提交 b858c103 编写于 作者: W weixing02

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into data_reader

# A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
FROM nvidia/cuda:8.0-cudnn5-devel-ubuntu16.04
FROM nvidia/cuda:8.0-cudnn7-devel-ubuntu16.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
ARG UBUNTU_MIRROR
......
......@@ -62,29 +62,33 @@ endif()
## Then find the reference-cblas. www.netlib.org/blas/
set(REFERENCE_CBLAS_ROOT $ENV{REFERENCE_CBLAS_ROOT} CACHE PATH
"Folder contains reference-cblas")
set(REFERENCE_CBLAS_INCLUDE_SEARCH_PATHS
${REFERENCE_CBLAS_ROOT}/include
/usr/include
/usr/include/cblas
)
set(REFERENCE_CBLAS_LIB_SEARCH_PATHS
${REFERENCE_CBLAS_ROOT}/lib
/usr/lib
/usr/lib/blas/reference/
/usr/lib/reference/
)
if(NOT CMAKE_CROSSCOMPILING)
set(REFERENCE_CBLAS_INCLUDE_SEARCH_PATHS
${REFERENCE_CBLAS_ROOT}/include
/usr/include
/usr/include/cblas
)
set(REFERENCE_CBLAS_LIB_SEARCH_PATHS
${REFERENCE_CBLAS_ROOT}/lib
/usr/lib
/usr/lib/blas/reference/
/usr/lib/reference/
)
else()
# Disable the finding of reference cblas under host's system path
set(REFERENCE_CBLAS_INCLUDE_SEARCH_PATHS ${REFERENCE_CBLAS_ROOT}/include)
set(REFERENCE_CBLAS_LIB_SEARCH_PATHS ${REFERENCE_CBLAS_ROOT}/lib)
endif()
find_path(REFERENCE_CBLAS_INCLUDE_DIR NAMES cblas.h PATHS
${REFERENCE_CBLAS_INCLUDE_SEARCH_PATHS})
find_library(REFERENCE_CBLAS_LIBRARY NAMES cblas PATHS
${REFERENCE_CBLAS_LIB_SEARCH_PATHS})
if (REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY)
if(REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY)
set(CBLAS_FOUND ON)
set(CBLAS_PROVIDER REFERENCE)
set(CBLAS_INC_DIR ${REFERENCE_CBLAS_INCLUDE_DIR})
......
......@@ -24,16 +24,16 @@ SET(GRPC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/grpc)
SET(GRPC_INCLUDE_DIR "${GRPC_INSTALL_DIR}/include/" CACHE PATH "grpc include directory." FORCE)
SET(GRPC_CPP_PLUGIN "${GRPC_INSTALL_DIR}/bin/grpc_cpp_plugin" CACHE FILEPATH "GRPC_CPP_PLUGIN" FORCE)
IF(APPLE)
SET(BUILD_CMD make -n HAS_SYSTEM_PROTOBUF=false -s -j8 static grpc_cpp_plugin | sed "s/-Werror//g" | sh)
SET(BUILD_CMD make -n HAS_SYSTEM_PROTOBUF=false -s -j static grpc_cpp_plugin | sed "s/-Werror//g" | sh)
ELSE()
SET(BUILD_CMD make HAS_SYSTEM_PROTOBUF=false -s -j8 static grpc_cpp_plugin)
SET(BUILD_CMD make HAS_SYSTEM_PROTOBUF=false -s -j static grpc_cpp_plugin)
ENDIF()
ExternalProject_Add(
extern_grpc
DEPENDS protobuf zlib
GIT_REPOSITORY "https://github.com/grpc/grpc.git"
GIT_TAG "v1.8.x"
GIT_TAG "v1.11.x"
PREFIX ${GRPC_SOURCES_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
......
......@@ -11,19 +11,20 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
IF(MOBILE_INFERENCE)
if(MOBILE_INFERENCE OR RPI)
return()
ENDIF()
endif()
include (ExternalProject)
# NOTE: snappy is needed when linking with recordio
SET(SNAPPY_SOURCES_DIR ${THIRD_PARTY_PATH}/snappy)
SET(SNAPPY_INSTALL_DIR ${THIRD_PARTY_PATH}/install/snappy)
SET(SNAPPY_INCLUDE_DIR "${SNAPPY_INSTALL_DIR}/include/" CACHE PATH "snappy include directory." FORCE)
set(SNAPPY_SOURCES_DIR ${THIRD_PARTY_PATH}/snappy)
set(SNAPPY_INSTALL_DIR ${THIRD_PARTY_PATH}/install/snappy)
set(SNAPPY_INCLUDE_DIR "${SNAPPY_INSTALL_DIR}/include" CACHE PATH "snappy include directory." FORCE)
set(SNAPPY_LIBRARIES "${SNAPPY_INSTALL_DIR}/lib/libsnappy.a")
ExternalProject_Add(
extern_snappy
......@@ -51,8 +52,7 @@ ExternalProject_Add(
)
add_library(snappy STATIC IMPORTED GLOBAL)
set_property(TARGET snappy PROPERTY IMPORTED_LOCATION
"${SNAPPY_INSTALL_DIR}/lib/libsnappy.a")
set_property(TARGET snappy PROPERTY IMPORTED_LOCATION ${SNAPPY_LIBRARIES})
include_directories(${SNAPPY_INCLUDE_DIR})
add_dependencies(snappy extern_snappy)
......@@ -11,9 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
IF(MOBILE_INFERENCE)
IF(MOBILE_INFERENCE OR RPI)
return()
ENDIF()
......@@ -21,9 +20,11 @@ include (ExternalProject)
# NOTE: snappy is needed when linking with recordio
SET(SNAPPYSTREAM_SOURCES_DIR ${THIRD_PARTY_PATH}/snappy_stream)
SET(SNAPPYSTREAM_INSTALL_DIR ${THIRD_PARTY_PATH}/install/snappy_stream)
SET(SNAPPYSTREAM_INCLUDE_DIR "${SNAPPYSTREAM_INSTALL_DIR}/include/" CACHE PATH "snappy stream include directory." FORCE)
set(SNAPPYSTREAM_SOURCES_DIR ${THIRD_PARTY_PATH}/snappy_stream)
set(SNAPPYSTREAM_INSTALL_DIR ${THIRD_PARTY_PATH}/install/snappy_stream)
set(SNAPPYSTREAM_INCLUDE_DIR "${SNAPPYSTREAM_INSTALL_DIR}/include" CACHE PATH "snappy stream include directory." FORCE)
set(SNAPPYSTREAM_LIBRARIES "${SNAPPYSTREAM_INSTALL_DIR}/lib/libsnappystream.a")
ExternalProject_Add(
extern_snappystream
......@@ -51,8 +52,7 @@ ExternalProject_Add(
)
add_library(snappystream STATIC IMPORTED GLOBAL)
set_property(TARGET snappystream PROPERTY IMPORTED_LOCATION
"${SNAPPYSTREAM_INSTALL_DIR}/lib/libsnappystream.a")
set_property(TARGET snappystream PROPERTY IMPORTED_LOCATION ${SNAPPYSTREAM_LIBRARIES})
include_directories(${SNAPPYSTREAM_INCLUDE_DIR}) # For snappysteam to include its own headers.
include_directories(${THIRD_PARTY_PATH}/install) # For Paddle to include snappy stream headers.
......
......@@ -195,14 +195,7 @@ function(cc_library TARGET_NAME)
list(REMOVE_ITEM cc_library_DEPS warpctc)
add_dependencies(${TARGET_NAME} warpctc)
endif()
if("${cc_library_DEPS}" MATCHES "ARCHIVE_START")
# Support linking flags: --whole-archive (Linux) / -force_load (MacOS).
# WARNING: Please don't use ARCHIVE_START&ARCHIVE_END if TARGET_NAME will be linked by other libraries.
target_circle_link_libraries(${TARGET_NAME} ${cc_library_DEPS})
list(REMOVE_ITEM cc_library_DEPS ARCHIVE_START ARCHIVE_END)
else()
target_link_libraries(${TARGET_NAME} ${cc_library_DEPS})
endif()
target_link_libraries(${TARGET_NAME} ${cc_library_DEPS})
add_dependencies(${TARGET_NAME} ${cc_library_DEPS})
endif()
......@@ -243,11 +236,7 @@ function(cc_test TARGET_NAME)
set(multiValueArgs SRCS DEPS ARGS)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_test_SRCS})
# Support linking flags: --whole-archive (Linux) / -force_load (MacOS)
target_circle_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
if("${cc_test_DEPS}" MATCHES "ARCHIVE_START")
list(REMOVE_ITEM cc_test_DEPS ARCHIVE_START ARCHIVE_END)
endif()
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main memory gtest gflags glog)
add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set_property(GLOBAL PROPERTY FLUID_MODULES "")
# find all fluid modules is used for paddle fluid static library
function(find_fluid_modules TARGET_NAME)
get_filename_component(__target_path ${TARGET_NAME} ABSOLUTE)
string(REGEX REPLACE "^${PADDLE_SOURCE_DIR}/" "" __target_path ${__target_path})
string(FIND "${__target_path}" "fluid" pos)
if(pos GREATER 1)
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
......@@ -77,6 +92,23 @@ elseif (WITH_MKLML)
)
endif()
if(NOT MOBILE_INFERENCE AND NOT RPI)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/snappy")
copy(snappy_lib
SRCS ${SNAPPY_INCLUDE_DIR} ${SNAPPY_LIBRARIES}
DSTS ${dst_dir} ${dst_dir}/lib)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/snappystream")
copy(snappystream_lib
SRCS ${SNAPPYSTREAM_INCLUDE_DIR} ${SNAPPYSTREAM_LIBRARIES}
DSTS ${dst_dir} ${dst_dir}/lib)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/zlib")
copy(zlib_lib
SRCS ${ZLIB_INCLUDE_DIR} ${ZLIB_LIBRARIES}
DSTS ${dst_dir} ${dst_dir}/lib)
endif()
# paddle fluid module
set(src_dir "${PADDLE_SOURCE_DIR}/paddle/fluid")
set(dst_dir "${CMAKE_INSTALL_PREFIX}/paddle/fluid")
......
......@@ -119,7 +119,7 @@ An actual Fluid example is described [here](https://github.com/PaddlePaddle/Pad
From the example, the Fluid programs look very similar to their PyTorch equivalent programs, except that Fluid's loop structure, wrapped with Python's `with` statement, could run much faster than just a Python loop.
We have more examples of the [`if-then-else`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/if_else_op.md) structure of Fluid.
We have more examples of the [`if-then-else`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/execution/if_else_op.md) structure of Fluid.
## Turing Completeness
......
......@@ -24,6 +24,6 @@ if(NOT WITH_FLUID_ONLY)
endif()
add_subdirectory(testing)
if(NOT MOBILE_INFERENCE AND NOT ANDROID AND NOT IOS)
if(NOT MOBILE_INFERENCE AND NOT RPI)
add_subdirectory(fluid)
endif()
......@@ -3,6 +3,7 @@ add_subdirectory(platform)
add_subdirectory(framework)
add_subdirectory(operators)
add_subdirectory(pybind)
add_subdirectory(inference)
add_subdirectory(string)
add_subdirectory(recordio)
# NOTE: please add subdirectory inference at last.
add_subdirectory(inference)
......@@ -92,7 +92,7 @@ class BlockDesc {
/*
* Remove Op and its input/output variables.
* Note that for either input or ouput variable, if it is also an input or
* Note that for either input or output variable, if it is also an input or
* output variable of other ops, we should remain it.
*/
void RemoveOp(size_t s, size_t e);
......
......@@ -14,6 +14,8 @@
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include <string>
namespace paddle {
namespace framework {
namespace details {
......@@ -33,7 +35,7 @@ void ComputationOpHandle::RunImpl() {
}
}
op_->Run(*scope_->FindVar("@TMP_SCOPE@")->Get<Scope *>(), place_);
op_->Run(*scope_->FindVar(kLocalExecScopeName)->Get<Scope *>(), place_);
}
std::string ComputationOpHandle::Name() const { return op_->Type(); }
......
......@@ -14,6 +14,9 @@
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include <string>
#include <vector>
namespace paddle {
namespace framework {
namespace details {
......@@ -57,7 +60,10 @@ void FetchOpHandle::RunImpl() {
for (size_t i = 0; i < scopes.size(); ++i) {
auto &scope = scopes[i];
auto &t = scope->FindVar(var_name)->Get<framework::LoDTensor>();
auto &t = scope->FindVar(kLocalExecScopeName)
->Get<Scope *>()
->FindVar(var_name)
->Get<framework::LoDTensor>();
if (platform::is_gpu_place(var->place_)) {
#ifdef PADDLE_WITH_CUDA
TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i]);
......
......@@ -24,6 +24,8 @@ namespace paddle {
namespace framework {
namespace details {
constexpr char kLocalExecScopeName[] = "@LCOAL_SCOPE@";
class OpHandleBase {
private:
DISABLE_COPY_AND_ASSIGN(OpHandleBase);
......
......@@ -15,13 +15,15 @@
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/ssa_graph.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
namespace paddle {
namespace framework {
namespace details {
class SSAGraphExecutor {
DISABLE_COPY_AND_ASSIGN(SSAGraphExecutor);
......
......@@ -136,12 +136,6 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
ready_ops.clear();
};
// Create local scopes.
for (auto &scope : local_scopes_) {
auto &local_scope = scope->NewScope();
*scope->Var("@TMP_SCOPE@")->GetMutable<Scope *>() = &local_scope;
}
// Step 3. Execution
while (!pending_vars.empty() || !ready_ops.empty() || !delayed_ops.empty()) {
// 1. Run All Ready ops
......@@ -189,34 +183,10 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
PADDLE_ENFORCE(ready_ops.empty());
PADDLE_ENFORCE(delayed_ops.empty());
PADDLE_ENFORCE(blocked_by_delayed_ops.empty());
++computation_count_;
auto sync_computation = [&] {
computation_count_ = 0;
// Wait All computational streams
for (auto p : this->places_) {
platform::DeviceContextPool::Instance().Get(p)->Wait();
}
for (auto &scope : local_scopes_) {
scope->DropKids();
}
};
// Wait FetchOps.
if (!fetch_ops.empty()) {
fetch_ops.clear();
sync_computation();
}
if (computation_count_ == max_async_computation) {
sync_computation();
}
// NOTE: the temp scope can be dropped lazily if needed.
// Drop tmp scopes;
for (auto &scope : local_scopes_) {
auto &kid = *scope->Var("@TMP_SCOPE@")->GetMutable<Scope *>();
kid = nullptr;
}
return fetch_data;
......
......@@ -99,9 +99,6 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std::unique_ptr<platform::EnforceNotMet> exception_;
std::atomic<int> running_ops_;
bool allow_op_delay_;
size_t computation_count_{0};
size_t max_async_computation{100};
};
} // namespace details
......
......@@ -83,8 +83,8 @@ static void CheckTensorNANOrInf(const std::string& name,
if (tensor.memory_size() == 0) {
return;
}
if (tensor.type().hash_code() != typeid(float).hash_code() &&
tensor.type().hash_code() != typeid(double).hash_code()) {
if (tensor.type().hash_code() != typeid(float).hash_code() && // NOLINT
tensor.type().hash_code() != typeid(double).hash_code()) { // NOLINT
return;
}
PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
......@@ -145,12 +145,13 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
const BlockDesc& block,
std::map<std::string, const LoDTensor*>& feed_targets,
const std::map<std::string, const LoDTensor*>& feed_targets,
const std::string& feed_holder_name) {
size_t feed_count = 0;
for (auto* op : block.AllOps()) {
if (op->Type() == kFeedOpType) {
feed_count++;
// The input variable's name of feed_op should be feed_holder_name.
PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
"Input to feed op should be '%s'", feed_holder_name);
std::string feed_target_name = op->Output("Out")[0];
......@@ -166,13 +167,15 @@ static bool has_feed_operators(
feed_count, feed_targets.size(),
"The number of feed operators should match 'feed_targets'");
// When feed operator are present, so should be feed_holder
auto var = block.FindVar(feed_holder_name);
PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
feed_holder_name);
PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
"'%s' variable should be 'FEED_MINIBATCH' type",
feed_holder_name);
if (!feed_holder_name.empty()) {
// When feed operator are present, so should be feed_holder.
auto var = block.FindVar(feed_holder_name);
PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
feed_holder_name);
PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
"'%s' variable should be 'FEED_MINIBATCH' type",
feed_holder_name);
}
}
return feed_count > 0;
......@@ -185,12 +188,14 @@ static bool has_feed_operators(
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
const BlockDesc& block, std::map<std::string, LoDTensor*>& fetch_targets,
const BlockDesc& block,
const std::map<std::string, LoDTensor*>& fetch_targets,
const std::string& fetch_holder_name) {
size_t fetch_count = 0;
for (auto* op : block.AllOps()) {
if (op->Type() == kFetchOpType) {
fetch_count++;
// The output variable's name of fetch_op should be fetch_holder_name.
PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
"Output of fetch op should be '%s'", fetch_holder_name);
std::string fetch_target_name = op->Input("X")[0];
......@@ -206,13 +211,15 @@ static bool has_fetch_operators(
fetch_count, fetch_targets.size(),
"The number of fetch operators should match 'fetch_targets'");
// When fetch operator are present, so should be fetch_holder
auto var = block.FindVar(fetch_holder_name);
PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
fetch_holder_name);
PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
"'%s' variable should be 'FETCH_LIST' type",
fetch_holder_name);
if (!fetch_holder_name.empty()) {
// When fetch operator are present, so should be fetch_holder.
auto var = block.FindVar(fetch_holder_name);
PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
fetch_holder_name);
PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
"'%s' variable should be 'FETCH_LIST' type",
fetch_holder_name);
}
}
return fetch_count > 0;
......@@ -259,16 +266,6 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
}
// map the data of feed_targets to feed_holder
for (auto* op : global_block->AllOps()) {
if (op->Type() == kFeedOpType) {
std::string feed_target_name = op->Output("Out")[0];
int idx = boost::get<int>(op->GetAttr("col"));
SetFeedVariable(scope, *feed_targets[feed_target_name], feed_holder_name,
idx);
}
}
if (!has_fetch_ops) {
// create fetch_holder variable
auto* fetch_holder = global_block->Var(fetch_holder_name);
......@@ -292,17 +289,9 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
}
}
Run(*copy_program, scope, 0, create_vars, create_vars);
// obtain the data of fetch_targets from fetch_holder
for (auto* op : global_block->AllOps()) {
if (op->Type() == kFetchOpType) {
std::string fetch_target_name = op->Input("X")[0];
int idx = boost::get<int>(op->GetAttr("col"));
*fetch_targets[fetch_target_name] =
GetFetchVariable(*scope, fetch_holder_name, idx);
}
}
auto ctx = Prepare(*copy_program, 0);
RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets, create_vars,
feed_holder_name, fetch_holder_name);
}
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
......@@ -370,5 +359,42 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
}
void Executor::RunPreparedContext(
ExecutorPrepareContext* ctx, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets, bool create_vars,
const std::string& feed_holder_name, const std::string& fetch_holder_name) {
auto& global_block = ctx->prog_.Block(ctx->block_id_);
PADDLE_ENFORCE(
has_feed_operators(global_block, feed_targets, feed_holder_name),
"Program in ExecutorPrepareContext should has feed_ops.");
PADDLE_ENFORCE(
has_fetch_operators(global_block, fetch_targets, fetch_holder_name),
"Program in the prepared context should has fetch_ops.");
// map the data of feed_targets to feed_holder
for (auto* op : global_block.AllOps()) {
if (op->Type() == kFeedOpType) {
std::string feed_target_name = op->Output("Out")[0];
int idx = boost::get<int>(op->GetAttr("col"));
SetFeedVariable(scope, *feed_targets[feed_target_name], feed_holder_name,
idx);
}
}
RunPreparedContext(ctx, scope, create_vars, create_vars);
// obtain the data of fetch_targets from fetch_holder
for (auto* op : global_block.AllOps()) {
if (op->Type() == kFetchOpType) {
std::string fetch_target_name = op->Input("X")[0];
int idx = boost::get<int>(op->GetAttr("col"));
*fetch_targets[fetch_target_name] =
GetFetchVariable(*scope, fetch_holder_name, idx);
}
}
}
} // namespace framework
} // namespace paddle
......@@ -14,6 +14,9 @@ limitations under the License. */
#pragma once
#include <map>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
......@@ -70,6 +73,13 @@ class Executor {
bool create_local_scope = true,
bool create_vars = true);
void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
std::map<std::string, const LoDTensor*>& feed_targets,
std::map<std::string, LoDTensor*>& fetch_targets,
bool create_vars = true,
const std::string& feed_holder_name = "feed",
const std::string& fetch_holder_name = "fetch");
private:
const platform::Place place_;
};
......
......@@ -46,7 +46,8 @@ proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
}
}
static DDim GetDims(const Scope& scope, const std::string& name) {
static DDim GetDims(const Scope& scope, const std::string& name,
bool get_actual_dim = false) {
Variable* var = scope.FindVar(name);
if (var == nullptr) {
return DDim({-1});
......@@ -55,7 +56,11 @@ static DDim GetDims(const Scope& scope, const std::string& name) {
if (var->IsType<LoDTensor>()) {
return var->Get<LoDTensor>().dims();
} else if (var->IsType<SelectedRows>()) {
return var->Get<SelectedRows>().GetCompleteDims();
if (get_actual_dim) {
return var->Get<SelectedRows>().value().dims();
} else {
return var->Get<SelectedRows>().GetCompleteDims();
}
} else {
return DDim({-1});
}
......@@ -129,7 +134,7 @@ std::string OperatorBase::DebugStringEx(const Scope* scope) const {
for (size_t i = 0; i < input.second.size(); ++i) {
ss << input.second[i];
if (scope) {
ss << "[" << GetDims(*scope, input.second[i]) << "]";
ss << "[" << GetDims(*scope, input.second[i], true) << "]";
ss << "(" << GetLoD(*scope, input.second[i]) << ")";
}
if (i != input.second.size() - 1) {
......@@ -149,7 +154,7 @@ std::string OperatorBase::DebugStringEx(const Scope* scope) const {
for (size_t i = 0; i < output.second.size(); ++i) {
ss << output.second[i];
if (scope) {
ss << "[" << GetDims(*scope, output.second[i]) << "]";
ss << "[" << GetDims(*scope, output.second[i], true) << "]";
ss << "(" << GetLoD(*scope, output.second[i]) << ")";
}
if (i != output.second.size() - 1) {
......
......@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include <string>
#include <tuple>
#include <vector>
#ifdef PADDLE_WITH_CUDA
......@@ -41,6 +42,8 @@ class ParallelExecutorPrivate {
#ifdef PADDLE_WITH_CUDA
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif
std::vector<std::tuple<std::string, proto::VarType::Type, bool>> var_types_;
};
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
......@@ -97,14 +100,9 @@ ParallelExecutor::ParallelExecutor(
allow_op_delay));
// Step 3. Create vars in each scope;
for (auto *scope : member_->local_scopes_) {
for (auto *var : main_program.Block(0).AllVars()) {
if (scope->FindVar(var->Name()) != nullptr) {
continue;
}
InitializeVariable(scope->Var(var->Name()), var->GetType());
}
for (auto *var : main_program.Block(0).AllVars()) {
member_->var_types_.emplace_back(var->Name(), var->GetType(),
var->Persistable());
}
}
......@@ -163,9 +161,42 @@ void ParallelExecutor::Run(
const std::unordered_map<std::string, LoDTensor> &feed_tensors) {
platform::RecordBlock b(0);
SplitTensorToPlaces(feed_tensors);
// Create local scopes.
for (auto &scope : member_->local_scopes_) {
Scope &local_scope = scope->NewScope();
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>() =
&local_scope;
for (auto &name_type_pair : member_->var_types_) {
if (scope->FindVar(std::get<0>(name_type_pair)) != nullptr) {
continue;
}
if (std::get<2>(name_type_pair)) { // Persistable
InitializeVariable(scope->Var(std::get<0>(name_type_pair)),
std::get<1>(name_type_pair));
} else {
InitializeVariable(scope->Var(std::get<0>(name_type_pair)),
std::get<1>(name_type_pair));
}
}
}
auto fetch_data = member_->executor_->Run(fetch_tensors);
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
fetch_data;
// Wait All computational streams
for (auto p : member_->places_) {
platform::DeviceContextPool::Instance().Get(p)->Wait();
}
for (auto &scope : member_->local_scopes_) {
auto &local_scope =
*scope->Var(details::kLocalExecScopeName)->GetMutable<Scope *>();
scope->DeleteScope(local_scope);
local_scope = nullptr;
}
}
void ParallelExecutor::SplitTensorToPlaces(
......
......@@ -14,8 +14,12 @@
#include "paddle/fluid/framework/threadpool.h"
#include "gflags/gflags.h"
#include "paddle/fluid/platform/enforce.h"
DEFINE_int32(io_threadpool_size, 100,
"number of threads used for doing IO, default 100");
namespace paddle {
namespace framework {
......@@ -91,5 +95,20 @@ void ThreadPool::TaskLoop() {
}
}
std::unique_ptr<ThreadPool> ThreadPoolIO::io_threadpool_(nullptr);
std::once_flag ThreadPoolIO::io_init_flag_;
ThreadPool* ThreadPoolIO::GetInstanceIO() {
std::call_once(io_init_flag_, &ThreadPoolIO::InitIO);
return io_threadpool_.get();
}
void ThreadPoolIO::InitIO() {
if (io_threadpool_.get() == nullptr) {
// TODO(typhoonzero1986): make this configurable
io_threadpool_.reset(new ThreadPool(FLAGS_io_threadpool_size));
}
}
} // namespace framework
} // namespace paddle
......@@ -14,12 +14,12 @@ limitations under the License. */
#pragma once
#include <condition_variable>
#include <condition_variable> // NOLINT
#include <functional>
#include <future>
#include <mutex>
#include <future> // NOLINT
#include <mutex> // NOLINT
#include <queue>
#include <thread>
#include <thread> // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
......@@ -28,6 +28,22 @@ limitations under the License. */
namespace paddle {
namespace framework {
struct ExceptionHandler {
mutable std::future<std::unique_ptr<platform::EnforceNotMet>> future_;
explicit ExceptionHandler(
std::future<std::unique_ptr<platform::EnforceNotMet>>&& f)
: future_(std::move(f)) {}
void operator()() const {
auto ex = this->future_.get();
if (ex != nullptr) {
LOG(FATAL) << "The exception is thrown inside the thread pool. You "
"should use RunAndGetException to handle the exception.\n"
"The default exception handler is LOG(FATAL)."
<< ex->what();
}
}
};
// ThreadPool maintains a queue of tasks, and runs them using a fixed
// number of threads.
class ThreadPool {
......@@ -87,22 +103,6 @@ class ThreadPool {
void Wait();
private:
struct ExceptionHandler {
mutable std::future<std::unique_ptr<platform::EnforceNotMet>> future_;
explicit ExceptionHandler(
std::future<std::unique_ptr<platform::EnforceNotMet>>&& f)
: future_(std::move(f)) {}
void operator()() const {
auto ex = this->future_.get();
if (ex != nullptr) {
LOG(FATAL) << "The exception is thrown inside the thread pool. You "
"should use RunAndGetException to handle the exception.\n"
"The default exception handler is LOG(FATAL)."
<< ex->what();
}
}
};
DISABLE_COPY_AND_ASSIGN(ThreadPool);
// If the task queue is empty and avaialbe is equal to the number of
......@@ -135,6 +135,17 @@ class ThreadPool {
std::condition_variable completed_;
};
class ThreadPoolIO : ThreadPool {
public:
static ThreadPool* GetInstanceIO();
static void InitIO();
private:
// NOTE: threadpool in base will be inhereted here.
static std::unique_ptr<ThreadPool> io_threadpool_;
static std::once_flag io_init_flag_;
};
// Run a function asynchronously.
// NOTE: The function must return void. If the function need to return a value,
// you can use lambda to capture a value pointer.
......@@ -143,5 +154,10 @@ std::future<void> Async(Callback callback) {
return ThreadPool::GetInstance()->Run(callback);
}
template <typename Callback>
std::future<void> AsyncIO(Callback callback) {
return ThreadPoolIO::GetInstanceIO()->Run(callback);
}
} // namespace framework
} // namespace paddle
set(FLUID_CORE_MODULES proto_desc memory lod_tensor executor prune init)
set(FLUID_CORE_MODULES proto_desc memory lod_tensor executor init)
cc_library(paddle_fluid_api
SRCS io.cc
......@@ -11,7 +11,7 @@ cc_library(paddle_fluid DEPS ${fluid_modules})
# Create shared library
cc_library(paddle_fluid_shared SHARED
SRCS io.cc
DEPS ARCHIVE_START ${GLOB_OP_LIB} ${FLUID_CORE_MODULES} ARCHIVE_END)
DEPS ${fluid_modules})
set_target_properties(paddle_fluid_shared PROPERTIES OUTPUT_NAME paddle_fluid)
if(NOT APPLE)
# TODO(liuyiqun): Temporarily disable the link flag because it is not support on Mac.
......
......@@ -17,10 +17,16 @@ limitations under the License. */
#include <fstream>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace inference {
// Temporarily add this function for exposing framework::InitDevices() when
// linking the inference shared library.
void Init(bool init_p2p) { framework::InitDevices(init_p2p); }
void ReadBinaryFile(const std::string& filename, std::string& contents) {
std::ifstream fin(filename, std::ios::in | std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s", filename);
......
......@@ -18,12 +18,15 @@ limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
namespace paddle {
namespace inference {
void Init(bool init_p2p);
void LoadPersistables(framework::Executor& executor, framework::Scope& scope,
const framework::ProgramDesc& main_program,
const std::string& dirname,
......
......@@ -17,7 +17,7 @@ function(inference_test TARGET_NAME)
string(REGEX REPLACE "^_$" "" arg "${arg}")
cc_test(test_inference_${TARGET_NAME}${arg}
SRCS test_inference_${TARGET_NAME}.cc
DEPS ARCHIVE_START paddle_fluid ARCHIVE_END
DEPS paddle_fluid
ARGS --dirname=${PYTHON_TESTS_DIR}/book/${TARGET_NAME}${arg}.inference.model)
set_tests_properties(test_inference_${TARGET_NAME}${arg}
PROPERTIES DEPENDS test_${TARGET_NAME})
......
......@@ -46,8 +46,8 @@ TEST(inference, image_classification) {
// Run inference on CPU
LOG(INFO) << "--- CPU Runs: ---";
TestInference<paddle::platform::CPUPlace, false>(dirname, cpu_feeds,
cpu_fetchs1, FLAGS_repeat);
TestInference<paddle::platform::CPUPlace, false, true>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
......@@ -57,8 +57,8 @@ TEST(inference, image_classification) {
// Run inference on CUDA GPU
LOG(INFO) << "--- GPU Runs: ---";
TestInference<paddle::platform::CUDAPlace, false>(dirname, cpu_feeds,
cpu_fetchs2, FLAGS_repeat);
TestInference<paddle::platform::CUDAPlace, false, true>(
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat);
LOG(INFO) << output2.dims();
CheckError<float>(output1, output2);
......
......@@ -89,7 +89,7 @@ void CheckError(const paddle::framework::LoDTensor& output1,
EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
}
template <typename Place, bool CreateVars = true>
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
void TestInference(const std::string& dirname,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
const std::vector<paddle::framework::LoDTensor*>& cpu_fetchs,
......@@ -175,8 +175,15 @@ void TestInference(const std::string& dirname,
}
// Ignore the profiling results of the first run
executor.Run(*inference_program, scope, feed_targets, fetch_targets,
CreateVars);
std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
if (PrepareContext) {
ctx = executor.Prepare(*inference_program, 0);
executor.RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
CreateVars);
} else {
executor.Run(*inference_program, scope, feed_targets, fetch_targets,
CreateVars);
}
// Enable the profiler
paddle::platform::EnableProfiler(state);
......@@ -187,8 +194,15 @@ void TestInference(const std::string& dirname,
"run_inference",
paddle::platform::DeviceContextPool::Instance().Get(place));
executor.Run(*inference_program, scope, feed_targets, fetch_targets,
CreateVars);
if (PrepareContext) {
// Note: if you change the inference_program, you need to call
// executor.Prepare() again to get a new ExecutorPrepareContext.
executor.RunPreparedContext(ctx.get(), scope, feed_targets,
fetch_targets, CreateVars);
} else {
executor.Run(*inference_program, scope, feed_targets, fetch_targets,
CreateVars);
}
}
// Disable the profiler and print the timing information
......
......@@ -245,9 +245,17 @@ op_library(channel_send_op DEPS concurrency)
op_library(channel_recv_op DEPS concurrency)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
# The fully connected layer is deleted when the WITH_MKLDNN flag is OFF
# Because the fully connected layer has only one MKLDNN's operator
if(NOT WITH_MKLDNN)
list(REMOVE_ITEM GENERAL_OPS fc_op)
endif(NOT WITH_MKLDNN)
foreach(src ${GENERAL_OPS})
op_library(${src})
endforeach()
file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n")
add_subdirectory(reader)
......
......@@ -114,23 +114,11 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
const auto *bias = ctx.Input<Tensor>("Bias");
auto *y = ctx.Output<Tensor>("Y");
auto *mean_out = ctx.Output<Tensor>("MeanOut");
auto *variance_out = ctx.Output<Tensor>("VarianceOut");
auto *saved_mean = ctx.Output<Tensor>("SavedMean");
auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
// alloc memory
y->mutable_data<T>(ctx.GetPlace());
mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
functor;
functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));
auto handle = dev_ctx.cudnn_handle();
......@@ -159,6 +147,21 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
// Run training mode.
// obtain running mean and running inv var, and see if we need to
// initialize them.
auto *mean_out = ctx.Output<Tensor>("MeanOut");
auto *variance_out = ctx.Output<Tensor>("VarianceOut");
mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
auto *saved_mean = ctx.Output<Tensor>("SavedMean");
auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
functor;
functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));
double this_factor = 1. - momentum;
CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/concat_op.h"
#include <string>
#include <vector>
......@@ -34,7 +35,10 @@ class ConcatOp : public framework::OperatorWithKernel {
size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
const size_t n = ins.size();
PADDLE_ENFORCE_GT(n, 1, "Input tensors count should > 1.");
PADDLE_ENFORCE_GT(n, 0, "Input tensors count should > 0.");
if (n == 1) {
VLOG(3) << "Warning: concat op have only one input, may waste memory";
}
auto out_dims = ins[0];
size_t in_zero_dims_size = out_dims.size();
......
......@@ -35,7 +35,8 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
const framework::Scope* p_scope = &scope;
const auto ch = GetChannel(ep_val);
framework::Async([var_name_val, p_ctx, ep_val, p_scope, time_out, ch, this] {
framework::AsyncIO([var_name_val, p_ctx, ep_val, p_scope, time_out, ch,
this] {
auto* var = p_scope->FindVar(var_name_val);
::grpc::ByteBuffer req;
......@@ -89,7 +90,8 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
const framework::Scope* p_scope = &scope;
const auto ch = GetChannel(ep_val);
framework::Async([var_name_val, ep_val, p_scope, p_ctx, time_out, ch, this] {
framework::AsyncIO([var_name_val, ep_val, p_scope, p_ctx, time_out, ch,
this] {
// prepare input
sendrecv::VariableMessage req;
req.set_varname(var_name_val);
......@@ -132,8 +134,8 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep,
const framework::Scope* p_scope = &scope;
const auto ch = GetChannel(ep_val);
framework::Async([in_var_name_val, out_var_name_val, ep_val, p_scope, p_ctx,
time_out, ch, this] {
framework::AsyncIO([in_var_name_val, out_var_name_val, ep_val, p_scope, p_ctx,
time_out, ch, this] {
auto* var = p_scope->FindVar(in_var_name_val);
::grpc::ByteBuffer req;
......@@ -196,7 +198,7 @@ bool RPCClient::Wait() {
std::vector<std::future<void>> waits(req_count_);
for (int i = 0; i < req_count_; i++) {
waits[i] = framework::Async([i, &a, this] { a[i] = Proceed(); });
waits[i] = framework::AsyncIO([i, &a, this] { a[i] = Proceed(); });
}
for (int i = 0; i < req_count_; i++) {
......
......@@ -161,6 +161,7 @@ class RequestPrefetch final : public RequestBase {
::grpc::ByteBuffer reply;
std::string var_name = request_->OutVarname();
VLOG(3) << "prefetch var " << var_name;
auto var_desc = program_->Block(0).FindVar(var_name);
framework::Scope* local_scope = &scope_->NewScope();
auto* var = local_scope->FindVar(var_name);
......@@ -216,10 +217,10 @@ void AsyncGRPCServer::RunSyncUpdate() {
std::function<void()> prefetch_register =
std::bind(&AsyncGRPCServer::TryToRegisterNewPrefetchOne, this);
// TODO(wuyi): Run these "HandleRequest" in thread pool
t_send_.reset(
new std::thread(std::bind(&AsyncGRPCServer::HandleRequest, this,
cq_send_.get(), "cq_send", send_register)));
t_get_.reset(
new std::thread(std::bind(&AsyncGRPCServer::HandleRequest, this,
cq_get_.get(), "cq_get", get_register)));
......
......@@ -13,7 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <ostream>
#include <thread>
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/operators/listen_and_serv_op.h"
......@@ -88,8 +89,9 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
auto ins = Inputs("X");
auto fan_in = Attr<int>("Fanin");
auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program();
auto *optimize_block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *prefetch_block = Attr<framework::BlockDesc *>(kPrefetchBlock);
auto *program = optimize_block->Program();
size_t num_blocks = program->Size();
PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks");
......@@ -97,18 +99,25 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
framework::Executor executor(dev_place);
std::vector<int> block_list;
for (size_t blkid = 1; blkid < num_blocks; ++blkid) {
block_list.push_back(blkid);
if (blkid != prefetch_block->ID()) {
block_list.push_back(blkid);
}
}
auto prepared = executor.Prepare(*program, block_list);
auto optimize_prepared = executor.Prepare(*program, block_list);
// Insert placeholder for block0 which holds current op itself.
prepared.insert(prepared.begin(),
std::shared_ptr<framework::ExecutorPrepareContext>(nullptr));
optimize_prepared.insert(
optimize_prepared.begin(),
std::shared_ptr<framework::ExecutorPrepareContext>(nullptr));
rpc_service_->SetScope(&recv_scope);
rpc_service_->SetDevCtx(&dev_ctx);
// TODO(qiao) set proper fields for table lookup and update
rpc_service_->SetExecutor(&executor);
rpc_service_->SetPrefetchBlkdId(0);
VLOG(3) << "prefetch block id is " << prefetch_block->ID();
auto prefetch_prepared = executor.Prepare(*program, prefetch_block->ID());
rpc_service_->SetPrefetchBlkdId(prefetch_block->ID());
rpc_service_->SetPrefetchPreparedCtx(prefetch_prepared.get());
prefetch_prepared.release();
rpc_service_->SetProgram(program);
// start the server listening after all member initialized.
server_thread_.reset(new std::thread(RunServer, rpc_service_));
......@@ -166,16 +175,18 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
parallel_blkids.push_back(1);
double ts = detail::GetTimestamp();
for (size_t blkid = 2; blkid < num_blocks; ++blkid) {
if (program->Block(blkid).Parent() != last_parent_blkid) {
ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program,
&recv_scope);
parallel_blkids.clear();
last_parent_blkid = program->Block(blkid).Parent();
if (blkid != prefetch_block->ID()) {
if (program->Block(blkid).Parent() != last_parent_blkid) {
ParallelExecuteBlocks(parallel_blkids, &executor, optimize_prepared,
program, &recv_scope);
parallel_blkids.clear();
last_parent_blkid = program->Block(blkid).Parent();
}
parallel_blkids.push_back(blkid);
}
parallel_blkids.push_back(blkid);
}
ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program,
&recv_scope);
ParallelExecuteBlocks(parallel_blkids, &executor, optimize_prepared,
program, &recv_scope);
VLOG(2) << "run all blocks spent " << detail::GetTimestamp() - ts << "(ms)";
// Reset the received sparse variables, the sum operator would not
......@@ -211,6 +222,8 @@ from send_op and send back variables to recv_op.
.AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
AddAttr<framework::BlockDesc *>(kOptimizeBlock,
"BlockID to run on server side.");
AddAttr<framework::BlockDesc *>(kPrefetchBlock,
"prefetch block to run on server side.");
AddAttr<int>("Fanin", "How many clients send to this server.")
.SetDefault(1);
}
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include <stdint.h>
#include <ostream>
#include <string>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
......@@ -27,6 +28,7 @@ namespace paddle {
namespace operators {
constexpr char kOptimizeBlock[] = "OptimizeBlock";
constexpr char kPrefetchBlock[] = "PrefetchBlock";
void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service);
......
......@@ -78,6 +78,9 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
"(boolean, default false) "
"Sparse update.")
.SetDefault(false);
AddAttr<bool>("is_distributed",
"(boolean, default false) distributed lookup table.")
.SetDefault(false);
AddAttr<int64_t>("padding_idx",
"(int64, default -1) "
"If the value is -1, it makes no effect to lookup. "
......
......@@ -288,9 +288,14 @@ void batched_gemm<platform::CUDADeviceContext, float16>(
// TODO(kexinzhao): add processing code for compute capability < 53 case
PADDLE_ENFORCE_GE(context.GetComputeCapability(), 53,
"cublas Hgemm requires GPU compute capability >= 53");
#if CUDA_VERSION >= 8000
PADDLE_ENFORCE(platform::dynload::cublasHgemmStridedBatched(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &h_alpha, h_B, ldb,
strideB, h_A, lda, strideA, &h_beta, h_C, ldc, strideC, batchCount));
#else
PADDLE_ENFORCE(false, "HgemmStridedBatched is not supported on cuda <= 7.5");
#endif
}
template <>
......@@ -310,9 +315,13 @@ void batched_gemm<platform::CUDADeviceContext, float>(
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const int strideC = M * N;
#if CUDA_VERSION >= 8000
PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb,
strideB, A, lda, strideA, &beta, C, ldc, strideC, batchCount));
#else
PADDLE_ENFORCE(false, "SgemmStridedBatched is not supported on cuda <= 7.5");
#endif
}
template <>
......@@ -332,9 +341,13 @@ void batched_gemm<platform::CUDADeviceContext, double>(
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const int strideC = M * N;
#if CUDA_VERSION >= 8000
PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched(
context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb,
strideB, A, lda, strideA, &beta, C, ldc, strideC, batchCount));
#else
PADDLE_ENFORCE(false, "DgemmStridedBatched is not supported on cuda <= 7.5");
#endif
}
template <>
......
......@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
......
......@@ -83,9 +83,11 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);
auto src_memory =
mkldnn::memory({src_md, mkldnn_engine}, (void*)input_data);
mkldnn::memory({src_md, mkldnn_engine},
static_cast<void*>(const_cast<T*>(input_data)));
auto dst_memory =
mkldnn::memory({dst_md, mkldnn_engine}, (void*)output_data);
mkldnn::memory({dst_md, mkldnn_engine},
static_cast<void*>(const_cast<T*>(output_data)));
auto pool_prim = mkldnn::pooling_forward(*pool_pd, src_memory, dst_memory,
*workspace_memory);
......@@ -195,9 +197,11 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
pool_bwd_desc, mkldnn_engine, *pool_pd);
auto diff_src_memory =
mkldnn::memory({diff_src_md, mkldnn_engine}, (void*)in_x_grad_data);
mkldnn::memory({diff_src_md, mkldnn_engine},
static_cast<void*>(const_cast<T*>(in_x_grad_data)));
auto diff_dst_memory =
mkldnn::memory({diff_dst_md, mkldnn_engine}, (void*)out_grad_data);
mkldnn::memory({diff_dst_md, mkldnn_engine},
static_cast<void*>(const_cast<T*>(out_grad_data)));
auto bwd_prim = mkldnn::pooling_backward(
pool_bwd_pd, diff_dst_memory, *workspace_memory, diff_src_memory);
......
......@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
......
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <future>
#include <future> // NOLINT
#include <ostream>
#include "paddle/fluid/framework/data_type.h"
......@@ -50,8 +50,8 @@ class PrefetchOp : public framework::OperatorBase {
for (size_t i = 0; i < ins.size(); i++) {
if (NeedSend(scope, ins[i])) {
VLOG(3) << "sending " << ins[i] << " to " << epmap[i] << "to get "
<< outs[i] << "back";
VLOG(3) << "sending " << ins[i] << " to " << epmap[i] << " to get "
<< outs[i] << " back";
rpc_client->AsyncPrefetchVariable(epmap[i], ctx, scope, ins[i],
outs[i]);
} else {
......@@ -71,7 +71,7 @@ class PrefetchOpMaker : public framework::OpProtoAndCheckerMaker {
"(RPCClient) The RPC client object which will be"
"initialized at most once.");
AddOutput("Out",
"(SelectedRows) result "
"(LoDTensor) result "
"to be fetched from parameter server")
.AsDuplicable();
AddAttr<std::vector<std::string>>(
......
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/prelu_op.h"
#include <string>
namespace paddle {
......
......@@ -45,7 +45,7 @@ class PriorBoxOp : public framework::OperatorWithKernel {
bool flip = ctx->Attrs().Get<bool>("flip");
std::vector<float> aspect_ratios_vec;
ExpandAspectRatios(aspect_ratios, flip, aspect_ratios_vec);
ExpandAspectRatios(aspect_ratios, flip, &aspect_ratios_vec);
size_t num_priors = aspect_ratios_vec.size() * min_sizes.size();
if (max_sizes.size() > 0) {
......
......@@ -96,7 +96,7 @@ class PriorBoxOpCUDAKernel : public framework::OpKernel<T> {
auto clip = ctx.Attr<bool>("clip");
std::vector<float> aspect_ratios;
ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios);
ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
......
......@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/transform.h"
......@@ -22,23 +24,23 @@ namespace operators {
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
bool flip,
std::vector<float>& output_aspect_ratior) {
std::vector<float>* output_aspect_ratior) {
constexpr float epsilon = 1e-6;
output_aspect_ratior.clear();
output_aspect_ratior.push_back(1.0f);
output_aspect_ratior->clear();
output_aspect_ratior->push_back(1.0f);
for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
float ar = input_aspect_ratior[i];
bool already_exist = false;
for (size_t j = 0; j < output_aspect_ratior.size(); ++j) {
if (fabs(ar - output_aspect_ratior[j]) < epsilon) {
for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
already_exist = true;
break;
}
}
if (!already_exist) {
output_aspect_ratior.push_back(ar);
output_aspect_ratior->push_back(ar);
if (flip) {
output_aspect_ratior.push_back(1.0f / ar);
output_aspect_ratior->push_back(1.0f / ar);
}
}
}
......@@ -68,7 +70,7 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
auto clip = ctx.Attr<bool>("clip");
std::vector<float> aspect_ratios;
ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios);
ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/rank_loss_op.h"
#include <string>
namespace paddle {
namespace operators {
......
......@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <future> // NOLINT
#include <ostream>
#include "paddle/fluid/framework/data_type.h"
......@@ -19,7 +20,6 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include <future>
#include "paddle/fluid/operators/detail/grpc_client.h"
namespace paddle {
......
......@@ -60,7 +60,7 @@ class ReshapeOp : public framework::OperatorWithKernel {
static framework::DDim ValidateShape(const std::vector<int> shape,
const framework::DDim &in_dims) {
const int64_t in_size = framework::product(in_dims);
// only one dimension canbe set to -1, whose size will be automatically
// only one dimension can be set to -1, whose size will be automatically
// infered.
const int64_t unk_dim_val = -1;
const int64_t copy_dim_val = 0;
......@@ -119,13 +119,15 @@ class ReshapeKernel : public framework::OpKernel<T> {
auto *shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
framework::DDim out_dims = out->dims();
if (shape_tensor) {
auto *shape_data = shape_tensor->data<int>();
framework::Tensor cpu_shape_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) {
framework::Tensor cpu_shape_tensor;
TensorCopy(*shape_tensor, platform::CPUPlace(), ctx.device_context(),
&cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>();
ctx.device_context().Wait();
}
auto shape =
std::vector<int>(shape_data, shape_data + shape_tensor->numel());
......
......@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <limits>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
......
......@@ -14,7 +14,7 @@ limitations under the License. */
#include <unistd.h>
#include <string>
#include <thread>
#include <thread> // NOLINT
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
......@@ -37,11 +37,11 @@ namespace m = paddle::operators::math;
std::unique_ptr<f::OperatorBase> listen_and_serv_op;
int selected_port;
void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) {
void InitTensorsInScope(const p::CPUPlace &place, f::Scope *scope) {
p::CPUDeviceContext ctx(place);
for (int i = 0; i < 2; ++i) {
auto var_name = paddle::string::Sprintf("x%d", i);
auto var = scope.Var(var_name);
auto var = scope->Var(var_name);
auto tensor = var->GetMutable<f::LoDTensor>();
tensor->Resize({10, 10});
float *expect = tensor->mutable_data<float>(place);
......@@ -50,20 +50,20 @@ void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) {
}
}
auto out_var = scope.Var("Out");
auto out_var = scope->Var("Out");
auto out_tensor = out_var->GetMutable<f::LoDTensor>();
out_tensor->Resize({10, 10});
out_tensor->mutable_data<float>(place); // allocate
}
void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) {
void InitSelectedRowsInScope(const p::CPUPlace &place, f::Scope *scope) {
p::CPUDeviceContext ctx(place);
int64_t height = 10;
int64_t row_numel = 10;
m::SetConstant<p::CPUDeviceContext, float> set_one;
// init x0
std::vector<int64_t> rows0{0, 4, 7};
auto x0_var = scope.Var("x0");
auto x0_var = scope->Var("x0");
auto x0 = x0_var->GetMutable<f::SelectedRows>();
x0->set_rows(rows0);
x0->set_height(height);
......@@ -74,7 +74,7 @@ void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) {
// init x1
std::vector<int64_t> rows1{2, 9};
auto x1_var = scope.Var("x1");
auto x1_var = scope->Var("x1");
auto x1 = x1_var->GetMutable<f::SelectedRows>();
x1->set_rows(rows1);
x1->set_height(height);
......@@ -83,7 +83,7 @@ void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) {
f::make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), place);
set_one(ctx, x1_value, 1.0);
auto out_var = scope.Var("Out");
auto out_var = scope->Var("Out");
auto out = out_var->GetMutable<f::SelectedRows>();
auto out_value = out->mutable_value();
out->set_height(height);
......@@ -117,15 +117,16 @@ void StartServerNet(bool is_sparse) {
f::Scope scope;
p::CPUPlace place;
if (is_sparse) {
InitSelectedRowsInScope(scope, place);
InitSelectedRowsInScope(place, &scope);
} else {
InitTensorsInScope(scope, place);
InitTensorsInScope(place, &scope);
}
// sub program run in listen_and_serv_op, for simple test we use sum
f::ProgramDesc program;
const auto &root_block = program.Block(0);
auto *optimize_block = program.AppendBlock(root_block);
auto *prefetch_block = program.AppendBlock(root_block);
// X for server side tensors, RX for received tensers, must be of same shape.
AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, optimize_block);
......@@ -135,6 +136,7 @@ void StartServerNet(bool is_sparse) {
attrs.insert({"ParamList", std::vector<std::string>({"Out"})});
attrs.insert({"GradList", std::vector<std::string>({"x1"})});
attrs.insert({"OptimizeBlock", optimize_block});
attrs.insert({"PrefetchBlock", prefetch_block});
listen_and_serv_op =
f::OpRegistry::CreateOp("listen_and_serv", {{"X", {"x1"}}}, {}, attrs);
LOG(INFO) << "selected port before run " << selected_port;
......@@ -148,7 +150,7 @@ TEST(SendRecvOp, CPUDense) {
// local net
f::Scope scope;
p::CPUPlace place;
InitTensorsInScope(scope, place);
InitTensorsInScope(place, &scope);
// create rpc client var
scope.Var("RPC_CLIENT_VAR");
......@@ -191,7 +193,7 @@ TEST(SendRecvOp, CPUSparse) {
f::Scope scope;
p::CPUPlace place;
p::CPUDeviceContext ctx(place);
InitSelectedRowsInScope(scope, place);
InitSelectedRowsInScope(place, &scope);
scope.Var("RPC_CLIENT_VAR");
f::AttributeMap attrs;
selected_port = static_cast<paddle::operators::ListenAndServOp *>(
......
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <future>
#include <future> // NOLINT
#include <ostream>
#include "paddle/fluid/framework/data_type.h"
......@@ -36,7 +36,7 @@ class SendVarsOp : public framework::OperatorBase {
auto ins = Inputs("X");
std::vector<std::string> epmap = Attr<std::vector<std::string>>("epmap");
int sync_send = Attr<int>("sync_sent");
int sync_send = Attr<int>("sync_send");
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& ctx = *pool.Get(place);
......
......@@ -35,8 +35,8 @@ class SGDOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
"Learning rate should have 1 element");
auto param_dim = ctx->GetInputDim("Param");
// TODO(qijun): check dimensions of Param and Grad at complie
// and run time.
// TODO(qijun): check dimensions of Param and Grad at compile
// and runtime.
ctx->SetOutputDim("ParamOut", param_dim);
}
......
......@@ -65,7 +65,8 @@ class SGDOpKernel : public framework::OpKernel<T> {
auto &grad_rows = grad->rows();
size_t grad_row_numel = grad_value.numel() / grad_rows.size();
PADDLE_ENFORCE_EQ(grad_row_numel, param_out->numel() / grad_height);
PADDLE_ENFORCE_EQ(static_cast<int64_t>(grad_row_numel),
param_out->numel() / grad_height);
auto *grad_data = grad_value.data<T>();
auto *out_data = param_out->data<T>();
......@@ -73,7 +74,7 @@ class SGDOpKernel : public framework::OpKernel<T> {
for (size_t i = 0; i < grad_rows.size(); i++) {
PADDLE_ENFORCE(grad_rows[i] < grad_height,
"Input rows index should less than height");
for (int64_t j = 0; j < grad_row_numel; j++) {
for (size_t j = 0; j < grad_row_numel; j++) {
out_data[grad_rows[i] * grad_row_numel + j] -=
lr[0] * grad_data[i * grad_row_numel + j];
}
......@@ -107,7 +108,7 @@ class SGDOpKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE(grad.rows()[i] < grad.height(),
"Input rows index should less than height");
int64_t id_index = param.index(grad.rows()[i]);
for (int64_t j = 0; j < grad_row_width; j++) {
for (size_t j = 0; j < grad_row_width; j++) {
out_data[id_index * grad_row_width + j] -=
lr[0] * grad_data[i * grad_row_width + j];
}
......
......@@ -48,11 +48,11 @@ class SplitIdsOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx->HasOutputs("Out"), "SplitIdsOp must has output Out.");
auto ids_var_type = ctx->GetInputsVarType("Ids").front();
PADDLE_ENFORCE_EQ(ids_var_type, framework::proto::VarType::LOD_TENSOR);
auto ids_dims = ctx->GetInputDim("Ids");
PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
PADDLE_ENFORCE_EQ(ids_dims[1], 1);
if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
PADDLE_ENFORCE_EQ(ids_dims[1], 1);
}
}
};
......@@ -60,8 +60,9 @@ class SplitIdsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto *input_var = block->Var(op_desc.Input("Ids")[0]);
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR);
block->Var(out_var)->SetType(input_var->GetType());
}
}
};
......@@ -73,4 +74,5 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR(split_ids, ops::SplitIdsOp, ops::SplitIdsOpMaker,
ops::SplitIdsOpInferVarType);
REGISTER_OP_CPU_KERNEL(
split_ids, ops::SplitIdsOpKernel<paddle::platform::CPUPlace, int64_t>);
split_ids, ops::SplitIdsOpKernel<paddle::platform::CPUPlace, int64_t>,
ops::SplitIdsOpKernel<paddle::platform::CPUPlace, float>);
......@@ -24,35 +24,63 @@ namespace operators {
template <typename DeviceContext, typename T>
class SplitIdsOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
void Compute(const framework::ExecutionContext &ctx) const override {
auto place = ctx.GetPlace();
if (!platform::is_cpu_place(place)) {
PADDLE_THROW("SplitIds do not support GPU kernel");
}
auto& ids_dims = ctx.Input<framework::LoDTensor>("Ids")->dims();
const T* ids = ctx.Input<framework::LoDTensor>("Ids")->data<T>();
auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
const size_t shard_num = outs.size();
const auto *ids_var = ctx.InputVar("Ids");
if (ids_var->IsType<framework::LoDTensor>()) {
const auto &ids_dims = ctx.Input<framework::LoDTensor>("Ids")->dims();
const T *ids = ctx.Input<framework::LoDTensor>("Ids")->data<T>();
auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
const size_t shard_num = outs.size();
std::vector<std::vector<T>> out_ids;
out_ids.resize(outs.size());
std::vector<std::vector<T>> out_ids;
out_ids.resize(outs.size());
// split id by their shard_num.
for (int i = 0; i < ids_dims[0]; ++i) {
T id = ids[i];
size_t shard_id = static_cast<size_t>(id) % shard_num;
out_ids[shard_id].push_back(id);
}
// split id by their shard_num.
for (int i = 0; i < ids_dims[0]; ++i) {
T id = ids[i];
size_t shard_id = static_cast<size_t>(id) % shard_num;
out_ids[shard_id].push_back(id);
}
// create tensor for each shard and send to parameter server
for (size_t i = 0; i < out_ids.size(); ++i) {
auto *shard_t = outs[i];
std::vector<T> ids = out_ids[i];
auto *shard_data = shard_t->mutable_data<T>(
framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
for (size_t i = 0; i < ids.size(); ++i) {
shard_data[i] = ids[i];
}
}
} else if (ids_var->IsType<framework::SelectedRows>()) {
const auto *ids_selected_rows = ctx.Input<framework::SelectedRows>("Ids");
auto &ids_dims = ids_selected_rows->value().dims();
PADDLE_ENFORCE_EQ(ids_dims[0], ids_selected_rows->rows().size(), "");
const T *ids = ids_selected_rows->value().data<T>();
const auto &ids_rows = ids_selected_rows->rows();
auto outs = ctx.MultiOutput<framework::SelectedRows>("Out");
const size_t shard_num = outs.size();
// get rows for outputs
for (auto &id : ids_rows) {
size_t shard_id = static_cast<size_t>(id) % shard_num;
outs[shard_id]->mutable_rows()->push_back(id);
}
// create tensor for each shard and send to parameter server
for (size_t i = 0; i < out_ids.size(); ++i) {
auto* shard_t = outs[i];
std::vector<T> ids = out_ids[i];
auto* shard_data = shard_t->mutable_data<T>(
framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
for (size_t i = 0; i < ids.size(); ++i) {
shard_data[i] = ids[i];
int64_t row_width = ids_dims[1];
for (auto &out : outs) {
out->set_height(ids_selected_rows->height());
framework::DDim ddim = framework::make_ddim(
{static_cast<int64_t>(out->rows().size()), row_width});
T *output = out->mutable_value()->mutable_data<T>(ddim, place);
for (size_t i = 0; i < ddim[0]; ++i) {
memcpy(output + i * row_width, ids + out->rows()[i] * row_width,
row_width * sizeof(T));
}
}
}
}
......
......@@ -37,8 +37,8 @@ inline void StridedMemcpy(const platform::DeviceContext& dev_ctx, const T* src,
const framework::DDim& src_stride,
const framework::DDim& dst_dim,
const framework::DDim& dst_stride, T* dst) {
using namespace detail;
StridedCopyDimVisitor<T> func(dev_ctx, src, src_stride, dst_stride, dst);
paddle::operators::detail::StridedCopyDimVisitor<T> func(
dev_ctx, src, src_stride, dst_stride, dst);
boost::apply_visitor(func, dst_dim);
}
......
......@@ -10,9 +10,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sum_op.h"
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
......@@ -37,7 +39,10 @@ class SumOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputsDim("X");
size_t N = x_dims.size();
PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
PADDLE_ENFORCE_GT(N, 0, "Input tensors count should > 0.");
if (N == 1) {
VLOG(3) << "Warning: sum have only one input, may waste memory";
}
framework::DDim in_dim({0});
for (auto& x_dim : x_dims) {
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/top_k_op.h"
#include "paddle/fluid/platform/assert.h"
namespace paddle {
......@@ -133,71 +134,71 @@ __device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
}
template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int& beam,
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
int beam_size, const T* src,
bool& firstStep, bool& is_empty,
Pair<T>& max, int dim,
bool* firstStep, bool* is_empty,
Pair<T>* max, int dim,
const int tid) {
if (beam > 0) {
int length = beam < beam_size ? beam : beam_size;
if (firstStep) {
firstStep = false;
if (*beam > 0) {
int length = (*beam) < beam_size ? *beam : beam_size;
if (*firstStep) {
*firstStep = false;
GetTopK<T, BlockSize>(topk, src, tid, dim, length);
} else {
for (int k = 0; k < MaxLength; k++) {
if (k < MaxLength - beam) {
topk[k] = topk[k + beam];
if (k < MaxLength - (*beam)) {
topk[k] = topk[k + *beam];
} else {
topk[k].set(-INFINITY, -1);
}
}
if (!is_empty) {
GetTopK<T, BlockSize>(topk + MaxLength - beam, src, tid, dim, max,
if (!(*is_empty)) {
GetTopK<T, BlockSize>(topk + MaxLength - *beam, src, tid, dim, *max,
length);
}
}
max = topk[MaxLength - 1];
if (max.v == -1) is_empty = true;
beam = 0;
*max = topk[MaxLength - 1];
if ((*max).v == -1) *is_empty = true;
*beam = 0;
}
}
template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int& beam,
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
int beam_size, const T* val,
int* col, bool& firstStep,
bool& is_empty, Pair<T>& max,
int* col, bool* firstStep,
bool* is_empty, Pair<T>* max,
int dim, const int tid) {
if (beam > 0) {
int length = beam < beam_size ? beam : beam_size;
if (firstStep) {
firstStep = false;
if (*beam > 0) {
int length = (*beam) < beam_size ? *beam : beam_size;
if (*firstStep) {
*firstStep = false;
GetTopK<T, BlockSize>(topk, val, col, tid, dim, length);
} else {
for (int k = 0; k < MaxLength; k++) {
if (k < MaxLength - beam) {
topk[k] = topk[k + beam];
if (k < MaxLength - *beam) {
topk[k] = topk[k + *beam];
} else {
topk[k].set(-INFINITY, -1);
}
}
if (!is_empty) {
GetTopK<T, BlockSize>(topk + MaxLength - beam, val, col, tid, dim, max,
if (!(*is_empty)) {
GetTopK<T, BlockSize>(topk + MaxLength - *beam, val, col, tid, dim, max,
length);
}
}
max = topk[MaxLength - 1];
if (max.v == -1) is_empty = true;
beam = 0;
*max = topk[MaxLength - 1];
if ((*max).v == -1) *is_empty = true;
*beam = 0;
}
}
template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
Pair<T> topk[], T** topVal,
int64_t** topIds, int& beam, int& k,
int64_t** topIds, int* beam, int* k,
const int tid, const int warp) {
while (true) {
__syncthreads();
......@@ -225,17 +226,17 @@ __device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
(*topVal)++;
(*topIds)++;
}
if (tid == maxid[0]) beam++;
if (--k == 0) break;
if (tid == maxid[0]) (*beam)++;
if (--(*k) == 0) break;
__syncthreads();
if (tid == maxid[0]) {
if (beam < MaxLength) {
sh_topk[tid] = topk[beam];
if (*beam < MaxLength) {
sh_topk[tid] = topk[*beam];
}
}
if (maxid[0] / 32 == warp) {
if (__shfl(beam, (maxid[0]) % 32, 32) == MaxLength) break;
if (__shfl(*beam, (maxid[0]) % 32, 32) == MaxLength) break;
}
}
}
......@@ -268,13 +269,13 @@ __global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices,
topk[k].set(-INFINITY, -1);
}
while (k) {
ThreadGetTopK<T, MaxLength, BlockSize>(topk, beam, k,
src + blockIdx.x * lds, firststep,
is_empty, max, dim, tid);
ThreadGetTopK<T, MaxLength, BlockSize>(topk, &beam, k,
src + blockIdx.x * lds, &firststep,
&is_empty, &max, dim, tid);
sh_topk[tid] = topk[0];
BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &output,
&indices, beam, k, tid, warp);
&indices, &beam, &k, tid, warp);
}
}
......@@ -308,9 +309,9 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
KeMatrixTopK<T, 5, 256><<<
grid, threads, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(output_data, output->dims()[1],
indices_data, input_data,
input_width, input_width, int(k));
.stream()>>>(
output_data, output->dims()[1], indices_data, input_data, input_width,
input_width, static_cast<int>(k));
}
};
......
......@@ -13,14 +13,17 @@
# limitations under the License.
from __future__ import print_function
import framework
from framework import Program, default_main_program, default_startup_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
import distributed_splitter as splitter
import math
import distributed_splitter as splitter
import framework
from framework import Program, default_main_program, Variable
from . import core
import debuger
LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
class VarBlock:
......@@ -35,9 +38,9 @@ class VarBlock:
class UnionFind(object):
""" Union-find data struct.
""" Union-find data structure.
Union-find is a data struct that keeps track of a set of elements partitioned
Union-find is a data structure that keeps track of a set of elements partitioned
into a number of disjoint (non-overlapping) subsets.
Reference:
......@@ -185,19 +188,66 @@ class DistributeTranspiler:
assert (callable(split_method))
if program is None:
program = default_main_program()
self.program = program
self.trainers = trainers
self.origin_program = program
self.trainer_num = trainers
self.optimize_ops = optimize_ops
# TODO(typhoonzero): currently trainer_id is fetched from cluster system
# like Kubernetes, we should port this to use etcd later when developing
# fluid distributed training with fault-tolerance.
self.trainer_id = trainer_id
pserver_endpoints = pservers.split(",")
self.pserver_endpoints = pserver_endpoints
# process lookup_table_op
# 1. check all lookup_table_op is distributed
# 2. check all lookup_table_op share the same table.
distributed_lookup_table_ops = []
# support only one distributed_lookup_table now
self.table_name = None
for op in program.global_block().ops:
if op.type == LOOKUP_TABLE_TYPE:
if op.attrs['is_distributed'] is True:
if self.table_name is None:
self.table_name = op.input("W")[0]
if self.table_name != op.input("W")[0]:
raise RuntimeError("all distributed lookup_table_ops"
" should have only one table")
distributed_lookup_table_ops.append(op)
else:
if self.table_name is not None:
assert op.input("W")[0] != self.table_name
self.has_distributed_lookup_table = len(
distributed_lookup_table_ops) > 0
# step1: For large parameters and gradients, split them into smaller
# blocks.
param_list = [pg[0] for pg in params_grads]
grad_list = [pg[1] for pg in params_grads]
if self.has_distributed_lookup_table:
param_list = [
param for param in param_list if param.name != self.table_name
]
grad_list = [
grad for grad in grad_list
if grad.name != framework.grad_var_name(self.table_name)
]
self.table_param_grad = [
param_grad for param_grad in params_grads
if param_grad[0].name == self.table_name
][0]
table_grad_var = self.table_param_grad[1]
self.table_grad_list = [
program.global_block().create_var(
name="%s.trainer_%d.pserver_%d" %
(table_grad_var.name, trainer_id, index),
type=table_grad_var.type,
shape=table_grad_var.shape,
dtype=table_grad_var.dtype)
for index in range(len(self.pserver_endpoints))
]
grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
# step2: Create new vars for the parameters and gradients blocks and
......@@ -229,7 +279,7 @@ class DistributeTranspiler:
self.param_grad_ep_mapping[ep]["grads"].append(grad)
rpc_client_var = program.global_block().create_var(
name="RPC_CLIENT_VAR",
name=RPC_CLIENT_VAR_NAME,
persistable=True,
type=core.VarDesc.VarType.RAW)
......@@ -252,13 +302,19 @@ class DistributeTranspiler:
outputs={"Out": [orig_param]},
attrs={"axis": 0})
if self.has_distributed_lookup_table:
self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
eplist)
self._split_table_grad_and_add_send_vars(program, rpc_client_var,
pserver_endpoints)
def get_trainer_program(self):
# remove optimize ops and add a send op to main_program
self.program.global_block().delete_ops(self.optimize_ops)
self.program.sync_with_cpp()
self.origin_program.global_block().delete_ops(self.optimize_ops)
self.origin_program.sync_with_cpp()
# FIXME(typhoonzero): serialize once will fix error occurs when clone.
self.program.__str__()
return self.program
self.origin_program.__str__()
return self.origin_program
def get_pserver_program(self, endpoint):
"""
......@@ -294,8 +350,8 @@ class DistributeTranspiler:
type=v.type,
dtype=v.dtype,
shape=v.shape)
if self.trainers > 1:
for trainer_id in xrange(self.trainers):
if self.trainer_num > 1:
for trainer_id in xrange(self.trainer_num):
var = pserver_program.global_block().create_var(
name="%s.trainer_%d" % (orig_var_name, trainer_id),
persistable=False,
......@@ -309,7 +365,7 @@ class DistributeTranspiler:
# step3
optimize_block = pserver_program.create_block(0)
# step 4
# Create a union-find data struct from optimize ops,
# Create a union-find data structure from optimize ops,
# If two ops are connected, we could add these two ops
# into one set.
ufind = self._create_ufind(self.optimize_ops)
......@@ -384,6 +440,23 @@ class DistributeTranspiler:
# __append_optimize_op__(glb_op, optimize_block)
# break
# process distributed lookup_table
prefetch_block = None
if self.has_distributed_lookup_table:
pserver_index = self.pserver_endpoints.index(endpoint)
self._create_table_optimize_block(pserver_index, pserver_program,
append_block)
prefetch_block = self._create_prefetch_block(
pserver_index, pserver_program, optimize_block)
# NOTE: if has_distributed_lookup_table is False, then prefetch_block will
# not be executed, so it's safe to use optimize_block to hold the place
if self.has_distributed_lookup_table:
assert prefetch_block is not None
else:
assert prefetch_block is None
prefetch_block = pserver_program.global_block()
# step5 append the listen_and_serv op
pserver_program.global_block().append_op(
type="listen_and_serv",
......@@ -392,8 +465,10 @@ class DistributeTranspiler:
attrs={
"OptimizeBlock": optimize_block,
"endpoint": endpoint,
"Fanin": self.trainers
"Fanin": self.trainer_num,
"PrefetchBlock": prefetch_block
})
pserver_program.sync_with_cpp()
return pserver_program
......@@ -451,6 +526,197 @@ class DistributeTranspiler:
attrs=op.attrs)
return s_prog
# transpiler function for dis lookup_table
def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
eplist):
# 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
self.prefetch_input_vars = None
self.prefetch_output_vars = None
continue_search_lookup_table_op = True
while continue_search_lookup_table_op:
continue_search_lookup_table_op = False
all_ops = program.global_block().ops
for op in all_ops:
if op.type == LOOKUP_TABLE_TYPE:
continue_search_lookup_table_op = True
op_index = list(all_ops).index(op)
ids_name = op.input("Ids")
out_name = op.output("Out")
if self.prefetch_input_vars is None:
ids_var = program.global_block().vars[ids_name[0]]
self.prefetch_input_vars = self.create_splited_vars(
source_var=ids_var,
block=program.global_block(),
tag="_prefetch_in_")
if self.prefetch_output_vars is None:
out_var = program.global_block().vars[out_name[0]]
self.prefetch_output_vars = self.create_splited_vars(
source_var=out_var,
block=program.global_block(),
tag="_prefetch_out_")
# insert split_ids_op
program.global_block().insert_op(
index=op_index,
type="split_ids",
inputs={
'Ids': [
program.global_block().vars[varname]
for varname in ids_name
]
},
outputs={"Out": self.prefetch_input_vars})
# insert prefetch_op
program.global_block().insert_op(
index=op_index + 1,
type="prefetch",
inputs={'X': self.prefetch_input_vars},
outputs={
"Out": self.prefetch_output_vars,
"RPCClient": rpc_client_var
},
attrs={"epmap": eplist})
# insert concat_op
program.global_block().insert_op(
index=op_index + 2,
type="concat",
inputs={'X': self.prefetch_output_vars},
outputs={
"Out": [
program.global_block().vars[varname]
for varname in out_name
]
},
attrs={"axis": 0})
# delete lookup_table_op
program.global_block().delete_ops([op])
program.sync_with_cpp()
# break for loop
break
def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
pserver_endpoints):
# 2. add split_ids_op and send_vars_op to send gradient to pservers
# there should only be one table_name
all_ops = program.global_block().ops
table_grad_name = framework.grad_var_name(self.table_name)
for op in all_ops:
if table_grad_name in op.output_arg_names:
op_index = list(all_ops).index(op)
# insert split_ids_op
program.global_block().insert_op(
index=op_index + 1,
type="split_ids",
inputs={
'Ids': [program.global_block().vars[table_grad_name]]
},
outputs={"Out": self.table_grad_list})
program.global_block().insert_op(
index=op_index + 2,
type="send_vars",
inputs={'X': self.table_grad_list},
outputs={"RPCClient": rpc_client_var},
attrs={"sync_send": True,
"epmap": pserver_endpoints})
break
def _create_prefetch_block(self, pserver_index, pserver_program,
optimize_block):
# STEP: create prefetch block
table_var = pserver_program.global_block().vars[self.table_name]
prefetch_block = pserver_program.create_block(optimize_block.idx)
trainer_ids = self.prefetch_input_vars[pserver_index]
pserver_ids = pserver_program.global_block().create_var(
name=trainer_ids.name,
type=trainer_ids.type,
shape=trainer_ids.shape,
dtype=trainer_ids.dtype)
trainer_out = self.prefetch_output_vars[pserver_index]
pserver_out = pserver_program.global_block().create_var(
name=trainer_out.name,
type=trainer_out.type,
shape=trainer_out.shape,
dtype=trainer_out.dtype)
prefetch_block.append_op(
type=LOOKUP_TABLE_TYPE,
inputs={'Ids': pserver_ids,
"W": table_var},
outputs={"Out": pserver_out},
attrs={
"is_sparse": True, # has no effect on lookup_table op
"is_distributed": True,
"padding_idx": -1
})
return prefetch_block
def _create_table_optimize_block(self, pserver_index, pserver_program,
append_block):
def _clone_var(block, var, persistable=True):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
persistable=persistable)
# STEP: create table optimize block
# create table param and grad var in pserver program
param_var = _clone_var(
pserver_program.global_block(),
self.origin_program.global_block().vars[self.table_name])
grad_var = _clone_var(
pserver_program.global_block(),
self.origin_program.global_block().vars[framework.grad_var_name(
self.table_name)],
persistable=False)
# create grad vars in pserver program
table_grad_var = self.table_param_grad[1]
table_grad_list = [
pserver_program.global_block().create_var(
name="%s.trainer_%d.pserver_%d" %
(table_grad_var.name, index, pserver_index),
type=table_grad_var.type,
shape=table_grad_var.shape,
dtype=table_grad_var.dtype) for index in range(self.trainer_num)
]
# create table optimize block in pserver program
table_opt_op = [
op for op in self.optimize_ops
if op.input("Param")[0] == self.table_name
][0]
table_opt_block = pserver_program.create_block(append_block.idx)
# only support sgd now
assert table_opt_op.type == "sgd"
# append sum op for table_grad_list
table_opt_block.append_op(
type="sum",
inputs={"X": table_grad_list},
outputs={"Out": [grad_var]})
lr_var = pserver_program.global_block().vars[table_opt_op.input(
"LearningRate")[0]]
inputs = {
"Param": [param_var],
"Grad": [grad_var],
"LearningRate": [lr_var]
}
outputs = {"ParamOut": [param_var]}
table_opt_block.append_op(
type=table_opt_op.type,
inputs=inputs,
outputs=outputs,
attrs=table_opt_op.attrs)
# ====================== private transpiler functions =====================
def _create_vars_from_blocklist(self,
program,
......@@ -512,7 +778,17 @@ class DistributeTranspiler:
program.global_block().sync_with_cpp()
return var_mapping
def _clone_var(self, block, var):
def create_splited_vars(self, source_var, block, tag):
return [
block.create_var(
name=str(source_var.name + tag + str(index)),
type=source_var.type,
shape=source_var.shape,
dtype=source_var.dtype)
for index in range(len(self.pserver_endpoints))
]
def _clone_var(self, block, var, persistable=True):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
......@@ -520,12 +796,12 @@ class DistributeTranspiler:
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level,
persistable=True)
persistable=persistable)
def _append_split_op(self, program, gradblocks):
# Split variables that need to be split and append respective ops
add_suffix = False
if self.trainers > 1:
if self.trainer_num > 1:
add_suffix = True
var_mapping = self._create_vars_from_blocklist(
program, gradblocks, add_trainer_suffix=add_suffix)
......@@ -616,9 +892,9 @@ class DistributeTranspiler:
return
merged_var = \
pserver_block.vars[self._orig_varname(grad_block.name)]
if self.trainers > 1:
if self.trainer_num > 1:
vars2merge = []
for i in xrange(self.trainers):
for i in xrange(self.trainer_num):
per_trainer_name = "%s.trainer_%d" % \
(self._orig_varname(grad_block.name), i)
vars2merge.append(pserver_block.vars[per_trainer_name])
......@@ -633,7 +909,7 @@ class DistributeTranspiler:
type="scale",
inputs={"X": merged_var},
outputs={"Out": merged_var},
attrs={"scale": 1.0 / float(self.trainers)})
attrs={"scale": 1.0 / float(self.trainer_num)})
new_inputs[key] = merged_var
elif key == "Param":
# param is already created on global program
......@@ -669,7 +945,7 @@ class DistributeTranspiler:
new_shape = None
if key in ["Param", "Grad", "LearningRate"]:
continue
var = self.program.global_block().vars[opt_op.input(key)[0]]
var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
# update accumulator variable shape
param_shape = new_inputs["Param"].shape
new_shape = self._get_optimizer_input_shape(opt_op.type, key,
......@@ -682,8 +958,8 @@ class DistributeTranspiler:
new_inputs[key] = tmpvar
# change output's ParamOut variable
outputs = self._get_output_map_from_op(self.program.global_block().vars,
opt_op)
outputs = self._get_output_map_from_op(
self.origin_program.global_block().vars, opt_op)
outputs["ParamOut"] = new_inputs["Param"]
optimize_block.append_op(
......@@ -695,8 +971,8 @@ class DistributeTranspiler:
def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
program = optimize_block.program
# Append the ops for parameters that do not need to be optimized/updated
inputs = self._get_input_map_from_op(self.program.global_block().vars,
opt_op)
inputs = self._get_input_map_from_op(
self.origin_program.global_block().vars, opt_op)
for varlist in inputs.itervalues():
if not isinstance(varlist, list):
varlist = [varlist]
......@@ -709,8 +985,8 @@ class DistributeTranspiler:
dtype=var.dtype,
shape=var.shape)
outputs = self._get_output_map_from_op(self.program.global_block().vars,
opt_op)
outputs = self._get_output_map_from_op(
self.origin_program.global_block().vars, opt_op)
for varlist in outputs.itervalues():
if not isinstance(varlist, list):
......@@ -783,7 +1059,6 @@ class DistributeTranspiler:
if same_or_split_var(n, param) and n != param:
return True
return False
return False
def _get_input_map_from_op(self, varmap, op):
"""Returns a dict from op input name to the vars in varmap."""
......@@ -821,7 +1096,7 @@ class DistributeTranspiler:
find_ops = []
# find ops which output is lr var
block = self.program.global_block()
block = self.origin_program.global_block()
for op in block.ops:
if set(op.output_arg_names) & lr_vars:
find_ops.append(op)
......
......@@ -1183,6 +1183,8 @@ class Parameter(Variable):
self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
self.do_model_average = kwargs.get('do_model_average', None)
def __str__(self):
return self.to_string(True)
......@@ -1203,7 +1205,7 @@ class Parameter(Variable):
if with_details:
res_str = Variable.to_string(self, throw_on_error, True)
additional_attr = ("trainable", "optimize_attr", "regularizer",
"gradient_clip_attr")
"gradient_clip_attr", "do_model_average")
for attr_name in additional_attr:
res_str += "%s: %s\n" % (attr_name,
str(getattr(self, attr_name)))
......
......@@ -218,6 +218,7 @@ def fc(input,
def embedding(input,
size,
is_sparse=False,
is_distributed=False,
padding_idx=None,
param_attr=None,
dtype='float32'):
......@@ -268,8 +269,11 @@ def embedding(input,
inputs={'Ids': input,
'W': w},
outputs={'Out': tmp},
attrs={'is_sparse': is_sparse,
'padding_idx': padding_idx})
attrs={
'is_sparse': is_sparse,
'is_distributed': is_distributed,
'padding_idx': padding_idx
})
return tmp
......@@ -1516,7 +1520,8 @@ def batch_norm(input,
in_place=False,
name=None,
moving_mean_name=None,
moving_variance_name=None):
moving_variance_name=None,
do_model_average_for_mean_and_var=False):
"""
This function helps create an operator to implement
the BatchNorm layer using the configurations from the input parameters.
......@@ -1547,7 +1552,10 @@ def batch_norm(input,
mean = helper.create_parameter(
attr=ParamAttr(
name=moving_mean_name, initializer=Constant(0.0), trainable=False),
name=moving_mean_name,
initializer=Constant(0.0),
trainable=False,
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=input.dtype)
mean.stop_gradient = True
......@@ -1556,7 +1564,8 @@ def batch_norm(input,
attr=ParamAttr(
name=moving_variance_name,
initializer=Constant(1.0),
trainable=False),
trainable=False,
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=input.dtype)
variance.stop_gradient = True
......@@ -3374,14 +3383,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
Here are some examples to explain it.
1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
is [6, 8], the reshape operator will transform x into a 2-D tensor with
is [6, 8], the reshape operator will transform x into a 2-D tensor with
shape [6, 8] and leaving x's data unchanged.
2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
specified is [2, 3, -1, 2], the reshape operator will transform x into a
4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
case, one dimension of the target shape is set to -1, the value of this
dimension is inferred from the total element number of x and remaining
case, one dimension of the target shape is set to -1, the value of this
dimension is inferred from the total element number of x and remaining
dimensions.
3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
......@@ -3615,7 +3624,7 @@ def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
def pad(x, paddings, pad_value=0., name=None):
"""
Pads a tensor with a constant value given by :attr:`pad_value`, and the
padded width is specified by :attr:`paddings`.
padded width is specified by :attr:`paddings`.
Specifically, the number of values padded before the contents of :attr:`x`
in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
......@@ -3643,7 +3652,7 @@ def pad(x, paddings, pad_value=0., name=None):
x (Variable): The input tensor variable.
paddings (list): A list of integers. Its elements specify the padded
width before and after for each dimension in turn.
The length of :attr:paddings must be
The length of :attr:paddings must be
:math:`rank(x) \\times 2`.
pad_value (float): The constant value used to pad.
name(str|None): A name for this layer(optional). If set None, the layer
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from collections import defaultdict
from paddle.fluid.framework import Program
import framework
......@@ -818,8 +818,8 @@ class ModelAverage(Optimizer):
min_average_window, max_average_window and current update times.
Args:
params_grads: A list of parameter-grad variable pairs.
average_window_rate: The rate of average window.
params_grads: A list of parameter-grad variable pairs.
min_average_window: The minimum size of average window.
max_average_window: The maximum size of average window.
......@@ -840,8 +840,8 @@ class ModelAverage(Optimizer):
"""
def __init__(self,
params_grads,
average_window_rate,
params_grads=None,
min_average_window=10000,
max_average_window=10000,
**kwargs):
......@@ -849,24 +849,37 @@ class ModelAverage(Optimizer):
self.average_window = average_window_rate
self.min_average_window = min_average_window
self.max_average_window = max_average_window
self.params_grads = params_grads
self.params_grads = [] if params_grads is None else params_grads
params = {}
for param, grad in self.params_grads:
if param.do_model_average != False:
params[param.name] = (param, grad)
for param in framework.default_main_program().global_block(
).all_parameters():
if param.name not in params and param.do_model_average != False:
grad = param.block.create_var(
name=unique_name.generate(".".join([param.name, 'tmp'])),
dtype=param.dtype,
persistable=False,
stop_gradient=True)
params[param.name] = (param, grad)
self.params_grads = params.values()
for param, grad in self.params_grads:
if grad is not None:
self._append_average_accumulate_op(param)
self._append_average_accumulate_op(param)
self.apply_program = Program()
block = self.apply_program.global_block()
with program_guard(main_program=self.apply_program):
for param_grad in self.params_grads:
if param_grad[1] is not None:
self._add_average_apply_op(block, param_grad)
self._add_average_apply_op(block, param_grad)
self.restore_program = Program()
block = self.restore_program.global_block()
with program_guard(main_program=self.restore_program):
for param_grad in self.params_grads:
if param_grad[1] is not None:
self._add_average_restore_op(block, param_grad)
self._add_average_restore_op(block, param_grad)
def _add_average_apply_op(self, block, param_grad):
param = block.clone_variable(param_grad[0])
......
......@@ -28,13 +28,15 @@ class ParamAttr(object):
learning_rate=1.0,
regularizer=None,
trainable=True,
gradient_clip=None):
gradient_clip=None,
do_model_average=None):
self.name = name
self.initializer = initializer
self.learning_rate = learning_rate
self.regularizer = regularizer
self.trainable = trainable
self.gradient_clip = gradient_clip
self.model_average = do_model_average
def set_default_initializer(self, initializer):
if initializer is None:
......@@ -80,7 +82,8 @@ class ParamAttr(object):
},
'regularizer': self.regularizer,
'trainable': self.trainable,
'gradient_clip_attr': self.gradient_clip
'gradient_clip_attr': self.gradient_clip,
'model_average': self.model_average
}
if with_initializer:
kwargs['initializer'] = self.initializer
......@@ -90,7 +93,7 @@ class ParamAttr(object):
class WeightNormParamAttr(ParamAttr):
"""
Used for weight normalization. Any field in ParamAttr can also be set here.
Besides, an extra field dim can be set to indicate the dimension except
Besides, an extra field dim can be set to indicate the dimension except
which to normalize.
"""
# List to record the parameters reparameterized by weight normalization.
......
......@@ -37,7 +37,7 @@ depth = 8
mix_hidden_lr = 1e-3
IS_SPARSE = True
PASS_NUM = 10
PASS_NUM = 100
BATCH_SIZE = 10
embedding_name = 'emb'
......@@ -77,7 +77,8 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
emb_layers.append(mark_embedding)
hidden_0_layers = [
fluid.layers.fc(input=emb, size=hidden_dim) for emb in emb_layers
fluid.layers.fc(input=emb, size=hidden_dim, act='tanh')
for emb in emb_layers
]
hidden_0 = fluid.layers.sums(input=hidden_0_layers)
......@@ -94,8 +95,8 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
for i in range(1, depth):
mix_hidden = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=hidden_dim),
fluid.layers.fc(input=input_tmp[1], size=hidden_dim)
fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'),
fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh')
])
lstm = fluid.layers.dynamic_lstm(
......@@ -109,8 +110,8 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
input_tmp = [mix_hidden, lstm]
feature_out = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=label_dict_len),
fluid.layers.fc(input=input_tmp[1], size=label_dict_len)
fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
])
return feature_out
......@@ -171,7 +172,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
# check other optimizers and check why out will be NAN
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=0.0001,
learning_rate=0.01,
decay_steps=100000,
decay_rate=0.5,
staircase=True))
......@@ -233,7 +234,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
print("second per batch: " + str((time.time(
) - start_time) / batch_id))
# Set the threshold low to speed up the CI test
if float(pass_precision) > 0.05:
if float(pass_precision) > 0.01:
if save_dirname is not None:
# TODO(liuyiqun): Change the target to crf_decode
fluid.io.save_inference_model(save_dirname, [
......
......@@ -157,7 +157,6 @@ def train(nn_type,
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist) # ip:port,ip:port...
pserver_endpoints = os.getenv("PSERVERS")
trainers = int(os.getenv("TRAINERS"))
current_endpoint = os.getenv("POD_IP") + ":" + port
trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
......
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
# The fully connected test is removed whe the WITH_MKLDNN flag is OFF
# Because the fully connected layer has only one kernel (MKLDNN)
if(NOT WITH_MKLDNN)
list(REMOVE_ITEM TEST_OPS test_fc_op)
endif(NOT WITH_MKLDNN)
if(NOT WITH_DISTRIBUTE)
list(REMOVE_ITEM TEST_OPS test_recv_op)
endif(NOT WITH_DISTRIBUTE)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册