPos
)
{
numElements
+=
slots_
[
slot
].
indices
[
pos
+
1
]
-
slots_
[
slot
].
indices
[
pos
];
}
nnzStats_
[
slot
]
->
addSample
(
numElements
);
break
;
}
case
SlotDef
::
VECTOR_SPARSE_VALUE
:
{
if
(
!
(
cpuArguments
[
slot
].
value
))
{
cpuArguments
[
slot
].
value
=
Matrix
::
createSparseMatrix
(
size
,
dim
,
size
/*DEFAULT_AVG_WIDTH = 1*/
,
FLOAT_VALUE
,
SPARSE_CSR
,
false
,
useGpu_
);
}
auto
mat
=
cpuArguments
[
slot
].
value
;
mat
->
resize
(
size
,
dim
);
if
(
std
::
dynamic_pointer_cast
<
GpuSparseMatrix
>
(
mat
))
{
std
::
dynamic_pointer_cast
<
GpuSparseMatrix
>
(
mat
)
->
copyFrom
(
dataPos
.
data
(),
slots_
[
slot
].
indices
.
data
(),
slots_
[
slot
].
sparseFloatValueData
.
data
(),
HPPL_STREAM_1
);
}
else
if
(
std
::
dynamic_pointer_cast
<
CpuSparseMatrix
>
(
mat
))
{
std
::
dynamic_pointer_cast
<
CpuSparseMatrix
>
(
mat
)
->
copyFrom
(
dataPos
.
data
(),
slots_
[
slot
].
indices
.
data
(),
slots_
[
slot
].
sparseFloatValueData
.
data
());
}
else
{
LOG
(
FATAL
)
<<
"Not Supported"
;
}
break
;
}
case
SlotDef
::
INDEX
:
{
IVector
::
resizeOrCreate
(
cpuArguments
[
slot
].
ids
,
size
,
/* useGpu= */
false
);
int
*
buf
=
cpuArguments
[
slot
].
ids
->
getData
();
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
buf
[
i
]
=
slots_
[
slot
].
indexData
[
dataPos
[
i
]];
}
break
;
}
case
SlotDef
::
VAR_MDIM_DENSE
:
{
CHECK_EQ
(
size
,
1
);
auto
mat
=
cpuArguments
[
slot
].
value
;
size_t
totalDim
=
slots_
[
slot
].
varDenseData
[
dataPos
[
0
]].
data
.
size
();
CHECK_EQ
(
slots_
[
slot
].
varDenseData
[
dataPos
[
0
]].
dims
.
size
(),
size_t
(
3
));
size_t
height
,
width
,
depth
,
oldWidth
;
/* dims[2] is depth, will be changed to dims[0] in future */
depth
=
slots_
[
slot
].
varDenseData
[
dataPos
[
0
]].
dims
[
2
];
height
=
slots_
[
slot
].
varDenseData
[
dataPos
[
0
]].
dims
[
1
];
width
=
slots_
[
slot
].
varDenseData
[
dataPos
[
0
]].
dims
[
0
];
oldWidth
=
width
;
/* process the undesirable sample */
if
(
oldWidth
<
height
)
{
width
=
height
;
}
cpuArguments
[
slot
].
setFrameHeight
(
height
);
cpuArguments
[
slot
].
setFrameWidth
(
width
);
if
(
oldWidth
<
height
)
{
totalDim
=
width
*
height
*
depth
;
}
Matrix
::
resizeOrCreate
(
cpuArguments
[
slot
].
value
,
size
,
totalDim
,
false
,
// trans = false
false
);
// useGpu = false
real
*
buf
=
cpuArguments
[
slot
].
value
->
getData
();
cpuArguments
[
slot
].
value
->
zeroMem
();
if
(
oldWidth
<
height
)
{
real
*
srcBuf
=
slots_
[
slot
].
varDenseData
[
dataPos
[
0
]].
data
.
data
();
for
(
size_t
i
=
0
;
i
<
depth
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
height
;
j
++
)
{
for
(
size_t
k
=
0
;
k
<
oldWidth
;
k
++
)
{
buf
[
i
*
height
*
width
+
j
*
width
+
k
]
=
srcBuf
[
i
*
height
*
oldWidth
+
j
*
oldWidth
+
k
];
}
}
}
}
else
{
memcpy
(
buf
,
slots_
[
slot
].
varDenseData
[
dataPos
[
0
]].
data
.
data
(),
sizeof
(
real
)
*
totalDim
);
}
ICpuGpuVector
::
resizeOrCreate
(
cpuArguments
[
slot
].
sequenceStartPositions
,
size
+
1
,
/* size == 1 currently */
/* useGpu= */
false
);
int
*
bufStarts
=
cpuArguments
[
slot
].
sequenceStartPositions
->
getMutableData
(
false
);
bufStarts
[
0
]
=
0
;
bufStarts
[
1
]
=
1
;
break
;
}
case
SlotDef
::
VAR_MDIM_INDEX
:
{
CHECK_EQ
(
size
,
1
);
size_t
totalDim
=
slots_
[
slot
].
varIndices
[
dataPos
[
0
]].
size
();
IVector
::
resizeOrCreate
(
cpuArguments
[
slot
].
ids
,
totalDim
,
/* useGpu= */
false
);
int
*
buf
=
cpuArguments
[
slot
].
ids
->
getData
();
memcpy
(
buf
,
slots_
[
slot
].
varIndices
[
dataPos
[
0
]].
data
(),
sizeof
(
int
)
*
totalDim
);
ICpuGpuVector
::
resizeOrCreate
(
cpuArguments
[
slot
].
sequenceStartPositions
,
size
+
1
,
/* size == 1 currently */
/* useGpu= */
false
);
int
*
bufStarts
=
cpuArguments
[
slot
].
sequenceStartPositions
->
getMutableData
(
false
);
bufStarts
[
0
]
=
0
;
/* we expand the convolutinal feature map to a sequence data,
* so there should be a corresponding sequence labels */
bufStarts
[
1
]
=
totalDim
;
break
;
}
case
SlotDef
::
STRING
:
{
if
(
cpuArguments
[
slot
].
strs
)
{
cpuArguments
[
slot
].
strs
->
resize
(
size
);
}
else
{
cpuArguments
[
slot
].
strs
=
std
::
make_shared
<
std
::
vector
<
std
::
string
>>
(
size
);
}
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
(
*
cpuArguments
[
slot
].
strs
)[
i
]
=
slots_
[
slot
].
strData
[
dataPos
[
i
]];
}
break
;
}
}
}
if
(
useGpu_
)
{
std
::
vector
<
Argument
>&
cpuArguments
=
cpuBatch
.
getStreams
();
DataBatch
&
gpuBatch
=
*
gpuBatch_
;
std
::
vector
<
Argument
>&
gpuArguments
=
gpuBatch
.
getStreams
();
gpuArguments
.
resize
(
cpuArguments
.
size
());
gpuBatch
.
setSize
(
size
);
for
(
int
i
=
0
;
i
<
header_
.
slot_defs_size
();
++
i
)
{
SlotDef
::
SlotType
slotType
=
header_
.
slot_defs
(
i
).
type
();
if
(
SlotDef
::
VECTOR_SPARSE_VALUE
==
slotType
||
SlotDef
::
VECTOR_SPARSE_NON_VALUE
==
slotType
)
{
gpuArguments
[
i
]
=
cpuArguments
[
i
];
gpuArguments
[
i
].
sequenceStartPositions
=
cpuArguments
[
i
].
sequenceStartPositions
;
}
else
{
gpuArguments
[
i
].
resizeAndCopyFrom
(
cpuArguments
[
i
],
useGpu_
,
HPPL_STREAM_1
);
}
}
hl_stream_synchronize
(
HPPL_STREAM_1
);
*
batch
=
gpuBatch
;
}
else
{
*
batch
=
cpuBatch
;
}
currentSequenceIndex_
+=
numScannedSeqs
;
return
batch
->
getSize
();
}
ProtoSequenceDataProvider
::
ProtoSequenceDataProvider
(
const
DataConfig
&
config
,
bool
useGpu
,
bool
loadDataAll
)
:
ProtoDataProvider
(
config
,
useGpu
,
loadDataAll
)
{}
int64_t
ProtoSequenceDataProvider
::
getNextBatchInternal
(
int64_t
size
,
DataBatch
*
batch
)
{
CHECK
(
iidData
())
<<
"ProtoSequenceDataProvider only accepts iid data"
;
int64_t
numSequences
=
0
;
// actual number of sequences in the batch
// the number of sequences scanned, including those skipped because too long
int64_t
numScannedSeqs
=
0
;
std
::
lock_guard
<
RWLock
>
guard
(
lock_
);
size
=
std
::
min
<
int64_t
>
(
getSize
()
-
currentSequenceIndex_
,
size
);
numScannedSeqs
=
numSequences
=
size
;
if
(
size
<=
0
)
return
0
;
DataBatch
&
cpuBatch
=
*
cpuBatch_
;
std
::
vector
<
Argument
>&
cpuArguments
=
cpuBatch
.
getStreams
();
cpuBatch
.
setSize
(
size
);
cpuArguments
.
resize
(
header_
.
slot_defs_size
());
for
(
int
slot
=
0
;
slot
<
header_
.
slot_defs_size
();
++
slot
)
{
SlotDef
::
SlotType
slotType
=
header_
.
slot_defs
(
slot
).
type
();
std
::
vector
<
int64_t
>
dataPos
;
dataPos
.
reserve
(
size
);
auto
op
=
[
this
,
&
dataPos
](
int64_t
pos
)
{
dataPos
.
push_back
(
pos
);
};
sampleLoop
(
op
,
size
);
// current slot: sequenceStartPositions
ICpuGpuVector
::
resizeOrCreate
(
cpuArguments
[
slot
].
sequenceStartPositions
,
size
+
1
,
/* useGpu= */
false
);
switch
(
slotType
)
{
case
SlotDef
::
VECTOR_SPARSE_VALUE
:
case
SlotDef
::
VAR_MDIM_DENSE
:
case
SlotDef
::
VAR_MDIM_INDEX
:
{
LOG
(
FATAL
)
<<
"ProtoSequenceDataProvider only support"
<<
" VECTOR_DENSE, VECTOR_SPARSE_NON_VALUE and INDEX slots"
;
break
;
}
case
SlotDef
::
VECTOR_SPARSE_NON_VALUE
:
{
// copy to IDS, not value
// pointers used in current slot
sparse_non_value_t
*
data
=
slots_
[
slot
].
sparseNonValueData
.
data
();
int64_t
*
indexs
=
slots_
[
slot
].
indices
.
data
();
int64_t
*
seqs
=
dataPos
.
data
();
// current slot: i need size instances. what is the total length?
int
totalFeatureInCurrentSlot
=
0
;
for
(
int
ins
=
0
;
ins
<
size
;
ins
++
)
{
int64_t
currInsId
=
seqs
[
ins
];
totalFeatureInCurrentSlot
+=
indexs
[
currInsId
+
1
]
-
indexs
[
currInsId
];
// special: if current instance has NO feature in current slot
if
(
indexs
[
currInsId
+
1
]
==
indexs
[
currInsId
])
{
totalFeatureInCurrentSlot
++
;
}
}
// done
// current slot: ids
IVector
::
resizeOrCreate
(
cpuArguments
[
slot
].
ids
,
totalFeatureInCurrentSlot
,
/* useGpu= */
false
);
// where to write
int
*
currPosOfArgumentId
=
cpuArguments
[
slot
].
ids
->
getData
();
int
*
currPosOfArgumentSeqStart
=
cpuArguments
[
slot
].
sequenceStartPositions
->
getMutableData
(
false
);
int
allSequenceLength
=
0
;
currPosOfArgumentSeqStart
[
0
]
=
0
;
// for each instance, copy data and fill sequence positions
for
(
int
instance
=
0
;
instance
<
size
;
instance
++
)
{
int64_t
currInstanceId
=
seqs
[
instance
];
int64_t
currInstanceLength
=
indexs
[
currInstanceId
+
1
]
-
indexs
[
currInstanceId
];
sparse_non_value_t
*
currInstanceData
=
data
+
indexs
[
currInstanceId
];
// write sequenceStartPositions
allSequenceLength
+=
currInstanceLength
;
currPosOfArgumentSeqStart
[
instance
+
1
]
=
allSequenceLength
;
// copy features
for
(
int
featCopier
=
0
;
featCopier
<
currInstanceLength
;
featCopier
++
)
{
currPosOfArgumentId
[
featCopier
]
=
currInstanceData
[
featCopier
].
col
;
}
currPosOfArgumentId
+=
currInstanceLength
;
// special: if current instance has NO feature in current slot
if
(
currInstanceLength
==
0
)
{
allSequenceLength
++
;
currPosOfArgumentSeqStart
[
instance
+
1
]
=
allSequenceLength
;
currPosOfArgumentId
[
0
]
=
-
1
;
currPosOfArgumentId
++
;
}
// done
}
if
(
slots_
[
slot
].
subIndices
.
size
())
{
std
::
vector
<
int64_t
>
dataSubPos
;
auto
op
=
[
this
,
&
dataSubPos
](
int64_t
pos
)
{
dataSubPos
.
push_back
(
pos
);
};
int
subSize
=
subSampleLoop
(
op
,
size
,
slot
);
ICpuGpuVector
::
resizeOrCreate
(
cpuArguments
[
slot
].
subSequenceStartPositions
,
subSize
+
1
,
false
);
int
*
currPosOfArgumentSubSeqStart
=
cpuArguments
[
slot
].
subSequenceStartPositions
->
getMutableData
(
false
);
int64_t
*
subSeqs
=
dataSubPos
.
data
();
int64_t
*
subIndexs
=
slots_
[
slot
].
subIndices
.
data
();
int
allSubSequenceLength
=
0
;
currPosOfArgumentSubSeqStart
[
0
]
=
0
;
// for each instance, compute sub-sequence number
for
(
int
instance
=
0
;
instance
<
subSize
;
instance
++
)
{
int64_t
currSubInstanceId
=
subSeqs
[
instance
];
int64_t
currSubInstanceLength
=
subIndexs
[
currSubInstanceId
+
1
]
-
subIndexs
[
currSubInstanceId
];
// write subSequenceStartPositions
allSubSequenceLength
+=
currSubInstanceLength
;
currPosOfArgumentSubSeqStart
[
instance
+
1
]
=
allSubSequenceLength
;
// special: if current instance has NO feature in current slot
if
(
currSubInstanceLength
==
0
)
{
allSubSequenceLength
++
;
currPosOfArgumentSubSeqStart
[
instance
+
1
]
=
allSubSequenceLength
;
}
}
cpuArguments
[
slot
].
checkSubset
();
}
break
;
}
case
SlotDef
::
INDEX
:
{
// label slot
IVector
::
resizeOrCreate
(
cpuArguments
[
slot
].
ids
,
size
,
/* useGpu= */
false
);
// fill labels
int
*
buf
=
cpuArguments
[
slot
].
ids
->
getData
();
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
buf
[
i
]
=
slots_
[
slot
].
indexData
[
dataPos
[
i
]];
}
// label HAS sequence structure
cpuArguments
[
slot
].
sequenceStartPositions
->
fillSequence
(
false
);
break
;
}
case
SlotDef
::
VECTOR_DENSE
:
{
// copy values
size_t
dim
=
header_
.
slot_defs
(
slot
).
dim
();
Matrix
::
resizeOrCreate
(
cpuArguments
[
slot
].
value
,
size
,
dim
,
false
,
// trans = false
false
);
// useGpu = false
real
*
buf
=
cpuArguments
[
slot
].
value
->
getData
();
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
memcpy
(
buf
+
i
*
dim
,
slots_
[
slot
].
denseData
.
data
()
+
dataPos
[
i
]
*
dim
,
sizeof
(
real
)
*
dim
);
}
// sequence structure
cpuArguments
[
slot
].
sequenceStartPositions
->
fillSequence
(
false
);
break
;
}
default:
{
LOG
(
FATAL
)
<<
"should not reach here"
;
}
}
}
if
(
useGpu_
)
{
std
::
vector
<
Argument
>&
cpuArguments
=
cpuBatch
.
getStreams
();
DataBatch
&
gpuBatch
=
*
gpuBatch_
;
std
::
vector
<
Argument
>&
gpuArguments
=
gpuBatch
.
getStreams
();
gpuArguments
.
resize
(
cpuArguments
.
size
());
gpuBatch
.
setSize
(
size
);
for
(
size_t
i
=
0
;
i
<
cpuArguments
.
size
();
++
i
)
{
gpuArguments
[
i
].
resizeAndCopyFrom
(
cpuArguments
[
i
],
useGpu_
,
HPPL_STREAM_1
);
}
hl_stream_synchronize
(
HPPL_STREAM_1
);
*
batch
=
gpuBatch
;
}
else
{
*
batch
=
cpuBatch
;
}
currentSequenceIndex_
+=
numScannedSeqs
;
return
batch
->
getSize
();
}
}
// namespace paddle
paddle/gserver/dataproviders/ProtoDataProvider.h
已删除
100644 → 0
浏览文件 @
3375e3e2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "DataFormat.pb.h"
#include "paddle/utils/Stat.h"
#include "DataProvider.h"
#include "ProtoReader.h"
namespace
paddle
{
/**
* @brief Provider data from protobuf data file with each sample
* specified by proto message
*
* DataSample defined in DataFormat.proto.
*
* The file format is
*
* header
*
* sample1
*
* sample2
*
* ...
*
* sampleN
*
* @note: In the data file, each message is prefixed with its length.
* The read/write of the protbuf are implemented in ProtoReader.h
*/
class
ProtoDataProvider
:
public
DataProvider
{
public:
ProtoDataProvider
(
const
DataConfig
&
config
,
bool
useGpu
,
bool
loadDataAll
=
true
);
virtual
void
reset
();
/**
* @note this size includes the sequences which are skipped because they
* are longer than the batch size.
*/
virtual
int64_t
getSize
()
{
int64_t
size
=
sampleNums_
;
if
(
usageRatio_
<
1.0
f
)
{
size
=
static_cast
<
int64_t
>
(
size
*
usageRatio_
);
}
return
size
;
}
virtual
void
shuffle
();
void
loadData
(
const
std
::
vector
<
std
::
string
>&
fileList
);
virtual
int64_t
getNextBatchInternal
(
int64_t
size
,
DataBatch
*
batch
);
protected:
/**
* @brief load protobuf data from a list of file
* @param[in] fileName file name of a file which contains
* a list of file names
*/
void
loadData
(
const
std
::
string
&
fileName
);
/**
* @brief load protobuf data from file
* @param[in] fileName data file name
*/
void
loadDataFile
(
const
std
::
string
&
fileName
);
/** @brief check data header of each data sample
* @param[in] header data header read from protobuf data
*/
void
checkDataHeader
(
const
DataHeader
&
header
);
/**
* @brief fill protobuf data into slot_,
* slot_ is a vector of ProtoSlot in memory.
* @param[in] sample data sample read from protobuf data
*/
void
fillSlots
(
const
DataSample
&
sample
);
/**
* @brief return true if each sample is one sequence, i.e., independent
* of other samples.
*/
inline
bool
iidData
()
const
{
return
sequenceStartPositions_
.
empty
();
}
/**
* @brief check that sample is consistent with header_
*/
void
checkSample
(
const
DataSample
&
sample
);
template
<
class
Op
>
int64_t
sequenceLoop
(
Op
op
,
int64_t
size
);
template
<
class
Op
>
int64_t
sampleLoop
(
Op
op
,
int64_t
size
);
template
<
class
Op
>
int64_t
subSampleLoop
(
Op
op
,
int64_t
size
,
int
slot
);
void
showDataStats
();
protected:
struct
ProtoVarSlot
{
std
::
vector
<
real
>
data
;
std
::
vector
<
int
>
dims
;
};
struct
ProtoSlot
{
SlotDef
::
SlotType
type
;
int
dim
;
std
::
vector
<
int
>
indexData
;
std
::
vector
<
real
>
denseData
;
std
::
vector
<
sparse_non_value_t
>
sparseNonValueData
;
std
::
vector
<
sparse_float_value_t
>
sparseFloatValueData
;
std
::
vector
<
int64_t
>
indices
;
std
::
vector
<
int64_t
>
subIndices
;
std
::
vector
<
ProtoVarSlot
>
varDenseData
;
std
::
vector
<
std
::
vector
<
int
>>
varIndices
;
std
::
vector
<
std
::
string
>
strData
;
};
DataHeader
header_
;
int
numVecSlots_
;
std
::
vector
<
ProtoSlot
>
slots_
;
size_t
sampleNums_
;
/**
* The starting position of each sequence in samples.
* The last element should be num of samples.
* If empty, each sample is one sequence.
*/
std
::
vector
<
size_t
>
sequenceStartPositions_
;
int64_t
currentSequenceIndex_
;
// The size should be the number of sequences.
std
::
vector
<
size_t
>
shuffledSequenceIds_
;
ThreadLocalD
<
DataBatch
>
cpuBatch_
;
ThreadLocalD
<
DataBatch
>
gpuBatch_
;
RWLock
lock_
;
std
::
vector
<
StatPtr
>
nnzStats_
;
// stats for number of none-zeros entries
};
/**
* @brief Special use for Proto data: instances should contain sparse-non-value
* slots
* and label.
*
* @note ProtoSequenceDataProvider treats each SPARSE SLOT as a SEQUENCE
*/
class
ProtoSequenceDataProvider
:
public
ProtoDataProvider
{
public:
ProtoSequenceDataProvider
(
const
DataConfig
&
config
,
bool
useGpu
,
bool
loadDataAll
=
true
);
~
ProtoSequenceDataProvider
()
{}
virtual
int64_t
getNextBatchInternal
(
int64_t
size
,
DataBatch
*
batch
);
};
}
// namespace paddle
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
ba868854
...
...
@@ -62,17 +62,6 @@ if(NOT WITH_DOUBLE AND NOT MOBILE_INFERENCE)
endif
()
if
(
NOT MOBILE_INFERENCE
)
################### test_ProtoDataProvider ############
add_unittest_without_exec
(
test_ProtoDataProvider
test_ProtoDataProvider.cpp
)
# test_ProtoDataProvider will mkdir as same name,
# so if WORKING_DIRECTORY is default directory, then
# mkdir will get error.
add_test
(
NAME test_ProtoDataProvider
COMMAND
${
CMAKE_CURRENT_BINARY_DIR
}
/test_ProtoDataProvider
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle
)
################## test_Evaluator #######################
add_unittest
(
test_Evaluator
test_Evaluator.cpp
)
...
...
@@ -110,3 +99,24 @@ add_test(NAME test_PyDataProvider2
COMMAND .set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/paddle/gserver/tests:
${
PADDLE_SOURCE_DIR
}
/python
${
CMAKE_CURRENT_BINARY_DIR
}
/test_PyDataProvider2
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle
)
################# test_CompareSparse ##################
add_unittest_without_exec
(
test_CompareSparse
test_CompareSparse.cpp
)
if
(
NOT ON_TRAVIS
)
add_test
(
NAME test_CompareSparse
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python:
${
PADDLE_SOURCE_DIR
}
/paddle/gserver/tests
./.set_port.sh -p port -n 6
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareSparse
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
endif
()
################ test_CompareTwoNets ######################
add_unittest_without_exec
(
test_CompareTwoNets
test_CompareTwoNets.cpp
)
add_test
(
NAME test_CompareTwoNets
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python:
${
PADDLE_SOURCE_DIR
}
/paddle/gserver/tests
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareTwoNets
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
paddle/gserver/tests/proto_files.txt
已删除
100644 → 0
浏览文件 @
3375e3e2
./test_ProtoDataProvider/data1.bin
./test_ProtoDataProvider/data2.bin
paddle/gserver/tests/proto_files_compressed.txt
已删除
100644 → 0
浏览文件 @
3375e3e2
./test_ProtoDataProvider/data1.bin.gz
./test_ProtoDataProvider/data2.bin.gz
paddle/
trainer/tests/sample_trainer_config_opt_b
.conf
→
paddle/
gserver/tests/sequence_lstm
.conf
浏览文件 @
ba868854
#!/usr/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
...
...
@@ -14,27 +15,50 @@
from
paddle
.
trainer_config_helpers
import
*
################################### Data Configuration ###################################
TrainData
(
ProtoData
(
files
=
"trainer/tests/mnist.list"
))
################################### Algorithm Configuration ###################################
settings
(
batch_size
=
1000
,
learning_method
=
MomentumOptimizer
(
momentum
=
0
.
5
,
sparse
=
False
))
################################### Network Configuration ###################################
data
=
data_layer
(
name
=
"input"
,
size
=
784
)
######################## data source ################################
dict_path
=
'gserver/tests/Sequence/tour_dict_phrase.dict'
dict_file
=
dict
()
for
line_count
,
line
in
enumerate
(
open
(
dict_path
,
"r"
)):
dict_file
[
line
.
strip
()] =
line_count
fc1
=
fc_layer
(
input
=
data
,
size
=
800
,
bias_attr
=
True
,
act
=
SigmoidActivation
())
define_py_data_sources2
(
train_list
=
'gserver/tests/Sequence/train.list'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process'
,
args
={
"dict_file"
:
dict_file
})
fc2
=
fc_layer
(
input
=
fc1
,
size
=
800
,
bias_attr
=
True
,
act
=
SigmoidActivation
())
settings
(
batch_size
=
5
)
######################## network configure ################################
dict_dim
=
len
(
open
(
dict_path
,
'r'
).
readlines
())
word_dim
=
128
hidden_dim
=
256
label_dim
=
3
sparse_update
=
get_config_arg
(
"sparse_update"
,
bool
,
False
)
output
=
fc_layer
(
input
=[
fc1
,
fc2
],
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
data
=
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
lbl
=
data_layer
(
name
=
"label"
,
size
=
1
)
emb
=
embedding_layer
(
input
=
data
,
size
=
word_dim
,
param_attr
=
ParamAttr
(
sparse_update
=
sparse_update
))
cost
=
classification_cost
(
input
=
output
,
label
=
lbl
)
outputs
(
cost
)
with
mixed_layer
(
size
=
hidden_dim
*
4
)
as
lstm_input
:
lstm_input
+=
full_matrix_projection
(
input
=
emb
)
lstm
=
lstmemory
(
input
=
lstm_input
,
act
=
TanhActivation
(),
gate_act
=
SigmoidActivation
(),
state_act
=
TanhActivation
())
lstm_last
=
last_seq
(
input
=
lstm
)
with
mixed_layer
(
size
=
label_dim
,
act
=
SoftmaxActivation
(),
bias_attr
=
True
)
as
output
:
output
+=
full_matrix_projection
(
input
=
lstm_last
)
outputs
(
classification_cost
(
input
=
output
,
label
=
data_layer
(
name
=
"label"
,
size
=
1
)))
paddle/
trainer/tests/sample_trainer_config_opt_a.conf
→
paddle/
gserver/tests/sequence_recurrent.py
浏览文件 @
ba868854
#!/usr/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
...
...
@@ -14,27 +15,42 @@
from
paddle.trainer_config_helpers
import
*
################################### Data Configuration ###################################
TrainData
(
ProtoData
(
files
=
"trainer/tests/mnist.list"
))
################################### Algorithm Configuration ###################################
settings
(
batch_size
=
1000
,
learning_method
=
MomentumOptimizer
(
momentum
=
0
.
5
,
sparse
=
False
))
################################### Network Configuration ###################################
data
=
data_layer
(
name
=
"input"
,
size
=
784
)
######################## data source ################################
dict_path
=
'gserver/tests/Sequence/tour_dict_phrase.dict'
dict_file
=
dict
()
for
line_count
,
line
in
enumerate
(
open
(
dict_path
,
"r"
)):
dict_file
[
line
.
strip
()]
=
line_count
fc1
=
fc_layer
(
input
=
data
,
size
=
800
,
bias_attr
=
True
,
act
=
SigmoidActivation
())
define_py_data_sources2
(
train_list
=
'gserver/tests/Sequence/train.list'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process'
,
args
=
{
"dict_file"
:
dict_file
})
fc2
=
fc_layer
(
input
=
fc1
,
size
=
800
,
bias_attr
=
True
,
act
=
SigmoidActivation
())
settings
(
batch_size
=
5
)
######################## network configure ################################
dict_dim
=
len
(
open
(
dict_path
,
'r'
).
readlines
())
word_dim
=
128
hidden_dim
=
128
label_dim
=
3
output
=
fc_layer
(
input
=[
fc1
,
fc2
],
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
# This config is designed to be equivalent with sequence_recurrent_group.py
lbl
=
data_layer
(
name
=
"label"
,
size
=
1
)
data
=
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
cost
=
classification_cost
(
input
=
output
,
label
=
lbl
)
outputs
(
cost
)
emb
=
embedding_layer
(
input
=
data
,
size
=
word_dim
,
param_attr
=
ParamAttr
(
name
=
"emb"
))
recurrent
=
recurrent_layer
(
input
=
emb
,
bias_attr
=
False
,
act
=
SoftmaxActivation
())
recurrent_last
=
last_seq
(
input
=
recurrent
)
with
mixed_layer
(
size
=
label_dim
,
act
=
SoftmaxActivation
(),
bias_attr
=
True
)
as
output
:
output
+=
full_matrix_projection
(
input
=
recurrent_last
)
outputs
(
classification_cost
(
input
=
output
,
label
=
data_layer
(
name
=
"label"
,
size
=
1
)))
paddle/gserver/tests/sequence_recurrent_group.py
0 → 100644
浏览文件 @
ba868854
#!/usr/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers
import
*
######################## data source ################################
dict_path
=
'gserver/tests/Sequence/tour_dict_phrase.dict'
dict_file
=
dict
()
for
line_count
,
line
in
enumerate
(
open
(
dict_path
,
"r"
)):
dict_file
[
line
.
strip
()]
=
line_count
define_py_data_sources2
(
train_list
=
'gserver/tests/Sequence/train.list'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process'
,
args
=
{
"dict_file"
:
dict_file
})
settings
(
batch_size
=
5
)
######################## network configure ################################
dict_dim
=
len
(
open
(
dict_path
,
'r'
).
readlines
())
word_dim
=
128
hidden_dim
=
128
label_dim
=
3
# This config is designed to be equivalent with sequence_recurrent.py
data
=
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
emb
=
embedding_layer
(
input
=
data
,
size
=
word_dim
,
param_attr
=
ParamAttr
(
name
=
"emb"
))
def
step
(
y
):
mem
=
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
with
mixed_layer
(
name
=
"rnn_state"
,
size
=
hidden_dim
,
bias_attr
=
False
,
act
=
SoftmaxActivation
())
as
out
:
out
+=
identity_projection
(
input
=
y
)
out
+=
full_matrix_projection
(
input
=
mem
,
param_attr
=
ParamAttr
(
name
=
"___recurrent_layer_0__"
))
return
out
recurrent
=
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
emb
)
recurrent_last
=
last_seq
(
input
=
recurrent
)
with
mixed_layer
(
size
=
label_dim
,
act
=
SoftmaxActivation
(),
bias_attr
=
True
)
as
output
:
output
+=
full_matrix_projection
(
input
=
recurrent_last
)
outputs
(
classification_cost
(
input
=
output
,
label
=
data_layer
(
name
=
"label"
,
size
=
1
)))
paddle/
train
er/tests/test_CompareSparse.cpp
→
paddle/
gserv
er/tests/test_CompareSparse.cpp
浏览文件 @
ba868854
...
...
@@ -22,8 +22,7 @@ limitations under the License. */
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
static
const
string
&
configFile1
=
"trainer/tests/sample_trainer_config_compare_sparse.conf"
;
static
const
string
&
configFile1
=
"gserver/tests/sequence_lstm.conf"
;
DECLARE_bool
(
use_gpu
);
DECLARE_string
(
config
);
...
...
paddle/
train
er/tests/test_CompareTwoNets.cpp
→
paddle/
gserv
er/tests/test_CompareTwoNets.cpp
浏览文件 @
ba868854
...
...
@@ -30,8 +30,6 @@ DECLARE_bool(use_gpu);
DECLARE_string
(
config
);
DECLARE_string
(
nics
);
DEFINE_string
(
config_file_a
,
""
,
"config of one network to compare"
);
DEFINE_string
(
config_file_b
,
""
,
"config of another network to compare"
);
DEFINE_bool
(
need_high_accuracy
,
false
,
"whether need to run in double accuracy"
);
...
...
@@ -42,6 +40,10 @@ DEFINE_double(
DECLARE_bool
(
thread_local_rand_use_global_seed
);
DECLARE_int32
(
seed
);
static
const
string
&
config_file_a
=
"gserver/tests/sequence_recurrent.py"
;
static
const
string
&
config_file_b
=
"gserver/tests/sequence_recurrent_group.py"
;
struct
ComData
{
vector
<
Argument
>
outArgs
;
vector
<
ParameterPtr
>
parameters
;
...
...
@@ -66,6 +68,7 @@ void calcGradient(ComData& data, const string configFile) {
DataBatch
dataBatch
;
int32_t
batchSize
=
trainer
.
getConfig
().
opt_config
().
batch_size
();
trainer
.
getDataProvider
()
->
reset
();
trainer
.
getDataProvider
()
->
setSkipShuffle
();
trainer
.
getDataProvider
()
->
getNextBatch
(
batchSize
,
&
dataBatch
);
...
...
@@ -167,11 +170,11 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
TEST
(
Trainer
,
create
)
{
ComData
dataA
;
calcGradient
(
dataA
,
FLAGS_
config_file_a
);
calcGradient
(
dataA
,
config_file_a
);
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of Network A is finished
\n\n
"
;
ComData
dataB
;
calcGradient
(
dataB
,
FLAGS_
config_file_b
);
calcGradient
(
dataB
,
config_file_b
);
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of the Network B is finished
\n\n
"
;
compareGradient
(
dataA
,
dataB
);
...
...
paddle/gserver/tests/test_ProtoDataProvider.cpp
已删除
100644 → 0
浏览文件 @
3375e3e2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <gtest/gtest.h>
#include "paddle/gserver/dataproviders/ProtoDataProvider.h"
#include "paddle/utils/Util.h"
#include "paddle/testing/TestUtil.h"
using
namespace
std
;
// NOLINT
std
::
vector
<
string
>
protoFiles
{
"./test_ProtoDataProvider/data1.bin"
,
"./test_ProtoDataProvider/data2.bin"
,
};
std
::
vector
<
string
>
protoFilesCompressed
{
"./test_ProtoDataProvider/data1.bin.gz"
,
"./test_ProtoDataProvider/data2.bin.gz"
,
};
const
char
*
kTestDir
=
"./test_ProtoDataProvider"
;
const
char
kProtoFileList
[]
=
"gserver/tests/proto_files.txt"
;
const
char
kProtoFileListCompressed
[]
=
"gserver/tests/proto_files_compressed.txt"
;
const
int
kSpraseMatrixDim
=
1024
;
using
namespace
paddle
;
// NOLINT
void
prepareData
(
DataBatch
*
batch
,
const
int
*
numPerSlotType
,
bool
iid
,
bool
useGpu
)
{
batch
->
clear
();
int64_t
size
=
uniformRandom
(
100
)
+
10
;
batch
->
setSize
(
size
);
ICpuGpuVectorPtr
sequenceStartPositions
;
ICpuGpuVectorPtr
subSequenceStartPositions
;
if
(
!
iid
)
{
int
numSeqs
=
uniformRandom
(
10
)
+
1
;
sequenceStartPositions
=
ICpuGpuVector
::
create
(
numSeqs
+
1
,
/* useGpu= */
false
);
int
*
buf
=
sequenceStartPositions
->
getMutableData
(
false
);
subSequenceStartPositions
=
ICpuGpuVector
::
create
(
numSeqs
+
1
,
/* useGpu= */
false
);
int
*
subBuf
=
subSequenceStartPositions
->
getMutableData
(
false
);
int64_t
pos
=
0
;
int
maxLen
=
2
*
size
/
numSeqs
;
for
(
int
i
=
0
;
i
<
numSeqs
;
++
i
)
{
int
len
=
uniformRandom
(
min
<
int64_t
>
(
maxLen
,
size
-
pos
-
numSeqs
+
i
))
+
1
;
buf
[
i
]
=
pos
;
subBuf
[
i
]
=
pos
;
pos
+=
len
;
VLOG
(
1
)
<<
" len="
<<
len
;
}
buf
[
numSeqs
]
=
size
;
subBuf
[
numSeqs
]
=
size
;
}
vector
<
Argument
>&
arguments
=
batch
->
getStreams
();
for
(
int
i
=
0
;
i
<
numPerSlotType
[
SlotDef
::
VECTOR_DENSE
];
++
i
)
{
int64_t
dim
=
rand
()
%
10
+
4
;
// NOLINT rand_r
MatrixPtr
mat
=
Matrix
::
create
(
size
,
dim
,
/* trans= */
false
,
false
);
mat
->
randomizeUniform
();
Argument
arg
;
arg
.
value
=
mat
;
arg
.
sequenceStartPositions
=
sequenceStartPositions
;
arguments
.
push_back
(
arg
);
}
for
(
int
i
=
0
;
i
<
numPerSlotType
[
SlotDef
::
VECTOR_SPARSE_NON_VALUE
];
++
i
)
{
MatrixPtr
mat
=
makeRandomSparseMatrix
(
size
,
kSpraseMatrixDim
,
false
,
useGpu
);
Argument
arg
;
arg
.
value
=
mat
;
arg
.
sequenceStartPositions
=
sequenceStartPositions
;
arg
.
subSequenceStartPositions
=
subSequenceStartPositions
;
arguments
.
push_back
(
arg
);
}
for
(
int
i
=
0
;
i
<
numPerSlotType
[
SlotDef
::
VECTOR_SPARSE_VALUE
];
++
i
)
{
MatrixPtr
mat
=
makeRandomSparseMatrix
(
size
,
kSpraseMatrixDim
,
true
,
useGpu
);
Argument
arg
;
arg
.
value
=
mat
;
arg
.
sequenceStartPositions
=
sequenceStartPositions
;
arguments
.
push_back
(
arg
);
}
for
(
int
i
=
0
;
i
<
numPerSlotType
[
SlotDef
::
STRING
];
++
i
)
{
int64_t
dim
=
rand
()
%
10
+
4
;
// NOLINT rand_r
SVectorPtr
vec
=
std
::
make_shared
<
std
::
vector
<
std
::
string
>>
();
for
(
int
j
=
0
;
j
<
size
;
++
j
)
{
vec
->
push_back
(
randStr
(
dim
));
}
Argument
arg
;
arg
.
strs
=
vec
;
arg
.
sequenceStartPositions
=
sequenceStartPositions
;
arguments
.
push_back
(
arg
);
}
for
(
int
i
=
0
;
i
<
numPerSlotType
[
SlotDef
::
INDEX
];
++
i
)
{
int64_t
dim
=
rand
()
%
10
+
4
;
// NOLINT rand_r
IVectorPtr
vec
=
IVector
::
create
(
size
,
/* useGpu= */
false
);
int
*
buf
=
vec
->
getData
();
for
(
int
j
=
0
;
j
<
size
;
++
j
)
{
buf
[
j
]
=
uniformRandom
(
dim
);
}
Argument
arg
;
arg
.
ids
=
vec
;
arg
.
sequenceStartPositions
=
sequenceStartPositions
;
arguments
.
push_back
(
arg
);
}
}
inline
int
getSlotDim
(
const
Argument
&
arg
)
{
if
(
arg
.
value
)
{
return
arg
.
value
->
getWidth
();
}
else
if
(
arg
.
ids
)
{
return
arg
.
ids
->
getMax
()
+
1
;
}
else
if
(
arg
.
strs
)
{
return
1
;
}
LOG
(
FATAL
)
<<
"Invalid argument"
;
return
0
;
}
inline
SlotDef
::
SlotType
getSlotType
(
const
Argument
&
arg
)
{
if
(
arg
.
value
)
{
auto
&
m
=
*
arg
.
value
;
auto
&
type
=
typeid
(
m
);
if
(
type
==
typeid
(
CpuMatrix
)
||
type
==
typeid
(
GpuMatrix
))
{
return
SlotDef
::
VECTOR_DENSE
;
}
if
(
type
==
typeid
(
CpuSparseMatrix
))
{
auto
valueType
=
std
::
dynamic_pointer_cast
<
CpuSparseMatrix
>
(
arg
.
value
)
->
getValueType
();
if
(
NO_VALUE
==
valueType
)
{
return
SlotDef
::
VECTOR_SPARSE_NON_VALUE
;
}
else
{
return
SlotDef
::
VECTOR_SPARSE_VALUE
;
}
}
if
(
type
==
typeid
(
GpuSparseMatrix
))
{
auto
valueType
=
std
::
dynamic_pointer_cast
<
GpuSparseMatrix
>
(
arg
.
value
)
->
getValueType
();
if
(
NO_VALUE
==
valueType
)
{
return
SlotDef
::
VECTOR_SPARSE_NON_VALUE
;
}
else
{
return
SlotDef
::
VECTOR_SPARSE_VALUE
;
}
}
LOG
(
FATAL
)
<<
"Unknown matrix type"
;
}
if
(
arg
.
ids
)
return
SlotDef
::
INDEX
;
if
(
arg
.
strs
)
return
SlotDef
::
STRING
;
LOG
(
FATAL
)
<<
"Invalid argument"
;
return
SlotDef
::
VECTOR_DENSE
;
}
void
getColRow
(
const
Argument
&
arg
,
int64_t
pos
,
bool
useGpu
,
int
*
colNum
,
const
int
**
rowCols
,
const
real
**
rowValues
)
{
SlotDef
::
SlotType
type
=
getSlotType
(
arg
);
GpuSparseMatrixPtr
matGpu
;
CpuSparseMatrixPtr
matCpu
;
if
(
useGpu
)
{
matGpu
=
dynamic_pointer_cast
<
GpuSparseMatrix
>
(
arg
.
value
);
ASSERT_TRUE
(
matGpu
!=
NULL
);
}
else
{
matCpu
=
dynamic_pointer_cast
<
CpuSparseMatrix
>
(
arg
.
value
);
ASSERT_TRUE
(
matCpu
!=
NULL
);
}
*
colNum
=
useGpu
?
matGpu
->
getColNum
(
pos
)
:
matCpu
->
getColNum
(
pos
);
*
rowCols
=
useGpu
?
matGpu
->
getRowCols
(
pos
)
:
matCpu
->
getRowCols
(
pos
);
if
(
type
==
SlotDef
::
VECTOR_SPARSE_VALUE
)
{
*
rowValues
=
useGpu
?
matGpu
->
getRowValues
(
pos
)
:
matCpu
->
getRowValues
(
pos
);
}
else
{
*
rowValues
=
NULL
;
}
}
void
makeSample
(
const
vector
<
Argument
>&
arguments
,
int64_t
pos
,
bool
isBeginning
,
DataSample
*
sample
,
bool
useGpu
)
{
sample
->
set_is_beginning
(
isBeginning
);
int
slotid
=
0
;
for
(
auto
&
arg
:
arguments
)
{
SlotDef
::
SlotType
type
=
getSlotType
(
arg
);
int64_t
dim
=
getSlotDim
(
arg
);
switch
(
type
)
{
case
SlotDef
::
VECTOR_DENSE
:
{
VectorSlot
*
vecSlot
=
sample
->
add_vector_slots
();
auto
values
=
vecSlot
->
mutable_values
();
values
->
Reserve
(
dim
);
for
(
int
i
=
0
;
i
<
dim
;
++
i
)
{
values
->
AddAlreadyReserved
(
static_cast
<
float
>
(
arg
.
value
->
getElement
(
pos
,
i
)));
}
break
;
}
case
SlotDef
::
INDEX
:
{
sample
->
add_id_slots
(
arg
.
ids
->
get
(
pos
));
break
;
}
case
SlotDef
::
VECTOR_SPARSE_NON_VALUE
:
{
VectorSlot
*
vecSlot
=
sample
->
add_vector_slots
();
auto
ids
=
vecSlot
->
mutable_ids
();
int
colNum
;
const
int
*
rowCols
;
const
real
*
rowValues
;
// nullptr
getColRow
(
arg
,
pos
,
useGpu
,
&
colNum
,
&
rowCols
,
&
rowValues
);
ids
->
Reserve
(
colNum
);
for
(
int
i
=
0
;
i
<
colNum
;
++
i
)
{
ids
->
AddAlreadyReserved
(
rowCols
[
i
]);
}
SubseqSlot
*
subseqSlot
=
sample
->
add_subseq_slots
();
// subseq
subseqSlot
->
set_slot_id
(
slotid
);
auto
lens
=
subseqSlot
->
mutable_lens
();
lens
->
Add
(
colNum
);
break
;
}
case
SlotDef
::
VECTOR_SPARSE_VALUE
:
{
VectorSlot
*
vecSlot
=
sample
->
add_vector_slots
();
auto
values
=
vecSlot
->
mutable_values
();
auto
ids
=
vecSlot
->
mutable_ids
();
int
colNum
;
const
int
*
rowCols
;
const
real
*
rowValues
;
getColRow
(
arg
,
pos
,
useGpu
,
&
colNum
,
&
rowCols
,
&
rowValues
);
ids
->
Reserve
(
colNum
);
values
->
Reserve
(
colNum
);
for
(
int
i
=
0
;
i
<
colNum
;
++
i
)
{
ids
->
AddAlreadyReserved
(
rowCols
[
i
]);
values
->
AddAlreadyReserved
(
rowValues
[
i
]);
}
break
;
}
case
SlotDef
::
VAR_MDIM_DENSE
:
case
SlotDef
::
VAR_MDIM_INDEX
:
{
LOG
(
FATAL
)
<<
"Not implemented"
;
break
;
}
case
SlotDef
::
STRING
:
{
VectorSlot
*
vecSlot
=
sample
->
add_vector_slots
();
vecSlot
->
add_strs
((
*
arg
.
strs
)[
pos
]);
break
;
}
}
slotid
++
;
}
}
void
writeData
(
const
DataBatch
&
batch
,
bool
useGpu
,
bool
dataCompression
)
{
DataHeader
header
;
const
vector
<
Argument
>&
arguments
=
batch
.
getStreams
();
for
(
auto
&
argument
:
arguments
)
{
SlotDef
*
slotDef
=
header
.
add_slot_defs
();
slotDef
->
set_type
(
getSlotType
(
argument
));
slotDef
->
set_dim
(
getSlotDim
(
argument
));
}
VLOG
(
1
)
<<
"header="
<<
header
.
DebugString
();
int64_t
totalSeqs
=
batch
.
getNumSequences
();
int64_t
seq
=
0
;
ICpuGpuVectorPtr
sequenceStartPositions
=
arguments
[
0
].
sequenceStartPositions
;
int64_t
numWritten
=
0
;
vector
<
string
>
curProtoFiles
=
dataCompression
?
protoFilesCompressed
:
protoFiles
;
for
(
size_t
i
=
0
;
i
<
curProtoFiles
.
size
();
++
i
)
{
int64_t
numSeqs
=
totalSeqs
*
(
i
+
1
)
/
curProtoFiles
.
size
()
-
totalSeqs
*
i
/
curProtoFiles
.
size
();
ofstream
os
(
curProtoFiles
[
i
]);
CHECK
(
os
)
<<
"Fail to open "
<<
curProtoFiles
[
i
];
unique_ptr
<
ProtoWriter
>
writer
(
new
ProtoWriter
(
&
os
,
dataCompression
));
CHECK
(
writer
->
write
(
header
));
for
(
int
j
=
0
;
j
<
numSeqs
;
++
j
,
++
seq
)
{
int64_t
begin
=
seq
;
int64_t
end
=
seq
+
1
;
if
(
sequenceStartPositions
)
{
begin
=
sequenceStartPositions
->
getElement
(
seq
);
end
=
sequenceStartPositions
->
getElement
(
seq
+
1
);
}
for
(
int
pos
=
begin
;
pos
<
end
;
++
pos
)
{
DataSample
sample
;
makeSample
(
arguments
,
pos
,
pos
==
begin
,
&
sample
,
useGpu
);
CHECK
(
writer
->
write
(
sample
));
++
numWritten
;
}
}
writer
.
reset
(
nullptr
);
os
.
close
();
}
CHECK_EQ
(
arguments
[
0
].
getBatchSize
(),
numWritten
);
}
// check that the sample at pos1 in args1 is same as the sample at pos2 in args2
void
checkSample
(
const
vector
<
Argument
>&
args1
,
int64_t
pos1
,
const
vector
<
Argument
>&
args2
,
int64_t
pos2
,
bool
useGpu
)
{
EXPECT_EQ
(
args1
.
size
(),
args2
.
size
());
VLOG
(
1
)
<<
" pos1="
<<
pos1
<<
" pos2="
<<
pos2
;
for
(
size_t
i
=
0
;
i
<
args1
.
size
();
++
i
)
{
auto
type
=
getSlotType
(
args1
[
i
]);
int
dim
=
getSlotDim
(
args1
[
i
]);
EXPECT_EQ
(
type
,
getSlotType
(
args2
[
i
]));
if
(
type
==
SlotDef
::
INDEX
)
{
EXPECT_GE
(
dim
,
getSlotDim
(
args2
[
i
]));
}
else
{
EXPECT_EQ
(
dim
,
getSlotDim
(
args2
[
i
]));
}
switch
(
type
)
{
case
SlotDef
::
VECTOR_DENSE
:
{
for
(
int
j
=
0
;
j
<
dim
;
++
j
)
{
EXPECT_EQ
(
static_cast
<
float
>
(
args1
[
i
].
value
->
getElement
(
pos1
,
j
)),
static_cast
<
float
>
(
args2
[
i
].
value
->
getElement
(
pos2
,
j
)));
}
break
;
}
case
SlotDef
::
INDEX
:
{
EXPECT_EQ
(
args1
[
i
].
ids
->
get
(
pos1
),
args2
[
i
].
ids
->
get
(
pos2
));
break
;
}
case
SlotDef
::
VECTOR_SPARSE_NON_VALUE
:
case
SlotDef
::
VECTOR_SPARSE_VALUE
:
{
int
colNum1
,
colNum2
;
const
int
*
rowCols1
,
*
rowCols2
;
const
real
*
rowValues1
,
*
rowValues2
;
getColRow
(
args1
[
i
],
pos1
,
useGpu
,
&
colNum1
,
&
rowCols1
,
&
rowValues1
);
getColRow
(
args2
[
i
],
pos2
,
useGpu
,
&
colNum2
,
&
rowCols2
,
&
rowValues2
);
EXPECT_EQ
(
colNum1
,
colNum2
);
for
(
int
j
=
0
;
j
<
colNum1
;
++
j
)
{
EXPECT_EQ
(
rowCols1
[
j
],
rowCols2
[
j
]);
if
(
type
==
SlotDef
::
VECTOR_SPARSE_VALUE
)
{
EXPECT_EQ
(
rowValues1
[
j
],
rowValues2
[
j
]);
}
}
break
;
}
case
SlotDef
::
VAR_MDIM_DENSE
:
case
SlotDef
::
VAR_MDIM_INDEX
:
{
LOG
(
FATAL
)
<<
"Not implemented"
;
break
;
}
case
SlotDef
::
STRING
:
{
EXPECT_EQ
((
*
args1
[
i
].
strs
)[
pos1
],
(
*
args2
[
i
].
strs
)[
pos2
]);
break
;
}
}
}
}
void
testProtoDataProvider
(
int
*
numPerSlotType
,
bool
iid
,
bool
async
,
bool
useGpu
,
bool
dataCompression
,
int
numConstantSlots
=
0
)
{
mkDir
(
kTestDir
);
DataBatch
data
;
prepareData
(
&
data
,
numPerSlotType
,
iid
,
useGpu
);
writeData
(
data
,
useGpu
,
dataCompression
);
DataConfig
config
;
config
.
set_type
(
"proto"
);
config
.
set_files
(
dataCompression
?
kProtoFileListCompressed
:
kProtoFileList
);
config
.
set_async_load_data
(
async
);
for
(
int
i
=
0
;
i
<
numConstantSlots
;
++
i
)
{
config
.
add_constant_slots
(
i
+
11
);
MatrixPtr
w
=
Matrix
::
create
(
data
.
getSize
(),
1
,
/* trans= */
false
,
/* useGpu= */
false
);
w
->
assign
(
config
.
constant_slots
(
i
));
data
.
appendData
(
w
);
}
unique_ptr
<
DataProvider
>
dataProvider
(
DataProvider
::
create
(
config
,
useGpu
));
dataProvider
->
setSkipShuffle
();
EXPECT_EQ
(
data
.
getSize
(),
dataProvider
->
getSize
());
int64_t
batchSize
=
10
;
DataBatch
batch
;
size_t
seq1
=
0
;
vector
<
Argument
>&
args1
=
data
.
getStreams
();
ICpuGpuVectorPtr
sequenceStartPositions1
=
args1
[
0
].
sequenceStartPositions
;
dataProvider
->
reset
();
while
(
dataProvider
->
getNextBatch
(
batchSize
,
&
batch
)
>
0
)
{
CHECK_EQ
(
data
.
getNumStreams
(),
batch
.
getNumStreams
());
vector
<
Argument
>&
args2
=
batch
.
getStreams
();
ICpuGpuVectorPtr
sequenceStartPositions2
=
args2
[
0
].
sequenceStartPositions
;
for
(
auto
&
arg
:
args2
)
{
EXPECT_EQ
(
iid
,
!
arg
.
sequenceStartPositions
);
}
size_t
numSeqs
=
batch
.
getNumSequences
();
VLOG
(
1
)
<<
"numSeqs="
<<
numSeqs
;
for
(
size_t
seq2
=
0
;
seq2
<
numSeqs
;
++
seq1
,
++
seq2
)
{
int64_t
begin1
=
seq1
;
int64_t
end1
=
seq1
+
1
;
if
(
sequenceStartPositions1
)
{
begin1
=
sequenceStartPositions1
->
getElement
(
seq1
);
end1
=
sequenceStartPositions1
->
getElement
(
seq1
+
1
);
EXPECT_LT
(
seq1
,
sequenceStartPositions1
->
getSize
()
-
1
);
}
int64_t
begin2
=
seq2
;
int64_t
end2
=
seq2
+
1
;
if
(
sequenceStartPositions2
)
{
begin2
=
sequenceStartPositions2
->
getElement
(
seq2
);
end2
=
sequenceStartPositions2
->
getElement
(
seq2
+
1
);
}
VLOG
(
1
)
<<
" begin1="
<<
begin1
<<
" end1="
<<
end1
<<
" begin2="
<<
begin2
<<
" end2="
<<
end2
;
EXPECT_EQ
(
end1
-
begin1
,
end2
-
begin2
);
for
(
int
i
=
0
;
i
<
end1
-
begin1
;
++
i
)
{
checkSample
(
args1
,
begin1
+
i
,
args2
,
begin2
+
i
,
useGpu
);
}
}
}
EXPECT_EQ
(
seq1
,
(
size_t
)
data
.
getNumSequences
());
rmDir
(
kTestDir
);
}
TEST
(
ProtoDataProvider
,
test
)
{
int
numSlotsArray
[]
=
{
0
,
3
};
int
numTwoArray
[]
=
{
0
,
1
};
int
numSlotsArraySize
=
sizeof
(
numSlotsArray
)
/
sizeof
(
numSlotsArray
[
0
]);
const
int
numSlot
=
5
;
int
combination
[
numSlot
]
=
{
0
};
int
k
=
numSlot
-
1
;
while
(
k
>=
0
)
{
int
numDenseVecSlots
=
numSlotsArray
[
combination
[
0
]];
int
numSparseNonValueVecSlots
=
numSlotsArray
[
combination
[
1
]];
int
numSparseValueVectorSlots
=
numSlotsArray
[
combination
[
2
]];
int
numStrSlots
=
numSlotsArray
[
combination
[
3
]];
int
numIdSlots
=
numSlotsArray
[
combination
[
4
]];
// while loop : traverse all cases
k
=
numSlot
-
1
;
while
(
k
>=
0
)
{
if
(
combination
[
k
]
<
(
numSlotsArraySize
-
1
))
{
++
combination
[
k
];
break
;
}
else
{
combination
[
k
]
=
0
;
--
k
;
}
}
if
(
numDenseVecSlots
+
numSparseNonValueVecSlots
+
numSparseValueVectorSlots
+
numStrSlots
+
numIdSlots
<
1
)
continue
;
for
(
int
iid
:
numTwoArray
)
{
for
(
int
async
:
numTwoArray
)
{
for
(
int
useGpu
:
numTwoArray
)
{
for
(
int
dataCompression
:
numTwoArray
)
{
if
(
async
&&
useGpu
)
{
// Currently in async mode, useGpu is not supported
continue
;
}
#ifndef PADDLE_WITH_CUDA
if
(
useGpu
)
{
continue
;
}
#endif
LOG
(
INFO
)
<<
" numDenseVecSlots="
<<
numDenseVecSlots
<<
" numSparseNonValueVecSlots="
<<
numSparseNonValueVecSlots
<<
" numSparseValueVectorSlots="
<<
numSparseValueVectorSlots
<<
" numStrSlots="
<<
numStrSlots
<<
" numIdSlots="
<<
numIdSlots
<<
" iid="
<<
iid
<<
" async="
<<
async
<<
" useGpu="
<<
useGpu
<<
" dataCompression="
<<
dataCompression
;
int
numPerSlotType
[
SlotDef
::
SlotType_ARRAYSIZE
]
=
{
0
};
numPerSlotType
[
SlotDef
::
VECTOR_DENSE
]
=
numDenseVecSlots
;
numPerSlotType
[
SlotDef
::
VECTOR_SPARSE_NON_VALUE
]
=
numSparseNonValueVecSlots
;
numPerSlotType
[
SlotDef
::
VECTOR_SPARSE_VALUE
]
=
numSparseValueVectorSlots
;
numPerSlotType
[
SlotDef
::
INDEX
]
=
numIdSlots
;
numPerSlotType
[
SlotDef
::
STRING
]
=
numStrSlots
;
testProtoDataProvider
(
numPerSlotType
,
iid
,
async
,
useGpu
,
dataCompression
);
}
// end for (int dataCompression : numTwoArray)
}
// end for (int useGpu : numTwoArray)
}
// end for (int async : numTwoArray)
}
// end for (int iid : numTwoArray)
}
// end for (while, traverse all slots)
}
TEST
(
ProtoDataProvider
,
constant_slots
)
{
int
numSlotsArray
[]
=
{
0
,
3
};
int
numTwoArray
[]
=
{
0
,
1
};
for
(
int
numDenseVecSlots
:
numSlotsArray
)
{
for
(
int
numSparseNonValueVecSlots
:
numSlotsArray
)
{
if
(
numDenseVecSlots
+
numSparseNonValueVecSlots
<
1
)
continue
;
for
(
int
numConstantSlots
:
{
1
,
2
})
{
for
(
int
useGpu
:
numTwoArray
)
{
for
(
int
dataCompression
:
numTwoArray
)
{
#ifndef PADDLE_WITH_CUDA
if
(
useGpu
)
{
continue
;
}
#endif
LOG
(
INFO
)
<<
" numDenseVecSlots="
<<
numDenseVecSlots
<<
" numSparseNonValueVecSlots="
<<
numSparseNonValueVecSlots
<<
" numConstantSlogs="
<<
numConstantSlots
<<
" useGpu="
<<
useGpu
<<
" dataCompression="
<<
dataCompression
;
int
numPerSlotType
[
SlotDef
::
SlotType_ARRAYSIZE
]
=
{
0
};
numPerSlotType
[
SlotDef
::
VECTOR_DENSE
]
=
numDenseVecSlots
;
numPerSlotType
[
SlotDef
::
VECTOR_SPARSE_NON_VALUE
]
=
numSparseNonValueVecSlots
;
numPerSlotType
[
SlotDef
::
VECTOR_SPARSE_VALUE
]
=
1
;
numPerSlotType
[
SlotDef
::
INDEX
]
=
1
;
testProtoDataProvider
(
numPerSlotType
,
/* iid= */
true
,
/* async= */
false
,
useGpu
,
dataCompression
,
numConstantSlots
);
}
// end for (int dataCompression : numTwoArray)
}
// end for (int useGpu : numTwoArray)
}
// end for (int numConstantSlots : {1, 2})
}
// end for (int numSparseNonValueVecSlots : numSlotsArray)
}
// end for (int numDenseVecSlots : numSlotsArray)
}
void
checkSampleSequence
(
const
vector
<
Argument
>&
args1
,
const
vector
<
Argument
>&
args2
,
int64_t
offset
,
int64_t
numSeqs
,
bool
useGpu
)
{
// check slot num are equal
EXPECT_EQ
(
args1
.
size
(),
args2
.
size
());
for
(
size_t
i
=
0
;
i
<
args1
.
size
();
i
++
)
{
auto
type
=
getSlotType
(
args1
[
i
]);
// check for args2: sequenceStartPositions vs numSeqs
// (1) size
EXPECT_EQ
(
args2
[
i
].
sequenceStartPositions
->
getSize
(),
(
size_t
)
numSeqs
+
1
);
// (2) content
auto
checkArgContent
=
[
&
](
const
Argument
&
args
,
int
numSeqs
)
{
for
(
int
j
=
0
;
j
<=
numSeqs
;
j
++
)
{
int
start_pos
=
args
.
sequenceStartPositions
->
getElement
(
j
);
EXPECT_EQ
(
start_pos
,
j
);
}
};
switch
(
type
)
{
case
SlotDef
::
INDEX
:
{
// args1: for label
checkArgContent
(
args2
[
i
],
numSeqs
);
// check for args2: ids are equal to args1[offset]
// (1) size
EXPECT_EQ
(
args2
[
i
].
ids
->
getSize
(),
(
size_t
)
numSeqs
);
// (2) content
for
(
int
j
=
0
;
j
<
numSeqs
;
j
++
)
{
EXPECT_EQ
(
args2
[
i
].
ids
->
get
(
j
),
args1
[
i
].
ids
->
get
(
offset
+
j
));
}
break
;
}
case
SlotDef
::
VECTOR_SPARSE_NON_VALUE
:
{
// args1: for sparse_non_value
// args2 should put sparse indexes in ids
int
colNum1
;
const
int
*
rowCols1
;
const
real
*
rowValues1
;
// nullptr
int
totalLength
=
0
;
for
(
int
j
=
0
;
j
<
numSeqs
;
j
++
)
{
getColRow
(
args1
[
i
],
offset
+
j
,
useGpu
,
&
colNum1
,
&
rowCols1
,
&
rowValues1
);
// (1) lengths
EXPECT_EQ
(
totalLength
,
args2
[
i
].
sequenceStartPositions
->
getElement
(
j
));
EXPECT_EQ
(
totalLength
,
args2
[
i
].
subSequenceStartPositions
->
getElement
(
j
));
// (2) content
for
(
int
k
=
0
;
k
<
colNum1
;
k
++
)
{
EXPECT_EQ
(
rowCols1
[
k
],
args2
[
i
].
ids
->
get
(
totalLength
+
k
));
}
totalLength
+=
colNum1
;
if
(
colNum1
==
0
)
{
// special case here: we will put a "-1" into ids when column num is
// zero. see ProtoSequenceDataProvider::getNextBatchInternal.
EXPECT_EQ
(
-
1
,
args2
[
i
].
ids
->
get
(
totalLength
));
totalLength
++
;
}
}
EXPECT_EQ
(
totalLength
,
args2
[
i
].
sequenceStartPositions
->
getElement
(
numSeqs
));
EXPECT_EQ
(
totalLength
,
args2
[
i
].
subSequenceStartPositions
->
getElement
(
numSeqs
));
break
;
}
case
SlotDef
::
VECTOR_DENSE
:
{
// args1: for dense vector
checkArgContent
(
args2
[
i
],
numSeqs
);
// check for args2: values are equal to args1[offset]
// (1) size
EXPECT_EQ
(
args2
[
i
].
value
->
getHeight
(),
(
size_t
)
numSeqs
);
EXPECT_EQ
(
args2
[
i
].
value
->
getWidth
(),
(
size_t
)
getSlotDim
(
args1
[
i
]));
// (2) content
for
(
int
j
=
0
;
j
<
numSeqs
;
j
++
)
{
for
(
size_t
k
=
0
;
k
<
args2
[
i
].
value
->
getWidth
();
k
++
)
{
EXPECT_EQ
(
static_cast
<
float
>
(
args1
[
i
].
value
->
getElement
(
j
+
offset
,
k
)),
static_cast
<
float
>
(
args2
[
i
].
value
->
getElement
(
j
,
k
)));
}
}
break
;
}
default:
{
EXPECT_EQ
(
true
,
false
)
<<
"should not reach here"
;
}
}
}
}
void
testProtoSequenceDataProvider
(
int
*
numPerSlotType
,
bool
async
,
bool
useGpu
)
{
mkDir
(
kTestDir
);
DataBatch
data
;
prepareData
(
&
data
,
numPerSlotType
,
/* iid */
true
,
useGpu
);
writeData
(
data
,
useGpu
,
/* dataCompression */
false
);
DataConfig
config
;
config
.
set_type
(
"proto_sequence"
);
config
.
set_files
(
kProtoFileList
);
config
.
set_async_load_data
(
async
);
unique_ptr
<
DataProvider
>
dataProvider
(
DataProvider
::
create
(
config
,
useGpu
));
dataProvider
->
setSkipShuffle
();
EXPECT_EQ
(
data
.
getSize
(),
dataProvider
->
getSize
());
int64_t
batchSize
=
10
;
DataBatch
batch
;
vector
<
Argument
>&
args1
=
data
.
getStreams
();
ICpuGpuVectorPtr
sequenceStartPositions1
=
args1
[
0
].
sequenceStartPositions
;
dataProvider
->
reset
();
size_t
args1Offset
=
0
;
while
(
dataProvider
->
getNextBatch
(
batchSize
,
&
batch
)
>
0
)
{
CHECK_EQ
(
data
.
getNumStreams
(),
batch
.
getNumStreams
());
vector
<
Argument
>&
args2
=
batch
.
getStreams
();
ICpuGpuVectorPtr
sequenceStartPositions2
=
args2
[
0
].
sequenceStartPositions
;
for
(
auto
&
arg
:
args1
)
{
// args1 should not has sequence
EXPECT_EQ
(
true
,
!
arg
.
sequenceStartPositions
);
}
for
(
auto
&
arg
:
args2
)
{
// args2 should has sequence
EXPECT_NE
(
true
,
!
arg
.
sequenceStartPositions
);
}
size_t
numSeqs
=
batch
.
getNumSequences
();
checkSampleSequence
(
args1
,
args2
,
args1Offset
,
numSeqs
,
useGpu
);
args1Offset
+=
numSeqs
;
}
EXPECT_EQ
(
args1Offset
,
(
size_t
)
data
.
getNumSequences
());
rmDir
(
kTestDir
);
}
TEST
(
ProtoSequenceDataProvider
,
test
)
{
int
numSlotsArray
[]
=
{
0
,
3
};
int
numTwoArray
[]
=
{
0
,
1
};
for
(
int
numSparseNonValueVecSlots
:
numSlotsArray
)
{
for
(
int
numIdSlots
:
numSlotsArray
)
{
for
(
int
numDenseVecSlots
:
numSlotsArray
)
{
if
(
numDenseVecSlots
+
numSparseNonValueVecSlots
+
numIdSlots
<
1
)
continue
;
for
(
int
async
:
numTwoArray
)
{
for
(
int
useGpu
:
numTwoArray
)
{
if
(
async
&&
useGpu
)
{
// Currently in async mode, useGpu is not supported
continue
;
}
#ifndef PADDLE_WITH_CUDA
if
(
useGpu
)
{
continue
;
}
#endif
LOG
(
INFO
)
<<
" numDenseVecSlots="
<<
numDenseVecSlots
<<
" numSparseNonValueVecSlots="
<<
numSparseNonValueVecSlots
<<
" numIdSlots="
<<
numIdSlots
<<
" async="
<<
async
<<
" useGpu="
<<
useGpu
;
int
numPerSlotType
[
SlotDef
::
SlotType_ARRAYSIZE
]
=
{
0
};
numPerSlotType
[
SlotDef
::
VECTOR_DENSE
]
=
numDenseVecSlots
;
numPerSlotType
[
SlotDef
::
VECTOR_SPARSE_NON_VALUE
]
=
numSparseNonValueVecSlots
;
numPerSlotType
[
SlotDef
::
INDEX
]
=
numIdSlots
;
testProtoSequenceDataProvider
(
numPerSlotType
,
async
,
useGpu
);
}
// end for (int useGpu : numTwoArray)
}
// end for (int async : numTwoArray)
}
// end for (int numDenseVecSlots : numSlotsArray)
}
// end for (int numIdSlots : numSlotsArray)
}
// end for (int numSparseNonValueVecSlots : numSlotsArray)
}
paddle/trainer/tests/CMakeLists.txt
浏览文件 @
ba868854
...
...
@@ -28,35 +28,7 @@ if(WITH_PYTHON)
${
PADDLE_SOURCE_DIR
}
/paddle/.set_port.sh -p port
${
CMAKE_CURRENT_BINARY_DIR
}
/test_TrainerOnePass
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
endif
()
################ test_CompareTwoNets ######################
add_unittest_without_exec
(
test_CompareTwoNets
test_CompareTwoNets.cpp
)
add_test
(
NAME test_CompareTwoNets
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python/
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareTwoNets
--config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
############### test_CompareTwoOpts ###################
add_unittest_without_exec
(
test_CompareTwoOpts
test_CompareTwoOpts.cpp
)
add_test
(
NAME test_CompareTwoOpts
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python/
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareTwoOpts
--config_file_a=trainer/tests/sample_trainer_config_opt_a.conf --config_file_b=trainer/tests/sample_trainer_config_opt_b.conf
--num_passes=1 --need_high_accuracy=0
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
################# test_CompareSparse ##################
add_unittest_without_exec
(
test_CompareSparse
test_CompareSparse.cpp
)
if
(
NOT ON_TRAVIS
)
add_test
(
NAME test_CompareSparse
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python/
./.set_port.sh -p port -n 6
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareSparse
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
endif
()
################# test_recurrent_machine_generation ###############
add_unittest_without_exec
(
test_recurrent_machine_generation
test_recurrent_machine_generation.cpp
)
...
...
paddle/trainer/tests/mnist.list
已删除
100644 → 0
浏览文件 @
3375e3e2
trainer/tests/mnist_bin_part
paddle/trainer/tests/mnist_bin_part
已删除
100644 → 0
浏览文件 @
3375e3e2
文件已删除
paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data
已删除
100644 → 0
浏览文件 @
3375e3e2
文件已删除
paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.protolist
已删除
100644 → 0
浏览文件 @
3375e3e2
./trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data
paddle/trainer/tests/sample_trainer_config_compare_sparse.conf
已删除
100644 → 0
浏览文件 @
3375e3e2
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
# Note: when making change to this file, please make sure
# sample_trainer_config_rnn.conf is changed accordingly so that the uniitest
# for comparing these two nets can pass (test_CompareTwoNets)
default_initial_std
(
0
.
1
)
default_device
(
0
)
word_dim
=
999
l1
=
0
l2
=
0
model_type
(
"nn"
)
sparse_update
=
get_config_arg
(
"sparse_update"
,
bool
,
False
)
TrainData
(
ProtoData
(
type
=
"proto_sequence"
,
files
= (
'trainer/tests/train_sparse.list'
),
))
Settings
(
algorithm
=
'sgd'
,
batch_size
=
100
,
learning_rate
=
0
.
0001
,
learning_rate_decay_a
=
4
e
-
08
,
learning_rate_decay_b
=
0
.
0
,
learning_rate_schedule
=
'poly'
,
)
wordvec_dim
=
32
layer2_dim
=
16
layer3_dim
=
16
hidden_dim
=
32
slot_names
= [
"qb"
,
"qw"
,
"tb"
,
"tw"
]
def
ltr_network
(
network_name
,
word_dim
=
word_dim
,
wordvec_dim
=
wordvec_dim
,
layer2_dim
=
layer2_dim
,
layer3_dim
=
layer3_dim
,
hidden_dim
=
hidden_dim
,
slot_names
=
slot_names
,
l1
=
l1
,
l2
=
l2
):
slotnum
=
len
(
slot_names
)
for
i
in
xrange
(
slotnum
):
Inputs
(
slot_names
[
i
] +
network_name
)
for
i
in
xrange
(
slotnum
):
Layer
(
name
=
slot_names
[
i
] +
network_name
,
type
=
"data"
,
size
=
word_dim
,
device
= -
1
,
)
Layer
(
name
=
slot_names
[
i
] +
"_embedding_"
+
network_name
,
type
=
"mixed"
,
size
=
wordvec_dim
,
bias
=
False
,
device
= -
1
,
inputs
=
TableProjection
(
slot_names
[
i
] +
network_name
,
parameter_name
=
"embedding.w0"
,
decay_rate_l1
=
l1
,
sparse_remote_update
=
True
,
sparse_update
=
sparse_update
,
),
)
Layer
(
name
=
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
type
=
"recurrent"
,
active_type
=
"tanh"
,
bias
=
Bias
(
initial_std
=
0
,
parameter_name
=
"rnn1.bias"
),
inputs
=
Input
(
slot_names
[
i
] +
"_embedding_"
+
network_name
,
parameter_name
=
"rnn1.w0"
)
)
Layer
(
name
=
slot_names
[
i
] +
"_rnnlast_"
+
network_name
,
type
=
"seqlastins"
,
inputs
= [
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
],
)
Layer
(
name
=
"layer2_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer2_dim
,
bias
=
Bias
(
parameter_name
=
"layer2.bias"
),
inputs
= [
Input
(
slot_name
+
"_rnnlast_"
+
network_name
,
parameter_name
=
"_layer2_"
+
slot_name
+
".w"
,
decay_rate
=
l2
,
initial_smart
=
True
)
for
slot_name
in
slot_names
]
)
Layer
(
name
=
"layer3_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer3_dim
,
bias
=
Bias
(
parameter_name
=
"layer3.bias"
),
inputs
= [
Input
(
"layer2_"
+
network_name
,
parameter_name
=
"_layer3.w"
,
decay_rate
=
l2
,
initial_smart
=
True
),
]
)
Layer
(
name
=
"output_"
+
network_name
,
type
=
"fc"
,
size
=
1
,
bias
=
False
,
inputs
= [
Input
(
"layer3_"
+
network_name
,
parameter_name
=
"_layerO.w"
),
],
)
ltr_network
(
"left"
)
ltr_network
(
"right"
)
Inputs
(
"label"
)
Layer
(
name
=
"label"
,
type
=
"data"
,
size
=
1
,
)
Outputs
(
"cost"
,
"qb_rnnlast_left"
)
Layer
(
name
=
"cost"
,
type
=
"rank-cost"
,
inputs
= [
"output_left"
,
"output_right"
,
"label"
],
)
paddle/trainer/tests/sample_trainer_config_qb_rnn.conf
已删除
100644 → 0
浏览文件 @
3375e3e2
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
# Note: when making change to this file, please make sure
# sample_trainer_config_rnn.conf is changed accordingly so that the uniitest
# for comparing these two nets can pass (test_CompareTwoNets)
default_initial_std
(
0
.
1
)
default_device
(
0
)
word_dim
=
1451594
l1
=
0
l2
=
0
model_type
(
"nn"
)
sparse_update
=
get_config_arg
(
"sparse_update"
,
bool
,
False
)
TrainData
(
ProtoData
(
type
=
"proto_sequence"
,
files
= (
'trainer/tests/train.list'
),
))
Settings
(
algorithm
=
'sgd'
,
batch_size
=
100
,
learning_rate
=
0
.
0001
,
learning_rate_decay_a
=
4
e
-
08
,
learning_rate_decay_b
=
0
.
0
,
learning_rate_schedule
=
'poly'
,
)
wordvec_dim
=
128
layer2_dim
=
96
layer3_dim
=
96
hidden_dim
=
128
slot_names
= [
"qb"
,
"qw"
,
"tb"
,
"tw"
]
def
ltr_network
(
network_name
,
word_dim
=
word_dim
,
wordvec_dim
=
wordvec_dim
,
layer2_dim
=
layer2_dim
,
layer3_dim
=
layer3_dim
,
hidden_dim
=
hidden_dim
,
slot_names
=
slot_names
,
l1
=
l1
,
l2
=
l2
):
slotnum
=
len
(
slot_names
)
for
i
in
xrange
(
slotnum
):
Inputs
(
slot_names
[
i
] +
network_name
)
for
i
in
xrange
(
slotnum
):
Layer
(
name
=
slot_names
[
i
] +
network_name
,
type
=
"data"
,
size
=
word_dim
,
device
= -
1
,
)
Layer
(
name
=
slot_names
[
i
] +
"_embedding_"
+
network_name
,
type
=
"mixed"
,
size
=
wordvec_dim
,
bias
=
False
,
device
= -
1
,
inputs
=
TableProjection
(
slot_names
[
i
] +
network_name
,
parameter_name
=
"embedding.w0"
,
decay_rate_l1
=
l1
,
sparse_remote_update
=
True
,
sparse_update
=
sparse_update
,
),
)
Layer
(
name
=
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
type
=
"recurrent"
,
active_type
=
"tanh"
,
bias
=
Bias
(
initial_std
=
0
,
parameter_name
=
"rnn1.bias"
),
inputs
=
Input
(
slot_names
[
i
] +
"_embedding_"
+
network_name
,
parameter_name
=
"rnn1.w0"
)
)
Layer
(
name
=
slot_names
[
i
] +
"_rnnlast_"
+
network_name
,
type
=
"seqlastins"
,
inputs
= [
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
],
)
Layer
(
name
=
"layer2_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer2_dim
,
bias
=
Bias
(
parameter_name
=
"layer2.bias"
),
inputs
= [
Input
(
slot_name
+
"_rnnlast_"
+
network_name
,
parameter_name
=
"_layer2_"
+
slot_name
+
".w"
,
decay_rate
=
l2
,
initial_smart
=
True
)
for
slot_name
in
slot_names
]
)
Layer
(
name
=
"layer3_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer3_dim
,
bias
=
Bias
(
parameter_name
=
"layer3.bias"
),
inputs
= [
Input
(
"layer2_"
+
network_name
,
parameter_name
=
"_layer3.w"
,
decay_rate
=
l2
,
initial_smart
=
True
),
]
)
Layer
(
name
=
"output_"
+
network_name
,
type
=
"fc"
,
size
=
1
,
bias
=
False
,
inputs
= [
Input
(
"layer3_"
+
network_name
,
parameter_name
=
"_layerO.w"
),
],
)
ltr_network
(
"left"
)
ltr_network
(
"right"
)
Inputs
(
"label"
)
Layer
(
name
=
"label"
,
type
=
"data"
,
size
=
1
,
)
Outputs
(
"cost"
,
"qb_rnnlast_left"
)
Layer
(
name
=
"cost"
,
type
=
"rank-cost"
,
inputs
= [
"output_left"
,
"output_right"
,
"label"
],
)
paddle/trainer/tests/sample_trainer_config_rnn.conf
已删除
100644 → 0
浏览文件 @
3375e3e2
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
# Note: when making change to this file, please make sure
# sample_trainer_config_qb_rnn.conf is changed accordingly so that the uniitest
# for comparing these two nets can pass (test_CompareTwoNets)
default_initial_std
(
0
.
1
)
default_device
(
0
)
word_dim
=
1451594
l1
=
0
l2
=
0
model_type
(
"recurrent_nn"
)
sparse_update
=
get_config_arg
(
"sparse_update"
,
bool
,
False
)
TrainData
(
ProtoData
(
type
=
"proto_sequence"
,
files
= (
'trainer/tests/train.list'
),
))
Settings
(
algorithm
=
'sgd'
,
batch_size
=
100
,
learning_rate
=
0
.
0001
,
learning_rate_decay_a
=
4
e
-
08
,
learning_rate_decay_b
=
0
.
0
,
learning_rate_schedule
=
'poly'
,
)
wordvec_dim
=
128
layer2_dim
=
96
layer3_dim
=
96
hidden_dim
=
128
slot_names
= [
"qb"
,
"qw"
,
"tb"
,
"tw"
]
def
SimpleRecurrentLayer
(
name
,
size
,
active_type
,
bias
,
input_layer_name
,
parameter_name
,
seq_reversed
=
False
):
RecurrentLayerGroupBegin
(
name
+
"_layer_group"
,
in_links
=[
input_layer_name
],
out_links
=[
name
],
seq_reversed
=
seq_reversed
)
memory_name
=
Memory
(
name
=
name
,
size
=
size
)
Layer
(
name
=
name
,
type
=
"mixed"
,
size
=
size
,
active_type
=
active_type
,
bias
=
bias
,
inputs
= [
IdentityProjection
(
input_layer_name
),
FullMatrixProjection
(
memory_name
,
parameter_name
=
parameter_name
,
),
]
)
RecurrentLayerGroupEnd
(
name
+
"_layer_group"
)
def
ltr_network
(
network_name
,
word_dim
=
word_dim
,
wordvec_dim
=
wordvec_dim
,
layer2_dim
=
layer2_dim
,
layer3_dim
=
layer3_dim
,
hidden_dim
=
hidden_dim
,
slot_names
=
slot_names
,
l1
=
l1
,
l2
=
l2
):
slotnum
=
len
(
slot_names
)
for
i
in
xrange
(
slotnum
):
Inputs
(
slot_names
[
i
] +
network_name
)
for
i
in
xrange
(
slotnum
):
Layer
(
name
=
slot_names
[
i
] +
network_name
,
type
=
"data"
,
size
=
word_dim
,
device
= -
1
,
)
Layer
(
name
=
slot_names
[
i
] +
"_embedding_"
+
network_name
,
type
=
"mixed"
,
size
=
wordvec_dim
,
bias
=
False
,
device
= -
1
,
inputs
=
TableProjection
(
slot_names
[
i
] +
network_name
,
parameter_name
=
"embedding.w0"
,
decay_rate_l1
=
l1
,
sparse_remote_update
=
True
,
sparse_update
=
sparse_update
,
),
)
SimpleRecurrentLayer
(
name
=
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
size
=
hidden_dim
,
active_type
=
"tanh"
,
bias
=
Bias
(
initial_std
=
0
,
parameter_name
=
"rnn1.bias"
),
input_layer_name
=
slot_names
[
i
] +
"_embedding_"
+
network_name
,
parameter_name
=
"rnn1.w0"
,
)
Layer
(
name
=
slot_names
[
i
] +
"_rnnlast_"
+
network_name
,
type
=
"seqlastins"
,
inputs
= [
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
],
)
Layer
(
name
=
"layer2_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer2_dim
,
bias
=
Bias
(
parameter_name
=
"layer2.bias"
),
inputs
= [
Input
(
slot_name
+
"_rnnlast_"
+
network_name
,
parameter_name
=
"_layer2_"
+
slot_name
+
".w"
,
decay_rate
=
l2
,
initial_smart
=
True
)
for
slot_name
in
slot_names
]
)
Layer
(
name
=
"layer3_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer3_dim
,
bias
=
Bias
(
parameter_name
=
"layer3.bias"
),
inputs
= [
Input
(
"layer2_"
+
network_name
,
parameter_name
=
"_layer3.w"
,
decay_rate
=
l2
,
initial_smart
=
True
),
]
)
Layer
(
name
=
"output_"
+
network_name
,
type
=
"fc"
,
size
=
1
,
bias
=
False
,
inputs
= [
Input
(
"layer3_"
+
network_name
,
parameter_name
=
"_layerO.w"
),
],
)
ltr_network
(
"left"
)
ltr_network
(
"right"
)
Inputs
(
"label"
)
Layer
(
name
=
"label"
,
type
=
"data"
,
size
=
1
,
)
Outputs
(
"cost"
,
"qb_rnnlast_left"
)
Layer
(
name
=
"cost"
,
type
=
"rank-cost"
,
inputs
= [
"output_left"
,
"output_right"
,
"label"
],
)
paddle/trainer/tests/testPyDataWrapper.py
浏览文件 @
ba868854
...
...
@@ -20,28 +20,6 @@ import random
import
json
import
string
@
provider
(
slots
=
[
SparseNonValueSlot
(
10
),
DenseSlot
(
2
),
SparseValueSlot
(
10
),
StringSlot
(
1
),
IndexSlot
(
3
)
])
def
processNonSequenceData
(
obj
,
filename
):
with
open
(
filename
,
"rb"
)
as
f
:
for
line
in
f
:
slots_str
=
line
.
split
(
';'
)
index
=
int
(
slots_str
[
0
])
non_values
=
map
(
int
,
slots_str
[
1
].
split
()[
1
:])
dense
=
map
(
float
,
slots_str
[
2
].
split
()[
1
:])
strs
=
slots_str
[
4
].
strip
().
split
(
' '
,
1
)[
1
]
def
__values_mapper__
(
s
):
s
=
s
.
split
(
":"
)
return
int
(
s
[
0
]),
float
(
s
[
1
])
values
=
map
(
__values_mapper__
,
slots_str
[
3
].
split
()[
1
:])
yield
[
non_values
,
dense
,
values
,
strs
,
index
]
SPARSE_ID_LIMIT
=
1000
SPARSE_ID_COUNT
=
100
SEQUENCE_LIMIT
=
50
...
...
@@ -146,8 +124,6 @@ def processSubSeqAndGenerateData(obj, name):
if
__name__
==
"__main__"
:
pvd
=
processNonSequenceData
(
"test.txt"
)
print
pvd
.
getNextBatch
(
100
)
pvd
=
processSeqAndGenerateData
(
"_"
)
print
pvd
.
getNextBatch
(
100
)
pvd
=
processSubSeqAndGenerateData
(
"_"
)
...
...
paddle/trainer/tests/test_CompareTwoOpts.cpp
已删除
100644 → 0
浏览文件 @
3375e3e2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <paddle/utils/PythonUtil.h>
#include <algorithm>
#include <cstdlib>
#include "paddle/trainer/Trainer.h"
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
DECLARE_int32
(
gpu_id
);
DECLARE_bool
(
local
);
DECLARE_bool
(
use_gpu
);
DECLARE_string
(
config
);
DECLARE_string
(
nics
);
DEFINE_string
(
config_file_a
,
""
,
"config of one network to compare"
);
DEFINE_string
(
config_file_b
,
""
,
"config of another network to compare"
);
DEFINE_bool
(
need_high_accuracy
,
true
,
"whether need to run in double accuracy (recommended)"
);
DEFINE_double
(
max_diff_ratio
,
0.0
f
,
"max diff ratio allowed for outputs and parameters (value/gradient)"
);
struct
ComData
{
vector
<
Argument
>
outArgs
;
vector
<
ParameterPtr
>
parameters
;
};
void
calcGradient
(
ComData
&
data
,
const
string
configFile
)
{
FLAGS_config
=
configFile
;
FLAGS_local
=
true
;
FLAGS_use_gpu
=
false
;
FLAGS_nics
=
""
;
*
ThreadLocalRand
::
getSeed
()
=
0
;
srand
(
0
);
Trainer
trainer
;
trainer
.
init
(
TrainerConfigHelper
::
createFromFlagConfig
(),
false
);
data
.
parameters
=
trainer
.
getGradientMachine
()
->
getParameters
();
trainer
.
getDataProvider
()
->
setSkipShuffle
();
trainer
.
train
();
}
void
checkBuffer
(
real
*
A
,
const
char
*
desA
,
real
*
B
,
const
char
*
desB
,
size_t
len
,
size_t
width
=
1
)
{
int
nNum
=
0
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
real
diff
=
fabs
(
A
[
i
]
-
B
[
i
]);
if
(
diff
>
0.0
f
&&
diff
/
std
::
max
(
fabs
(
A
[
i
]),
fabs
(
B
[
i
]))
>
FLAGS_max_diff_ratio
)
{
nNum
++
;
LOG
(
INFO
)
<<
"Row: "
<<
i
/
width
<<
", "
<<
desA
<<
" : "
<<
A
[
i
]
<<
" "
<<
desB
<<
" : "
<<
B
[
i
];
}
}
EXPECT_EQ
(
0
,
nNum
);
LOG
(
INFO
)
<<
"
\n\n
"
;
}
void
compareGradient
(
ComData
&
comDataA
,
ComData
&
comDataB
)
{
vector
<
Argument
>
outArgsA
=
comDataA
.
outArgs
;
vector
<
Argument
>
outArgsB
=
comDataB
.
outArgs
;
for
(
size_t
i
=
0
;
i
<
outArgsA
.
size
();
++
i
)
{
CpuMatrix
matA
(
outArgsA
[
i
].
value
->
getHeight
(),
outArgsA
[
i
].
value
->
getWidth
());
CpuMatrix
matB
(
outArgsB
[
i
].
value
->
getHeight
(),
outArgsB
[
i
].
value
->
getWidth
());
matA
.
copyFrom
(
*
outArgsA
[
i
].
value
);
matB
.
copyFrom
(
*
outArgsB
[
i
].
value
);
LOG
(
INFO
)
<<
"
\n
--------------------------------"
<<
" Check Network Output_"
<<
i
<<
":"
<<
" -------------------------------------
\n
"
;
checkBuffer
(
matA
.
getData
(),
"network A output"
,
matB
.
getData
(),
"network B output"
,
matA
.
getElementCnt
(),
matA
.
getWidth
());
}
vector
<
ParameterPtr
>&
parametersA
=
comDataA
.
parameters
;
vector
<
ParameterPtr
>&
parametersB
=
comDataB
.
parameters
;
LOG
(
INFO
)
<<
"
\n\n
--------------------------------"
<<
" Check Gradient Machine Parameters:"
<<
" -------------------------------------
\n
"
;
for
(
size_t
i
=
0
;
i
<
parametersA
.
size
();
++
i
)
{
ParameterPtr
parameterA
,
parameterB
;
parameterA
=
parametersA
[
i
];
parameterB
=
parametersB
[
i
];
CpuVector
paraA
(
parameterA
->
getSize
());
CpuVector
paraB
(
parameterB
->
getSize
());
paraA
.
copyFrom
(
*
parameterA
->
getBuf
(
PARAMETER_VALUE
));
paraB
.
copyFrom
(
*
parameterB
->
getBuf
(
PARAMETER_VALUE
));
LOG
(
INFO
)
<<
"
\n\n
----------- PARAMETER_VALUE: "
<<
parameterA
->
getName
()
<<
" ; size : "
<<
paraA
.
getSize
()
<<
" ------------"
;
checkBuffer
(
paraA
.
getData
(),
"Network A"
,
paraB
.
getData
(),
"Network B"
,
paraA
.
getSize
());
CpuVector
gradA
(
*
parameterA
->
getBuf
(
PARAMETER_GRADIENT
));
CpuVector
gradB
(
*
parameterB
->
getBuf
(
PARAMETER_GRADIENT
));
LOG
(
INFO
)
<<
"
\n\n
----------- PARAMETER_GRADIENT: "
<<
parameterA
->
getName
()
<<
" ; size : "
<<
gradA
.
getSize
()
<<
" -----------"
;
checkBuffer
(
gradA
.
getData
(),
"Network A"
,
gradB
.
getData
(),
"Network B"
,
gradA
.
getSize
());
}
}
TEST
(
Trainer
,
create
)
{
ComData
dataA
;
calcGradient
(
dataA
,
FLAGS_config_file_a
);
LOG
(
INFO
)
<<
"
\n\n
training of Network A is finished
\n\n
"
;
ComData
dataB
;
calcGradient
(
dataB
,
FLAGS_config_file_b
);
LOG
(
INFO
)
<<
"
\n\n
training of the Network B is finished
\n\n
"
;
compareGradient
(
dataA
,
dataB
);
}
int
main
(
int
argc
,
char
**
argv
)
{
paddle
::
initMain
(
argc
,
argv
);
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initPython
(
argc
,
argv
);
#ifndef PADDLE_TYPE_DOUBLE
if
(
FLAGS_need_high_accuracy
)
{
LOG
(
INFO
)
<<
"skip test due to it's need high accuracy"
;
return
0
;
}
if
(
FLAGS_max_diff_ratio
==
0.0
f
)
{
FLAGS_max_diff_ratio
=
2e-4
;
LOG
(
INFO
)
<<
"auto set max_diff_ratio "
<<
FLAGS_max_diff_ratio
<<
" in low accuracy mode"
;
}
#else
if
(
FLAGS_max_diff_ratio
==
0.0
f
)
{
FLAGS_max_diff_ratio
=
2e-7
;
LOG
(
INFO
)
<<
"auto set max_diff_ratio "
<<
FLAGS_max_diff_ratio
<<
" in high accuracy mode"
;
}
#endif
int
ret
=
RUN_ALL_TESTS
();
return
ret
;
}
paddle/trainer/tests/test_PyDataProviderWrapper.cpp
浏览文件 @
ba868854
...
...
@@ -25,45 +25,9 @@ limitations under the License. */
#include <unordered_set>
#include "picojson.h"
void
checkEqual
(
const
paddle
::
Argument
&
expect
,
const
paddle
::
Argument
&
actual
);
void
checkValue
(
std
::
vector
<
paddle
::
Argument
>&
arguments
,
picojson
::
array
&
arr
);
const
std
::
string
kDir
=
"./trainer/tests/pydata_provider_wrapper_dir/"
;
TEST
(
PyDataProviderWrapper
,
NoSequenceData
)
{
paddle
::
DataConfig
conf
;
conf
.
set_type
(
"py"
);
conf
.
set_load_data_module
(
std
::
string
(
"testPyDataWrapper"
));
conf
.
set_load_data_object
(
std
::
string
(
"processNonSequenceData"
));
conf
.
set_async_load_data
(
false
);
conf
.
clear_files
();
conf
.
set_files
(
kDir
+
"test_pydata_provider_wrapper.list"
);
paddle
::
DataProviderPtr
provider
(
paddle
::
DataProvider
::
create
(
conf
,
false
));
provider
->
setSkipShuffle
();
provider
->
reset
();
paddle
::
DataBatch
batchFromPy
;
provider
->
getNextBatch
(
100
,
&
batchFromPy
);
paddle
::
DataConfig
conf2
;
conf2
.
set_type
(
"proto"
);
conf2
.
set_async_load_data
(
false
);
conf2
.
clear_files
();
conf2
.
set_files
(
kDir
+
"test_pydata_provider_wrapper.protolist"
);
provider
.
reset
(
paddle
::
DataProvider
::
create
(
conf2
,
false
));
provider
->
setSkipShuffle
();
provider
->
reset
();
paddle
::
DataBatch
batchFromProto
;
provider
->
getNextBatch
(
100
,
&
batchFromProto
);
std
::
vector
<
paddle
::
Argument
>&
pyArguments
=
batchFromPy
.
getStreams
();
std
::
vector
<
paddle
::
Argument
>&
protoArguments
=
batchFromProto
.
getStreams
();
EXPECT_EQ
(
pyArguments
.
size
(),
protoArguments
.
size
());
for
(
size_t
i
=
0
;
i
<
pyArguments
.
size
();
++
i
)
{
checkEqual
(
protoArguments
[
i
],
pyArguments
[
i
]);
}
}
TEST
(
PyDataProviderWrapper
,
SequenceData
)
{
paddle
::
DataConfig
conf
;
conf
.
set_type
(
"py"
);
...
...
@@ -148,66 +112,6 @@ int main(int argc, char** argv) {
return
RUN_ALL_TESTS
();
}
void
checkEqual
(
const
paddle
::
Argument
&
expect
,
const
paddle
::
Argument
&
actual
)
{
if
(
expect
.
value
)
{
EXPECT_TRUE
(
actual
.
value
!=
nullptr
);
paddle
::
Matrix
*
e
=
expect
.
value
.
get
();
paddle
::
Matrix
*
a
=
actual
.
value
.
get
();
EXPECT_EQ
(
e
->
getWidth
(),
a
->
getWidth
());
EXPECT_EQ
(
e
->
getHeight
(),
a
->
getHeight
());
if
(
dynamic_cast
<
paddle
::
CpuSparseMatrix
*>
(
e
))
{
paddle
::
CpuSparseMatrix
*
se
=
dynamic_cast
<
paddle
::
CpuSparseMatrix
*>
(
e
);
paddle
::
CpuSparseMatrix
*
sa
=
dynamic_cast
<
paddle
::
CpuSparseMatrix
*>
(
a
);
EXPECT_EQ
(
se
->
getFormat
(),
sa
->
getFormat
());
EXPECT_EQ
(
se
->
getElementCnt
(),
sa
->
getElementCnt
());
size_t
rowSize
=
se
->
getFormat
()
==
paddle
::
SPARSE_CSC
?
se
->
getElementCnt
()
:
se
->
getHeight
()
+
1
;
size_t
colSize
=
se
->
getFormat
()
==
paddle
::
SPARSE_CSC
?
se
->
getWidth
()
+
1
:
se
->
getElementCnt
();
for
(
size_t
i
=
0
;
i
<
rowSize
;
++
i
)
{
EXPECT_EQ
(
se
->
getRows
()[
i
],
sa
->
getRows
()[
i
]);
}
for
(
size_t
i
=
0
;
i
<
colSize
;
++
i
)
{
EXPECT_EQ
(
se
->
getCols
()[
i
],
sa
->
getCols
()[
i
]);
}
if
(
se
->
getValueType
()
==
paddle
::
FLOAT_VALUE
)
{
EXPECT_EQ
(
paddle
::
FLOAT_VALUE
,
sa
->
getValueType
());
for
(
size_t
i
=
0
;
i
<
se
->
getElementCnt
();
++
i
)
{
EXPECT_EQ
(
se
->
getValue
()[
i
],
sa
->
getValue
()[
i
]);
}
}
}
else
if
(
dynamic_cast
<
paddle
::
CpuMatrix
*>
(
e
))
{
EXPECT_EQ
(
e
->
getElementCnt
(),
a
->
getElementCnt
());
for
(
size_t
i
=
0
;
i
<
e
->
getElementCnt
();
++
i
)
{
EXPECT_EQ
(
e
->
getData
()[
i
],
a
->
getData
()[
i
]);
}
}
}
if
(
expect
.
ids
)
{
EXPECT_TRUE
(
actual
.
ids
!=
nullptr
);
paddle
::
VectorT
<
int
>*
e
=
expect
.
ids
.
get
();
paddle
::
VectorT
<
int
>*
a
=
actual
.
ids
.
get
();
EXPECT_EQ
(
e
->
getSize
(),
a
->
getSize
());
for
(
size_t
i
=
0
;
i
<
e
->
getSize
();
++
i
)
{
EXPECT_EQ
(
e
->
getData
()[
i
],
a
->
getData
()[
i
]);
}
}
if
(
expect
.
strs
)
{
EXPECT_TRUE
(
actual
.
strs
!=
nullptr
);
std
::
vector
<
std
::
string
>*
e
=
expect
.
strs
.
get
();
std
::
vector
<
std
::
string
>*
a
=
actual
.
strs
.
get
();
EXPECT_EQ
(
e
->
size
(),
a
->
size
());
for
(
size_t
i
=
0
;
i
<
e
->
size
();
++
i
)
{
EXPECT_EQ
((
*
e
)[
i
],
(
*
a
)[
i
]);
}
}
}
void
checkValue
(
std
::
vector
<
paddle
::
Argument
>&
arguments
,
picojson
::
array
&
arr
)
{
// CHECK SLOT 0, Sparse Value.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录