未验证 提交 ba2a1bb4 编写于 作者: H Huihuang Zheng 提交者: GitHub

[cherry-pick] Add Det and Slogdet API to Release 2.2 (#36083)

This PR added det and slogdet API to release/2.2
It is cherry-pick from #34992 and #36013
上级 05621f7f
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/determinant_op.h"
namespace paddle {
namespace operators {
class DeterminantOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "determinant");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "determinant");
}
};
class DeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input", "(Tensor) The input tensor of determinant.");
AddOutput("Out",
"(Tensor) The output Tensor containing the determinant"
"value of a square matrix or batches of square matrices ");
AddComment(R"DOC(
Determinant Operator.)DOC");
}
};
class DeterminantGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
"DeterminantGradOp");
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "DeterminantGradOp");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
framework::GradVarName("Out"), "DeterminantGradOp");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")), "Output",
framework::GradVarName("Input"), "DeterminantGradOp");
ctx->SetOutputDim(framework::GradVarName("Input"),
ctx->GetInputDim("Input"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class DeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("determinant_grad");
grad_op->SetInput("Input", this->Input("Input"));
grad_op->SetInput("Out", this->Output("Out"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("Input"),
this->InputGrad("Input"));
grad_op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(DeterminantGradNoNeedBufferVarsInferer,
"Input");
class SlogDeterminantOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "determinant");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "determinant");
}
};
class SlogDeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input", "(Tensor) The input tensor of SlogDeterminant.");
AddOutput("Out",
"(Tensor) The output tensor containing the sign of the"
"determinant and the natural logarithm"
"of the absolute value of determinant,");
AddComment(R"DOC(
SlogDeterminant Operator.)DOC");
}
};
class SlogDeterminantGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
"SlogDeterminantGradOp");
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out",
"SlogDeterminantGradOp");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
framework::GradVarName("Out"), "SlogDeterminantGradOp");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")), "Output",
framework::GradVarName("Input"), "SlogDeterminantGradOp");
ctx->SetOutputDim(framework::GradVarName("Input"),
ctx->GetInputDim("Input"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class SlogDeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("slogdeterminant_grad");
grad_op->SetInput("Input", this->Input("Input"));
grad_op->SetInput("Out", this->Output("Out"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("Input"),
this->InputGrad("Input"));
grad_op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SlogDeterminantGradNoNeedBufferVarsInferer,
"Input");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(determinant, ops::DeterminantOp, ops::DeterminantOpMaker,
ops::DeterminantGradOpMaker<paddle::framework::OpDesc>,
ops::DeterminantGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(determinant_grad, ops::DeterminantGradOp)
REGISTER_OP_CPU_KERNEL(determinant,
ops::DeterminantKernel<plat::CPUDeviceContext, float>,
ops::DeterminantKernel<plat::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
determinant_grad, ops::DeterminantGradKernel<plat::CPUDeviceContext, float>,
ops::DeterminantGradKernel<plat::CPUDeviceContext, double>);
REGISTER_OPERATOR(slogdeterminant, ops::SlogDeterminantOp,
ops::SlogDeterminantOpMaker,
ops::SlogDeterminantGradOpMaker<paddle::framework::OpDesc>,
ops::SlogDeterminantGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(slogdeterminant_grad,
ops::SlogDeterminantGradOp) // reuse det grad op
REGISTER_OP_CPU_KERNEL(
slogdeterminant, ops::SlogDeterminantKernel<plat::CPUDeviceContext, float>,
ops::SlogDeterminantKernel<plat::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
slogdeterminant_grad,
ops::SlogDeterminantGradKernel<plat::CPUDeviceContext, float>,
ops::SlogDeterminantGradKernel<plat::CPUDeviceContext, double>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/determinant_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
determinant, ops::DeterminantKernel<plat::CUDADeviceContext, float>,
ops::DeterminantKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
determinant_grad,
ops::DeterminantGradKernel<plat::CUDADeviceContext, float>,
ops::DeterminantGradKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
slogdeterminant, ops::SlogDeterminantKernel<plat::CUDADeviceContext, float>,
ops::SlogDeterminantKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
slogdeterminant_grad,
ops::SlogDeterminantGradKernel<plat::CUDADeviceContext, float>,
ops::SlogDeterminantGradKernel<plat::CUDADeviceContext, double>);
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Dense>
#include <Eigen/LU>
#include <algorithm>
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/math/matrix_inverse.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
T sign(T val) {
return static_cast<T>(T(0) < val) - (val < T(0));
}
template <typename T>
class EigenMatrix {};
template <>
class EigenMatrix<float> {
public:
using MatrixType = Eigen::MatrixXf;
};
template <>
class EigenMatrix<double> {
public:
using MatrixType = Eigen::MatrixXd;
};
inline int64_t GetBatchCount(const framework::DDim dims) {
int64_t batch_count = 1;
auto dim_size = dims.size();
PADDLE_ENFORCE_GE(
dim_size, 2,
platform::errors::InvalidArgument(
"the input matrix dimension size should greater than 2."));
// Cumulative multiplying each dimension until the last 2 to get the batch
// count,
// for example a tensor with shape [3,3,3,3], the batch count of matrices is
// 9.
for (int64_t i = 0; i < dims.size() - 2; i++) {
batch_count *= dims[i];
}
return batch_count;
}
template <typename T>
struct DeterminantFunctor {
void operator()(const Tensor& input, const framework::ExecutionContext ctx,
int64_t rank, int64_t batch_count, Tensor* output) {
std::vector<T> input_vec;
std::vector<T> output_vec;
framework::TensorToVector(input, ctx.device_context(), &input_vec);
for (int64_t i = 0; i < batch_count; ++i) { // maybe can be parallel
auto begin_iter = input_vec.begin() + i * rank * rank;
auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
std::vector<T> sub_vec(begin_iter,
end_iter); // get every square matrix data
typename EigenMatrix<T>::MatrixType matrix(rank, rank);
for (int64_t i = 0; i < rank; ++i) {
for (int64_t j = 0; j < rank; ++j) {
matrix(i, j) = sub_vec[rank * i + j];
}
}
output_vec.push_back(matrix.determinant());
}
framework::TensorFromVector(output_vec, output);
}
};
template <typename DeviceContext, typename T>
class DeterminantKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<framework::Tensor>("Input");
auto input_dim = vectorize(input->dims());
auto input_dim_size = input_dim.size();
auto* output = context.Output<framework::Tensor>("Out");
auto batch_count = GetBatchCount(input->dims());
VLOG(2) << "input dim:" << input->dims();
PADDLE_ENFORCE_GE(
input_dim_size, 2,
platform::errors::InvalidArgument(
"the input matrix dimension size should greater than 2."));
PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1],
input_dim[input_dim_size - 2],
platform::errors::InvalidArgument(
"the input matrix should be square matrix."));
auto rank = input_dim[input_dim_size - 1]; // square matrix length
DeterminantFunctor<T>()(*input, context, rank, batch_count, output);
auto output_dims =
framework::slice_ddim(input->dims(), 0, input_dim_size - 2);
if (input_dim_size > 2) {
output->Resize(output_dims);
} else {
// when input is a two-dimension matrix, The det value is a number.
output->Resize({1});
}
VLOG(2) << "output dim:" << output->dims();
}
};
template <typename T>
struct FoundZeroFunctor {
FoundZeroFunctor(const T* x, int64_t numel, bool* res)
: x_(x), numel_(numel), res_(res) {}
HOSTDEVICE void operator()(size_t idx) const {
if (*res_ || idx >= static_cast<size_t>(numel_)) {
// founded zero number
return;
}
*res_ = (x_[idx] == static_cast<T>(0));
}
const T* x_;
int64_t numel_;
bool* res_;
};
template <typename DeviceContext, typename T>
inline bool CheckMatrixInvertible(const framework::ExecutionContext& ctx,
const framework::Tensor* det) {
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto numel = det->numel();
framework::Tensor dev_tensor;
auto* data = dev_tensor.mutable_data<bool>({1}, ctx.GetPlace());
// set false
math::SetConstant<DeviceContext, bool> zero;
zero(dev_ctx, &dev_tensor, false);
// find whether zero
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
FoundZeroFunctor<T> functor(det->data<T>(), numel, data);
for_range(functor);
// copy to host
dev_ctx.Wait();
framework::Tensor cpu_tensor;
framework::TensorCopy(dev_tensor, platform::CPUPlace(), &cpu_tensor);
// if founded zero, the matrix is not invertible
// else the matrix is invertible
auto* res = cpu_tensor.data<bool>();
return !(*res);
}
template <typename DeviceContext, typename T>
class DeterminantGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto& dev_ctx = context.template device_context<DeviceContext>();
const auto* input = context.Input<framework::Tensor>("Input");
const auto* det = context.Input<framework::Tensor>("Out");
const auto* grad =
context.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* ddet =
context.Output<framework::Tensor>(framework::GradVarName("Input"));
auto input_dims_size = input->dims().size();
if (input_dims_size > 2) {
PADDLE_ENFORCE_EQ(
grad->dims().size() + 2, input_dims_size,
platform::errors::InvalidArgument(
"The grad tensor of det dims size should 2 less than"
" input tensor's, but here differ %d",
input_dims_size - grad->dims().size()));
} else if (input_dims_size == 2) {
// input dims size 2 and grad dims size 1 is possible
PADDLE_ENFORCE_EQ(
grad->dims().size(), 1,
platform::errors::InvalidArgument(
"The grad tensor of det dims size should 2 less than"
" input tensor's, but here differ %d",
input_dims_size - grad->dims().size()));
} else {
// checked in forward, pass
}
// Check Whether the matrix is invertible
// (matrix A not invertible) == (det(A)=0)
if (!CheckMatrixInvertible<DeviceContext, T>(context, det)) {
// The matrix is not invertible
VLOG(3) << "The input matrix not invertible!";
ddet->Resize(input->dims());
ddet->mutable_data<T>(context.GetPlace());
math::SetConstant<DeviceContext, T> zero;
zero(dev_ctx, ddet, static_cast<T>(0.0f));
return;
}
// The matrix is invertible
// let |A| = Determinant(A)
// Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
// we set d|A| = unsqueeze(dA * |A|, [-1, -2]) * inverse(A).transpose(-2,
// -1)
math::DeviceIndependenceTensorOperations<DeviceContext, T> helper(context);
// First: inverse(A)
framework::Tensor inverse_A;
// A must be square matrices!
inverse_A.Resize(input->dims());
inverse_A.mutable_data<T>(context.GetPlace());
math::MatrixInverseFunctor<DeviceContext, T> mat_inv;
mat_inv(dev_ctx, *input, &inverse_A);
VLOG(3) << "inverse(A) dims: " << inverse_A.dims();
// Second: inverse(A).transpose(-2, -1)
framework::Tensor transpose_inverse_A = helper.Transpose(inverse_A);
VLOG(3) << "(dA * |A|).transpose(-2, -1) dims: "
<< transpose_inverse_A.dims();
// Third: dA * |A|
auto mul_dA_detA = helper.Mul(*grad, *det);
VLOG(3) << "dA * |A| dims: " << mul_dA_detA.dims();
// Fourth: unsqueeze(dA * |A|, [-1, -2])
auto unsqueeze1 = helper.Unsqueeze(mul_dA_detA, -1);
auto unsqueeze2 = helper.Unsqueeze(unsqueeze1, -2);
VLOG(3) << "unsqueezed(dA * |A|) dims: " << unsqueeze2.dims();
// Finally: unsqueeze(dA * |A|) * inverse(A)
auto res = helper.Mul(unsqueeze2, transpose_inverse_A);
VLOG(3) << "unsqueeze(dA * |A|) * inverse(A) dims: " << res.dims();
framework::TensorCopy(res, context.GetPlace(), ddet);
ddet->Resize(input->dims());
VLOG(3) << "d|A| dims: " << ddet->dims();
}
};
template <typename T>
struct SlogDeterminantFunctor {
void operator()(const Tensor& input, const framework::ExecutionContext ctx,
int64_t rank, int64_t batch_count, Tensor* output) {
std::vector<T> input_vec;
std::vector<T> sign_vec;
std::vector<T> log_vec;
std::vector<T> output_vec;
framework::TensorToVector(input, ctx.device_context(), &input_vec);
for (int64_t i = 0; i < batch_count; ++i) { // maybe can be parallel
auto begin_iter = input_vec.begin() + i * rank * rank;
auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
std::vector<T> sub_vec(begin_iter,
end_iter); // get every square matrix data
typename EigenMatrix<T>::MatrixType matrix(rank, rank);
for (int64_t i = 0; i < rank; ++i) {
for (int64_t j = 0; j < rank; ++j) {
matrix(i, j) = sub_vec[rank * i + j];
}
}
VLOG(2) << "det value: " << matrix.determinant();
VLOG(2) << "matrix val: " << matrix;
auto det_val = matrix.determinant();
sign_vec.push_back(sign(det_val));
det_val >= 0
? log_vec.push_back(std::log(det_val))
: log_vec.push_back(std::log(std::abs(
det_val))); // for computing log value of a negative value.
}
// merge sign_vec and log_vec as final output_vec
output_vec.insert(output_vec.end(), sign_vec.begin(), sign_vec.end());
output_vec.insert(output_vec.end(), log_vec.begin(), log_vec.end());
framework::TensorFromVector(output_vec, output);
}
};
template <typename DeviceContext, typename T>
class SlogDeterminantKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<framework::Tensor>("Input");
auto input_dim = vectorize(input->dims());
auto input_dim_size = input_dim.size();
auto* output = context.Output<framework::Tensor>("Out");
auto batch_count = GetBatchCount(input->dims());
VLOG(2) << "input dim:" << input->dims();
PADDLE_ENFORCE_GE(
input_dim_size, 2,
platform::errors::InvalidArgument(
"the input matrix dimension size should greater than 2."));
PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1],
input_dim[input_dim_size - 2],
platform::errors::InvalidArgument(
"the input matrix should be square matrix."));
auto rank = input_dim[input_dim_size - 1]; // square matrix length
SlogDeterminantFunctor<T>()(*input, context, rank, batch_count, output);
std::vector<int> output_dim_vec(input_dim.begin(), input_dim.end() - 2);
if (input_dim.size() == static_cast<size_t>(2)) {
// when input is a two-dimension matrix, The det value is a number.
output_dim_vec = {1};
}
output_dim_vec.insert(output_dim_vec.begin(),
2); // make the output dims as same as numpy
auto output_dims = framework::make_ddim(output_dim_vec);
output->Resize(output_dims);
VLOG(2) << "output dim:" << output->dims();
}
};
template <typename DeviceContext, typename T>
class SlogDeterminantGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto& dev_ctx = context.template device_context<DeviceContext>();
const auto* input = context.Input<framework::Tensor>("Input");
const auto* slogdet = context.Input<framework::Tensor>("Out");
const auto* grad =
context.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dslogdet =
context.Output<framework::Tensor>(framework::GradVarName("Input"));
PADDLE_ENFORCE_EQ(grad->dims()[0], 2,
platform::errors::InvalidArgument(
"The grad tensor of SlogDet should contain two"
" grad: sign and absslogdet, but here %ld.",
grad->dims()[0]));
if (input->dims().size() > 2) {
PADDLE_ENFORCE_EQ(
grad->dims().size() + 1, input->dims().size(),
platform::errors::InvalidArgument(
"The grad tensor of slogdet dims size should 1 less than"
" input tensor's, but here differ %d",
input->dims().size() - grad->dims().size()));
}
// Check Whether the matrix is invertible
// (matrix A not invertible) == (absslogdet(A)=0)
auto slogdet_vec = slogdet->Split(1, 0);
auto absslogdet_val = slogdet_vec[0];
if (!CheckMatrixInvertible<DeviceContext, T>(context, &absslogdet_val)) {
// The matrix is not invertible
VLOG(3) << "The input matrix not invertible!";
dslogdet->Resize(input->dims());
dslogdet->mutable_data<T>(context.GetPlace());
math::SetConstant<DeviceContext, T> zero;
zero(dev_ctx, dslogdet, std::numeric_limits<T>::quiet_NaN());
return;
}
// The matrix is invertible
// let sl|A| = SlogDeterminant(A)
// Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
// we set dsl|A| = unsqueeze(dslA, [-1, -2]) *
// inverse(A).conj().transpose(-2, -1)
math::DeviceIndependenceTensorOperations<DeviceContext, T> helper(context);
// First: inverse(A)
framework::Tensor inverse_A;
// A must be square matrices!
inverse_A.Resize(input->dims());
inverse_A.mutable_data<T>(context.GetPlace());
math::MatrixInverseFunctor<DeviceContext, T> mat_inv;
mat_inv(dev_ctx, *input, &inverse_A);
VLOG(3) << "inverse(A) dims: " << inverse_A.dims();
// Second: inverse(A).conj()
framework::Tensor conj_inverse_A;
conj_inverse_A.Resize(inverse_A.dims());
auto numel = input->numel();
auto* conj_data = conj_inverse_A.mutable_data<T>(context.GetPlace(),
size_t(numel * sizeof(T)));
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
math::ConjFunctor<T> functor(inverse_A.data<T>(), numel, conj_data);
for_range(functor);
VLOG(3) << "inverse(A).conj() dims: " << conj_inverse_A.dims();
// Third: inverse(A).conj().transpose(-2, -1)
framework::Tensor transpose_inverse_A = helper.Transpose(conj_inverse_A);
VLOG(3) << "inverse(A).conj().transpose(-2, -1) dims: "
<< transpose_inverse_A.dims();
// Fourth: split grad value to [sign_grad, absslogdet_grad]
auto grad_vec = grad->Split(1, 0);
auto det_grad = grad_vec[1];
// remmove useless first dimension
int det_grad_size = det_grad.dims().size();
std::vector<int> det_grad_vec;
for (int i = 1; i < det_grad_size; ++i) {
det_grad_vec.emplace_back(det_grad.dims()[i]);
}
det_grad.Resize(det_grad.dims().reshape(det_grad_vec));
// Fifth: unsqueeze(dslA, [-1, -2])
auto unsqueeze1 = helper.Unsqueeze(det_grad, -1);
auto unsqueeze2 = helper.Unsqueeze(unsqueeze1, -2);
VLOG(3) << "unsqueezed(dslA, [-1, -2]) dims: " << unsqueeze2.dims();
// Finally: unsqueeze(dslA) * inverse(A)
auto res = helper.Mul(unsqueeze2, transpose_inverse_A);
VLOG(3) << "unsqueeze(dslA) * inverse(A) dims: " << res.dims();
framework::TensorCopy(res, context.GetPlace(), dslogdet);
dslogdet->Resize(input->dims());
VLOG(3) << "dsl|A| dims: " << dslogdet->dims();
}
};
} // namespace operators
} // namespace paddle
...@@ -101,6 +101,8 @@ from .tensor.linalg import cholesky # noqa: F401 ...@@ -101,6 +101,8 @@ from .tensor.linalg import cholesky # noqa: F401
from .tensor.linalg import bmm # noqa: F401 from .tensor.linalg import bmm # noqa: F401
from .tensor.linalg import histogram # noqa: F401 from .tensor.linalg import histogram # noqa: F401
from .tensor.linalg import mv # noqa: F401 from .tensor.linalg import mv # noqa: F401
from .tensor.linalg import det # noqa: F401
from .tensor.linalg import slogdet # noqa: F401
from .tensor.linalg import multi_dot # noqa: F401 from .tensor.linalg import multi_dot # noqa: F401
from .tensor.linalg import matrix_power # noqa: F401 from .tensor.linalg import matrix_power # noqa: F401
from .tensor.linalg import svd # noqa: F401 from .tensor.linalg import svd # noqa: F401
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.tensor as tensor
paddle.enable_static()
class TestDeterminantOp(OpTest):
def setUp(self):
self.init_data()
self.op_type = "determinant"
self.outputs = {'Out': self.target}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['Input'], ['Out'])
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(3, 3, 3, 5, 5).astype('float64')
self.inputs = {'Input': self.case}
self.target = np.linalg.det(self.case)
class TestDeterminantOpCase1(TestDeterminantOp):
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(10, 10).astype('float32')
self.inputs = {'Input': self.case}
self.target = np.linalg.det(self.case)
class TestDeterminantOpCase2(TestDeterminantOp):
def init_data(self):
np.random.seed(0)
# not invertible matrix
self.case = np.ones([4, 2, 4, 4]).astype('float64')
self.inputs = {'Input': self.case}
self.target = np.linalg.det(self.case)
class TestDeterminantAPI(unittest.TestCase):
def setUp(self):
np.random.seed(0)
self.shape = [3, 3, 5, 5]
self.x = np.random.random(self.shape).astype(np.float32)
self.place = paddle.CPUPlace()
def test_api_static(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.fluid.data('X', self.shape)
out = paddle.linalg.det(x)
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x}, fetch_list=[out])
out_ref = np.linalg.det(self.x)
for out in res:
self.assertEqual(np.allclose(out, out_ref, rtol=1e-03), True)
def test_api_dygraph(self):
paddle.disable_static(self.place)
x_tensor = paddle.to_tensor(self.x)
out = paddle.linalg.det(x_tensor)
out_ref = np.linalg.det(self.x)
self.assertEqual(np.allclose(out.numpy(), out_ref, rtol=1e-03), True)
paddle.enable_static()
class TestSlogDeterminantOp(OpTest):
def setUp(self):
self.op_type = "slogdeterminant"
self.init_data()
self.outputs = {'Out': self.target}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
# the slog det's grad value is always huge
self.check_grad(['Input'], ['Out'], max_relative_error=0.1)
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(4, 5, 5).astype('float64')
self.inputs = {'Input': self.case}
self.target = np.array(np.linalg.slogdet(self.case))
class TestSlogDeterminantOpCase1(TestSlogDeterminantOp):
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(2, 2, 5, 5).astype(np.float32)
self.inputs = {'Input': self.case}
self.target = np.array(np.linalg.slogdet(self.case))
class TestSlogDeterminantAPI(unittest.TestCase):
def setUp(self):
np.random.seed(0)
self.shape = [3, 3, 5, 5]
self.x = np.random.random(self.shape).astype(np.float32)
self.place = paddle.CPUPlace()
def test_api_static(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.fluid.data('X', self.shape)
out = paddle.linalg.slogdet(x)
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x}, fetch_list=[out])
out_ref = np.array(np.linalg.slogdet(self.x))
for out in res:
self.assertEqual(np.allclose(out, out_ref, rtol=1e-03), True)
def test_api_dygraph(self):
paddle.disable_static(self.place)
x_tensor = paddle.to_tensor(self.x)
out = paddle.linalg.slogdet(x_tensor)
out_ref = np.array(np.linalg.slogdet(self.x))
self.assertEqual(np.allclose(out.numpy(), out_ref, rtol=1e-03), True)
paddle.enable_static()
if __name__ == '__main__':
unittest.main()
...@@ -23,6 +23,8 @@ from .tensor.linalg import multi_dot # noqa: F401 ...@@ -23,6 +23,8 @@ from .tensor.linalg import multi_dot # noqa: F401
from .tensor.linalg import matrix_rank from .tensor.linalg import matrix_rank
from .tensor.linalg import svd from .tensor.linalg import svd
from .tensor.linalg import eigh # noqa: F401 from .tensor.linalg import eigh # noqa: F401
from .tensor.linalg import det
from .tensor.linalg import slogdet
from .tensor.linalg import pinv from .tensor.linalg import pinv
__all__ = [ __all__ = [
...@@ -35,6 +37,8 @@ __all__ = [ ...@@ -35,6 +37,8 @@ __all__ = [
'matrix_rank', 'matrix_rank',
'svd', 'svd',
'matrix_power', 'matrix_power',
'det',
'slogdet',
'eigh', 'eigh',
'pinv', 'pinv',
'solve' 'solve'
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import numpy as np import numpy as np
from ..fluid.layer_helper import LayerHelper from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
from ..fluid.framework import in_dygraph_mode, _varbase_creator, Variable from ..fluid.framework import in_dygraph_mode, _varbase_creator, Variable
from ..fluid.layers import transpose, cast # noqa: F401 from ..fluid.layers import transpose, cast # noqa: F401
...@@ -1351,6 +1351,109 @@ def mv(x, vec, name=None): ...@@ -1351,6 +1351,109 @@ def mv(x, vec, name=None):
return out return out
def det(x):
"""
Calculates determinant value of a square matrix or batches of square matrices.
Args:
x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size
`(*, n, n)` where `*` is one or more batch dimensions.
Returns:
y (Tensor):the determinant value of a square matrix or batches of square matrices.
Example:
.. code-block:: python
import paddle
x = paddle.randn([3,3,3])
A = paddle.det(x)
print(A)
# [ 0.02547996, 2.52317095, -6.15900707])
"""
if in_dygraph_mode():
return core.ops.determinant(x)
check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')
input_shape = list(x.shape)
assert len(input_shape) >= 2, \
"The x must be at least 2-dimensional, " \
"but received Input x's dimensional: %s.\n" % \
len(input_shape)
assert (input_shape[-1] == input_shape[-2]), \
"Expect squared input," \
"but received %s by %s matrix.\n" \
%(input_shape[-2], input_shape[-1]) \
helper = LayerHelper('determinant', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]})
return out
def slogdet(x):
"""
Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
The determinant can be computed with ``sign * exp(logabsdet)
Supports input of float, double
Note that for matrices that have zero determinant, this returns ``(0, -inf)``
Args:
x (Tensor): the batch of matrices of size :math:`(*, n, n)`
where math:`*` is one or more batch dimensions.
Returns:
y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
of the absolute value of determinant, respectively.
Example:
.. code-block:: python
import paddle
x = paddle.randn([3,3,3])
A = paddle.slogdet(x)
print(A)
# [[ 1. , 1. , -1. ],
# [-0.98610914, -0.43010661, -0.10872950]])
"""
if in_dygraph_mode():
return core.ops.slogdeterminant(x)
check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
input_shape = list(x.shape)
assert len(input_shape) >= 2, \
"The x must be at least 2-dimensional, " \
"but received Input x's dimensional: %s.\n" % \
len(input_shape)
assert (input_shape[-1] == input_shape[-2]), \
"Expect squared input," \
"but received %s by %s matrix.\n" \
%(input_shape[-2], input_shape[-1]) \
helper = LayerHelper('slogdeterminant', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]})
return out
def svd(x, full_matrices=False, name=None): def svd(x, full_matrices=False, name=None):
r""" r"""
Computes the singular value decomposition of one matrix or a batch of regular matrices. Computes the singular value decomposition of one matrix or a batch of regular matrices.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册