Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b9a4b2ee
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b9a4b2ee
编写于
8月 24, 2017
作者:
Q
Qiao Longfei
提交者:
GitHub
8月 24, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3564 from jacquesqiao/mnist
init mnist
上级
8a63a8ab
625b1535
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
250 addition
and
0 deletion
+250
-0
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/mnist.py
python/paddle/v2/framework/tests/mnist.py
+249
-0
未找到文件。
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
b9a4b2ee
...
@@ -29,3 +29,4 @@ py_test(test_recurrent_op SRCS test_recurrent_op.py)
...
@@ -29,3 +29,4 @@ py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test
(
test_sgd_op SRCS test_sgd_op.py
)
py_test
(
test_sgd_op SRCS test_sgd_op.py
)
py_test
(
test_gradient_checker SRCS test_gradient_checker.py
)
py_test
(
test_gradient_checker SRCS test_gradient_checker.py
)
py_test
(
test_scale_and_identity_op SRCS test_scale_and_identity_op.py
)
py_test
(
test_scale_and_identity_op SRCS test_scale_and_identity_op.py
)
py_test
(
mnist SRCS mnist.py
)
python/paddle/v2/framework/tests/mnist.py
0 → 100644
浏览文件 @
b9a4b2ee
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
import
numpy
import
paddle.v2
as
paddle
BATCH_SIZE
=
100
scope
=
core
.
Scope
()
place
=
core
.
CPUPlace
()
# if you want to test GPU training, you can use gpu place
# place = core.GPUPlace(0)
dev_ctx
=
core
.
DeviceContext
.
create
(
place
)
init_net
=
core
.
Net
.
create
()
forward_net
=
core
.
Net
.
create
()
backward_net
=
None
optimize_net
=
core
.
Net
.
create
()
def
atomic_id
():
id
=
0
while
True
:
yield
id
id
+=
1
uniq_id
=
atomic_id
().
next
def
data_layer
(
name
,
dims
):
var
=
scope
.
new_var
(
name
)
tensor
=
var
.
get_tensor
()
tensor
.
set_dims
(
dims
)
# 1 is batch size holder.
return
name
def
feed_data
(
name
,
data
):
assert
isinstance
(
data
,
numpy
.
ndarray
)
tensor
=
scope
.
find_var
(
name
).
get_tensor
()
tensor
.
set_dims
(
data
.
shape
)
if
data
.
dtype
==
numpy
.
dtype
(
'int32'
):
tensor
.
alloc_int
(
place
)
elif
data
.
dtype
==
numpy
.
dtype
(
'float32'
):
tensor
.
alloc_float
(
place
)
else
:
raise
ValueError
(
"data type not supported"
)
tensor
.
set
(
data
,
place
)
def
grad_var_name
(
var_name
):
return
var_name
+
"@GRAD"
def
sgd_optimizer
(
net
,
param_name
,
learning_rate
=
0.005
):
grad_name
=
grad_var_name
(
param_name
)
optimize_op
=
Operator
(
"sgd"
,
param
=
param_name
,
grad
=
grad_name
,
param_out
=
param_name
,
learning_rate
=
learning_rate
)
net
.
append_op
(
optimize_op
)
# should use operator and add these to the init_network
def
init_param
(
net
,
param_name
,
dims
):
scope
.
new_var
(
param_name
)
op
=
Operator
(
"uniform_random"
,
Out
=
param_name
,
dims
=
dims
,
min
=-
0.5
,
max
=
0.5
,
seed
=
10
)
op
.
infer_shape
(
scope
)
net
.
append_op
(
op
)
# fc_layer
def
fc_layer
(
net
,
input
,
size
,
act
=
"softmax"
,
bias
=
True
,
param
=
None
,
name
=
None
):
"""
Add a fc layer to net
:param input: input variable name.
:type input: str
:param size: fully connected layer size.
:param act: activation name
:param param: parameter attribute, used for initialize parameters.
:param bias: bias attribute. False will not have a bias.
:param name: the name of fc layer. If not set, model will generate a
readable name
:return: output variable name.
"""
if
name
is
None
:
name
=
'fc_%d'
%
uniq_id
()
if
not
isinstance
(
name
,
str
):
raise
ValueError
(
"name should be string"
)
input_dims
=
scope
.
find_var
(
input
).
get_tensor
().
get_dims
()
w_name
=
param
or
name
+
".w"
init_param
(
net
=
init_net
,
param_name
=
w_name
,
dims
=
[
input_dims
[
1
],
size
])
sgd_optimizer
(
net
=
optimize_net
,
param_name
=
w_name
,
learning_rate
=
0.01
)
pre_activation
=
name
+
".mul.out"
scope
.
new_var
(
pre_activation
)
mul_op
=
Operator
(
"mul"
,
X
=
input
,
Y
=
w_name
,
Out
=
pre_activation
)
net
.
append_op
(
mul_op
)
# create bias variable if needed
if
bias
:
bias_name
=
name
+
".b"
init_param
(
net
=
init_net
,
param_name
=
bias_name
,
dims
=
[
size
])
sgd_optimizer
(
net
=
optimize_net
,
param_name
=
bias_name
,
learning_rate
=
0.001
)
bias_out
=
name
+
".rowwise_add.out"
scope
.
new_var
(
bias_out
)
rowwise_append_op
=
Operator
(
"rowwise_add"
,
X
=
pre_activation
,
b
=
bias_name
,
Out
=
bias_out
)
net
.
append_op
(
rowwise_append_op
)
pre_activation
=
bias_out
activation_op
=
Operator
(
act
,
X
=
pre_activation
,
Y
=
name
)
net
.
append_op
(
activation_op
)
scope
.
new_var
(
name
)
net
.
infer_shape
(
scope
)
return
name
def
cross_entropy_layer
(
net
,
input
,
label
):
cost_name
=
'cross_entropy_%d'
%
uniq_id
()
cross_entropy_op
=
Operator
(
"onehot_cross_entropy"
,
X
=
input
,
label
=
label
,
Y
=
cost_name
)
net
.
append_op
(
cross_entropy_op
)
scope
.
new_var
(
cost_name
)
net
.
infer_shape
(
scope
)
return
cost_name
def
create_backward_net
(
forward_net
):
net
=
core
.
Operator
.
backward
(
forward_net
,
set
())
for
input
in
net
.
inputs
()[
"all"
]:
var
=
scope
.
new_var
(
input
)
var
.
get_tensor
()
for
output
in
net
.
outputs
()[
"all"
]:
var
=
scope
.
new_var
(
output
)
var
.
get_tensor
()
return
net
def
debug_print_op
(
op
):
print
(
"==============="
+
op
.
type
()
+
"=============="
)
print
(
"***inputs:***"
)
for
input
in
op
.
inputs
()[
"all"
]:
print
input
,
scope
.
find_var
(
input
).
get_tensor
().
get_dims
()
print
(
"
\n
***outputs:***"
)
for
output
in
op
.
outputs
()[
"all"
]:
print
output
,
scope
.
find_var
(
output
).
get_tensor
().
get_dims
()
print
(
""
)
print
(
""
)
def
set_cost
(
cost
):
cost_shape
=
numpy
.
array
(
scope
.
find_var
(
cost
).
get_tensor
()).
shape
cost_grad
=
\
scope
.
find_var
(
grad_var_name
(
cost
)).
get_tensor
()
cost_grad
.
set_dims
(
cost_shape
)
cost_grad
.
alloc_float
(
place
)
cost_grad
.
set
(
numpy
.
ones
(
cost_shape
).
astype
(
"float32"
),
place
)
def
get_cost_mean
(
cost
):
cost_data
=
numpy
.
array
(
scope
.
find_var
(
cost
).
get_tensor
())
return
cost_data
.
sum
()
/
len
(
cost_data
)
def
error_rate
(
predict
,
label
):
predict_var
=
numpy
.
array
(
scope
.
find_var
(
predict
).
get_tensor
()).
argmax
(
axis
=
1
)
label
=
numpy
.
array
(
scope
.
find_var
(
label
).
get_tensor
())
error_num
=
numpy
.
sum
(
predict_var
!=
label
)
return
error_num
/
float
(
len
(
label
))
images
=
data_layer
(
name
=
'pixel'
,
dims
=
[
BATCH_SIZE
,
784
])
labels
=
data_layer
(
name
=
'label'
,
dims
=
[
BATCH_SIZE
])
fc1
=
fc_layer
(
net
=
forward_net
,
input
=
images
,
size
=
100
,
act
=
"sigmoid"
)
fc2
=
fc_layer
(
net
=
forward_net
,
input
=
fc1
,
size
=
100
,
act
=
"sigmoid"
)
predict
=
fc_layer
(
net
=
forward_net
,
input
=
fc2
,
size
=
100
,
act
=
"softmax"
)
cost
=
cross_entropy_layer
(
net
=
forward_net
,
input
=
predict
,
label
=
labels
)
init_net
.
complete_add_op
(
True
)
forward_net
.
complete_add_op
(
True
)
backward_net
=
create_backward_net
(
forward_net
)
optimize_net
.
complete_add_op
(
True
)
print
(
init_net
)
print
(
forward_net
)
print
(
backward_net
)
print
(
optimize_net
)
debug_print_op
(
forward_net
)
debug_print_op
(
backward_net
)
debug_print_op
(
optimize_net
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
8192
),
batch_size
=
BATCH_SIZE
)
def
test
(
cost_name
):
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
cost
=
[]
error
=
[]
for
data
in
test_reader
():
image_data
=
numpy
.
array
(
map
(
lambda
x
:
x
[
0
],
data
)).
astype
(
"float32"
)
label_data
=
numpy
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int32"
)
feed_data
(
images
,
image_data
)
feed_data
(
labels
,
label_data
)
forward_net
.
infer_shape
(
scope
)
forward_net
.
run
(
scope
,
dev_ctx
)
cost
.
append
(
get_cost_mean
(
cost_name
))
error
.
append
(
error_rate
(
predict
,
"label"
))
print
(
"cost="
+
str
(
sum
(
cost
)
/
float
(
len
(
cost
)))
+
" error_rate="
+
str
(
sum
(
error
)
/
float
(
len
(
error
))))
PASS_NUM
=
1
init_net
.
run
(
scope
,
dev_ctx
)
for
pass_id
in
range
(
PASS_NUM
):
batch_id
=
0
for
data
in
train_reader
():
image_data
=
numpy
.
array
(
map
(
lambda
x
:
x
[
0
],
data
)).
astype
(
"float32"
)
label_data
=
numpy
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int32"
)
feed_data
(
images
,
image_data
)
feed_data
(
labels
,
label_data
)
forward_net
.
infer_shape
(
scope
)
forward_net
.
run
(
scope
,
dev_ctx
)
set_cost
(
cost
)
backward_net
.
infer_shape
(
scope
)
backward_net
.
run
(
scope
,
dev_ctx
)
optimize_net
.
run
(
scope
,
dev_ctx
)
if
batch_id
%
100
==
0
:
print
(
"pass["
+
str
(
pass_id
)
+
"] batch_id["
+
str
(
batch_id
)
+
"]"
)
test
(
cost
)
batch_id
=
batch_id
+
1
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录