Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b7496bcb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b7496bcb
编写于
7月 29, 2022
作者:
F
fwenguang
提交者:
GitHub
7月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add pytest for mlu strided_slice kernel (#44523)
上级
3d88816e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
632 addition
and
0 deletion
+632
-0
python/paddle/fluid/tests/unittests/mlu/test_strided_slice_op_mlu.py
...le/fluid/tests/unittests/mlu/test_strided_slice_op_mlu.py
+632
-0
未找到文件。
python/paddle/fluid/tests/unittests/mlu/test_strided_slice_op_mlu.py
0 → 100644
浏览文件 @
b7496bcb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
from
test_strided_slice_op
import
strided_slice_native_forward
import
numpy
as
np
import
unittest
import
paddle.fluid
as
fluid
import
paddle
paddle
.
enable_static
()
class
TestStrideSliceOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
op_type
=
'strided_slice'
self
.
python_api
=
paddle
.
strided_slice
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
set
([
'Input'
]),
'Out'
,
check_eager
=
False
)
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
]
self
.
starts
=
[
-
4
]
self
.
ends
=
[
-
3
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp1
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
]
self
.
starts
=
[
3
]
self
.
ends
=
[
8
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp2
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
]
self
.
starts
=
[
5
]
self
.
ends
=
[
0
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp3
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
]
self
.
starts
=
[
-
1
]
self
.
ends
=
[
-
3
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp4
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
4
,
10
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
0
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
5
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOp5
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
2
,
1
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOp6
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
3
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOp7
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
5
,
5
,
5
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOp8
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
1
,
100
,
1
).
astype
(
np
.
float32
)
self
.
axes
=
[
1
]
self
.
starts
=
[
1
]
self
.
ends
=
[
2
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp9
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
1
,
100
,
1
).
astype
(
np
.
float32
)
self
.
axes
=
[
1
]
self
.
starts
=
[
-
1
]
self
.
ends
=
[
-
2
]
self
.
strides
=
[
-
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOp10
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
]
self
.
starts
=
[
1
,
0
]
self
.
ends
=
[
2
,
2
]
self
.
strides
=
[
1
,
1
]
self
.
infer_flags
=
[
1
,
1
]
class
TestStrideSliceOp11
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
starts
=
[
1
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStrideSliceOp12
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
,
5
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStrideSliceOp13
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
6
,
7
,
8
).
astype
(
np
.
float32
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
1
,
2
]
self
.
ends
=
[
2
,
2
,
3
,
1
,
2
,
8
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
,
1
]
class
TestStrideSliceOp14
(
TestStrideSliceOp
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
4
,
4
,
4
,
4
).
astype
(
np
.
float32
)
self
.
axes
=
[
1
,
2
,
3
]
self
.
starts
=
[
-
5
,
0
,
-
7
]
self
.
ends
=
[
-
1
,
2
,
4
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOpBool
(
TestStrideSliceOp
):
def
test_check_grad
(
self
):
pass
class
TestStrideSliceOpBool1D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
100
).
astype
(
"bool"
)
self
.
axes
=
[
0
]
self
.
starts
=
[
3
]
self
.
ends
=
[
8
]
self
.
strides
=
[
1
]
self
.
infer_flags
=
[
1
]
class
TestStrideSliceOpBool2D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
10
,
10
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
]
self
.
starts
=
[
1
,
0
]
self
.
ends
=
[
2
,
2
]
self
.
strides
=
[
1
,
1
]
self
.
infer_flags
=
[
1
,
1
]
class
TestStrideSliceOpBool3D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
4
,
10
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
]
self
.
starts
=
[
0
,
-
1
,
0
]
self
.
ends
=
[
2
,
-
3
,
5
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
class
TestStrideSliceOpBool4D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
starts
=
[
1
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStrideSliceOpBool5D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
4
,
5
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
0
]
self
.
ends
=
[
2
,
2
,
3
,
4
,
4
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
]
class
TestStrideSliceOpBool6D
(
TestStrideSliceOpBool
):
def
initTestCase
(
self
):
self
.
input
=
np
.
random
.
rand
(
3
,
3
,
3
,
6
,
7
,
8
).
astype
(
"bool"
)
self
.
axes
=
[
0
,
1
,
2
,
3
,
4
,
5
]
self
.
starts
=
[
1
,
0
,
0
,
0
,
1
,
2
]
self
.
ends
=
[
2
,
2
,
3
,
1
,
2
,
8
]
self
.
strides
=
[
1
,
1
,
1
,
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
,
1
,
1
]
class
TestStridedSliceOp_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
starts_infer
=
[
1
,
10
,
2
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_ends_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'EndsTensorList'
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends_infer
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
0
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
2
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
self
.
ends_infer
=
[
3
,
1
,
4
]
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_starts_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends
,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_ends_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
#'ends': self.ends,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_listTensor_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
config
()
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
op_type
=
"strided_slice"
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
"EndsTensorList"
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends,
'strides'
:
self
.
strides
,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestStridedSliceOp_strides_Tensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"strided_slice"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StridesTensor"
:
np
.
array
(
self
.
strides
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
output
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
#'strides': self.strides,
'infer_flags'
:
self
.
infer_flags
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
self
.
starts
=
[
1
,
-
1
,
2
]
self
.
ends
=
[
2
,
0
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
strides
=
[
1
,
-
1
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
output
=
strided_slice_native_forward
(
self
.
input
,
self
.
axes
,
self
.
starts
,
self
.
ends
,
self
.
strides
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Test python API
class
TestStridedSliceAPI
(
unittest
.
TestCase
):
def
test_1
(
self
):
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float32"
)
minus_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
-
1
)
minus_3
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
-
3
)
starts
=
fluid
.
layers
.
data
(
name
=
'starts'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
ends
=
fluid
.
layers
.
data
(
name
=
'ends'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
strides
=
fluid
.
layers
.
data
(
name
=
'strides'
,
shape
=
[
3
],
dtype
=
'int32'
,
append_batch_size
=
False
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
3
,
4
,
5
,
6
],
append_batch_size
=
False
,
dtype
=
"float32"
)
out_1
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
[
-
3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
],
strides
=
[
1
,
1
,
1
])
out_2
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
],
strides
=
[
1
,
1
,
1
])
out_3
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
minus_1
],
strides
=
[
1
,
1
,
1
])
out_4
=
paddle
.
strided_slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
,
strides
=
strides
)
out_5
=
x
[
-
3
:
3
,
0
:
100
:
2
,
-
1
:
2
:
-
1
]
out_6
=
x
[
minus_3
:
3
:
1
,
0
:
100
:
2
,
:,
minus_1
:
2
:
minus_1
]
out_7
=
x
[
minus_1
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
]
exe
=
fluid
.
Executor
(
place
=
fluid
.
MLUPlace
(
0
))
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
input
,
'starts'
:
np
.
array
([
-
3
,
0
,
2
]).
astype
(
"int32"
),
'ends'
:
np
.
array
([
3
,
2147483648
,
-
1
]).
astype
(
"int64"
),
'strides'
:
np
.
array
([
1
,
1
,
1
]).
astype
(
"int32"
)
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
])
assert
np
.
array_equal
(
res_1
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_2
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_3
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_4
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_5
,
input
[
-
3
:
3
,
0
:
100
:
2
,
-
1
:
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_6
,
input
[
-
3
:
3
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
])
assert
np
.
array_equal
(
res_7
,
input
[
-
1
,
0
:
100
:
2
,
:,
-
1
:
2
:
-
1
])
def
test_dygraph_op
(
self
):
x
=
paddle
.
zeros
(
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"float32"
)
axes
=
[
1
,
2
,
3
]
starts
=
[
-
3
,
0
,
2
]
ends
=
[
3
,
2
,
4
]
strides_1
=
[
1
,
1
,
1
]
sliced_1
=
paddle
.
strided_slice
(
x
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
,
strides
=
strides_1
)
assert
sliced_1
.
shape
==
(
3
,
2
,
2
,
2
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录