未验证 提交 b7496bcb 编写于 作者: F fwenguang 提交者: GitHub

[MLU] add pytest for mlu strided_slice kernel (#44523)

上级 3d88816e
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append('..')
from op_test import OpTest
from test_strided_slice_op import strided_slice_native_forward
import numpy as np
import unittest
import paddle.fluid as fluid
import paddle
paddle.enable_static()
class TestStrideSliceOp(OpTest):
def setUp(self):
self.initTestCase()
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.op_type = 'strided_slice'
self.python_api = paddle.strided_slice
self.output = strided_slice_native_forward(self.input, self.axes,
self.starts, self.ends,
self.strides)
self.inputs = {'Input': self.input}
self.outputs = {'Out': self.output}
self.attrs = {
'axes': self.axes,
'starts': self.starts,
'ends': self.ends,
'strides': self.strides,
'infer_flags': self.infer_flags
}
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
def test_check_grad(self):
self.check_grad_with_place(self.place,
set(['Input']),
'Out',
check_eager=False)
def initTestCase(self):
self.input = np.random.rand(100).astype(np.float32)
self.axes = [0]
self.starts = [-4]
self.ends = [-3]
self.strides = [1]
self.infer_flags = [1]
class TestStrideSliceOp1(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(100).astype(np.float32)
self.axes = [0]
self.starts = [3]
self.ends = [8]
self.strides = [1]
self.infer_flags = [1]
class TestStrideSliceOp2(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(100).astype(np.float32)
self.axes = [0]
self.starts = [5]
self.ends = [0]
self.strides = [-1]
self.infer_flags = [1]
class TestStrideSliceOp3(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(100).astype(np.float32)
self.axes = [0]
self.starts = [-1]
self.ends = [-3]
self.strides = [-1]
self.infer_flags = [1]
class TestStrideSliceOp4(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(3, 4, 10).astype(np.float32)
self.axes = [0, 1, 2]
self.starts = [0, -1, 0]
self.ends = [2, -3, 5]
self.strides = [1, -1, 1]
self.infer_flags = [1, 1, 1]
class TestStrideSliceOp5(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(5, 5, 5).astype(np.float32)
self.axes = [0, 1, 2]
self.starts = [1, 0, 0]
self.ends = [2, 1, 3]
self.strides = [1, 1, 1]
self.infer_flags = [1, 1, 1]
class TestStrideSliceOp6(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(5, 5, 5).astype(np.float32)
self.axes = [0, 1, 2]
self.starts = [1, -1, 0]
self.ends = [2, -3, 3]
self.strides = [1, -1, 1]
self.infer_flags = [1, 1, 1]
class TestStrideSliceOp7(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(5, 5, 5).astype(np.float32)
self.axes = [0, 1, 2]
self.starts = [1, 0, 0]
self.ends = [2, 2, 3]
self.strides = [1, 1, 1]
self.infer_flags = [1, 1, 1]
class TestStrideSliceOp8(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(1, 100, 1).astype(np.float32)
self.axes = [1]
self.starts = [1]
self.ends = [2]
self.strides = [1]
self.infer_flags = [1]
class TestStrideSliceOp9(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(1, 100, 1).astype(np.float32)
self.axes = [1]
self.starts = [-1]
self.ends = [-2]
self.strides = [-1]
self.infer_flags = [1]
class TestStrideSliceOp10(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(10, 10).astype(np.float32)
self.axes = [0, 1]
self.starts = [1, 0]
self.ends = [2, 2]
self.strides = [1, 1]
self.infer_flags = [1, 1]
class TestStrideSliceOp11(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(3, 3, 3, 4).astype(np.float32)
self.axes = [0, 1, 2, 3]
self.starts = [1, 0, 0, 0]
self.ends = [2, 2, 3, 4]
self.strides = [1, 1, 1, 2]
self.infer_flags = [1, 1, 1, 1]
class TestStrideSliceOp12(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(3, 3, 3, 4, 5).astype(np.float32)
self.axes = [0, 1, 2, 3, 4]
self.starts = [1, 0, 0, 0, 0]
self.ends = [2, 2, 3, 4, 4]
self.strides = [1, 1, 1, 1, 1]
self.infer_flags = [1, 1, 1, 1]
class TestStrideSliceOp13(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(3, 3, 3, 6, 7, 8).astype(np.float32)
self.axes = [0, 1, 2, 3, 4, 5]
self.starts = [1, 0, 0, 0, 1, 2]
self.ends = [2, 2, 3, 1, 2, 8]
self.strides = [1, 1, 1, 1, 1, 2]
self.infer_flags = [1, 1, 1, 1, 1]
class TestStrideSliceOp14(TestStrideSliceOp):
def initTestCase(self):
self.input = np.random.rand(4, 4, 4, 4).astype(np.float32)
self.axes = [1, 2, 3]
self.starts = [-5, 0, -7]
self.ends = [-1, 2, 4]
self.strides = [1, 1, 1]
self.infer_flags = [1, 1, 1]
class TestStrideSliceOpBool(TestStrideSliceOp):
def test_check_grad(self):
pass
class TestStrideSliceOpBool1D(TestStrideSliceOpBool):
def initTestCase(self):
self.input = np.random.rand(100).astype("bool")
self.axes = [0]
self.starts = [3]
self.ends = [8]
self.strides = [1]
self.infer_flags = [1]
class TestStrideSliceOpBool2D(TestStrideSliceOpBool):
def initTestCase(self):
self.input = np.random.rand(10, 10).astype("bool")
self.axes = [0, 1]
self.starts = [1, 0]
self.ends = [2, 2]
self.strides = [1, 1]
self.infer_flags = [1, 1]
class TestStrideSliceOpBool3D(TestStrideSliceOpBool):
def initTestCase(self):
self.input = np.random.rand(3, 4, 10).astype("bool")
self.axes = [0, 1, 2]
self.starts = [0, -1, 0]
self.ends = [2, -3, 5]
self.strides = [1, -1, 1]
self.infer_flags = [1, 1, 1]
class TestStrideSliceOpBool4D(TestStrideSliceOpBool):
def initTestCase(self):
self.input = np.random.rand(3, 3, 3, 4).astype("bool")
self.axes = [0, 1, 2, 3]
self.starts = [1, 0, 0, 0]
self.ends = [2, 2, 3, 4]
self.strides = [1, 1, 1, 2]
self.infer_flags = [1, 1, 1, 1]
class TestStrideSliceOpBool5D(TestStrideSliceOpBool):
def initTestCase(self):
self.input = np.random.rand(3, 3, 3, 4, 5).astype("bool")
self.axes = [0, 1, 2, 3, 4]
self.starts = [1, 0, 0, 0, 0]
self.ends = [2, 2, 3, 4, 4]
self.strides = [1, 1, 1, 1, 1]
self.infer_flags = [1, 1, 1, 1]
class TestStrideSliceOpBool6D(TestStrideSliceOpBool):
def initTestCase(self):
self.input = np.random.rand(3, 3, 3, 6, 7, 8).astype("bool")
self.axes = [0, 1, 2, 3, 4, 5]
self.starts = [1, 0, 0, 0, 1, 2]
self.ends = [2, 2, 3, 1, 2, 8]
self.strides = [1, 1, 1, 1, 1, 2]
self.infer_flags = [1, 1, 1, 1, 1]
class TestStridedSliceOp_starts_ListTensor(OpTest):
def setUp(self):
self.op_type = "strided_slice"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.config()
starts_tensor = []
for index, ele in enumerate(self.starts):
starts_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
self.outputs = {'Out': self.output}
self.attrs = {
'axes': self.axes,
'starts': self.starts_infer,
'ends': self.ends,
'strides': self.strides,
'infer_flags': self.infer_flags
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [3, 3, 4]
self.axes = [0, 1, 2]
self.strides = [1, 1, 1]
self.infer_flags = [1, -1, 1]
self.output = strided_slice_native_forward(self.input, self.axes,
self.starts, self.ends,
self.strides)
self.starts_infer = [1, 10, 2]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['Input'],
'Out',
max_relative_error=0.006)
class TestStridedSliceOp_ends_ListTensor(OpTest):
def setUp(self):
self.op_type = "strided_slice"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.config()
ends_tensor = []
for index, ele in enumerate(self.ends):
ends_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {'Input': self.input, 'EndsTensorList': ends_tensor}
self.outputs = {'Out': self.output}
self.attrs = {
'axes': self.axes,
'starts': self.starts,
'ends': self.ends_infer,
'strides': self.strides,
'infer_flags': self.infer_flags
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 0]
self.ends = [3, 3, 4]
self.axes = [0, 1, 2]
self.strides = [1, 1, 2]
self.infer_flags = [1, -1, 1]
self.output = strided_slice_native_forward(self.input, self.axes,
self.starts, self.ends,
self.strides)
self.ends_infer = [3, 1, 4]
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['Input'],
'Out',
max_relative_error=0.006)
class TestStridedSliceOp_starts_Tensor(OpTest):
def setUp(self):
self.op_type = "strided_slice"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.config()
self.inputs = {
'Input': self.input,
"StartsTensor": np.array(self.starts, dtype="int32")
}
self.outputs = {'Out': self.output}
self.attrs = {
'axes': self.axes,
#'starts': self.starts,
'ends': self.ends,
'strides': self.strides,
'infer_flags': self.infer_flags,
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [2, 3, 4]
self.axes = [0, 1, 2]
self.strides = [1, 1, 1]
self.infer_flags = [-1, -1, -1]
self.output = strided_slice_native_forward(self.input, self.axes,
self.starts, self.ends,
self.strides)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['Input'],
'Out',
max_relative_error=0.006)
class TestStridedSliceOp_ends_Tensor(OpTest):
def setUp(self):
self.op_type = "strided_slice"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.config()
self.inputs = {
'Input': self.input,
"EndsTensor": np.array(self.ends, dtype="int32")
}
self.outputs = {'Out': self.output}
self.attrs = {
'axes': self.axes,
'starts': self.starts,
#'ends': self.ends,
'strides': self.strides,
'infer_flags': self.infer_flags,
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [2, 3, 4]
self.axes = [0, 1, 2]
self.strides = [1, 1, 1]
self.infer_flags = [-1, -1, -1]
self.output = strided_slice_native_forward(self.input, self.axes,
self.starts, self.ends,
self.strides)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['Input'],
'Out',
max_relative_error=0.006)
class TestStridedSliceOp_listTensor_Tensor(OpTest):
def setUp(self):
self.config()
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
ends_tensor = []
for index, ele in enumerate(self.ends):
ends_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.op_type = "strided_slice"
self.inputs = {
'Input': self.input,
"StartsTensor": np.array(self.starts, dtype="int32"),
"EndsTensorList": ends_tensor
}
self.outputs = {'Out': self.output}
self.attrs = {
'axes': self.axes,
#'starts': self.starts,
#'ends': self.ends,
'strides': self.strides,
'infer_flags': self.infer_flags,
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, 0, 2]
self.ends = [2, 3, 4]
self.axes = [0, 1, 2]
self.strides = [1, 1, 1]
self.infer_flags = [-1, -1, -1]
self.output = strided_slice_native_forward(self.input, self.axes,
self.starts, self.ends,
self.strides)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['Input'],
'Out',
max_relative_error=0.006)
class TestStridedSliceOp_strides_Tensor(OpTest):
def setUp(self):
self.op_type = "strided_slice"
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.config()
self.inputs = {
'Input': self.input,
"StridesTensor": np.array(self.strides, dtype="int32")
}
self.outputs = {'Out': self.output}
self.attrs = {
'axes': self.axes,
'starts': self.starts,
'ends': self.ends,
#'strides': self.strides,
'infer_flags': self.infer_flags,
}
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
self.starts = [1, -1, 2]
self.ends = [2, 0, 4]
self.axes = [0, 1, 2]
self.strides = [1, -1, 1]
self.infer_flags = [-1, -1, -1]
self.output = strided_slice_native_forward(self.input, self.axes,
self.starts, self.ends,
self.strides)
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad_normal(self):
self.check_grad_with_place(self.place, ['Input'],
'Out',
max_relative_error=0.006)
# Test python API
class TestStridedSliceAPI(unittest.TestCase):
def test_1(self):
input = np.random.random([3, 4, 5, 6]).astype("float32")
minus_1 = fluid.layers.fill_constant([1], "int32", -1)
minus_3 = fluid.layers.fill_constant([1], "int32", -3)
starts = fluid.layers.data(name='starts',
shape=[3],
dtype='int32',
append_batch_size=False)
ends = fluid.layers.data(name='ends',
shape=[3],
dtype='int32',
append_batch_size=False)
strides = fluid.layers.data(name='strides',
shape=[3],
dtype='int32',
append_batch_size=False)
x = fluid.layers.data(name="x",
shape=[3, 4, 5, 6],
append_batch_size=False,
dtype="float32")
out_1 = paddle.strided_slice(x,
axes=[0, 1, 2],
starts=[-3, 0, 2],
ends=[3, 100, -1],
strides=[1, 1, 1])
out_2 = paddle.strided_slice(x,
axes=[0, 1, 3],
starts=[minus_3, 0, 2],
ends=[3, 100, -1],
strides=[1, 1, 1])
out_3 = paddle.strided_slice(x,
axes=[0, 1, 3],
starts=[minus_3, 0, 2],
ends=[3, 100, minus_1],
strides=[1, 1, 1])
out_4 = paddle.strided_slice(x,
axes=[0, 1, 2],
starts=starts,
ends=ends,
strides=strides)
out_5 = x[-3:3, 0:100:2, -1:2:-1]
out_6 = x[minus_3:3:1, 0:100:2, :, minus_1:2:minus_1]
out_7 = x[minus_1, 0:100:2, :, -1:2:-1]
exe = fluid.Executor(place=fluid.MLUPlace(0))
res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
fluid.default_main_program(),
feed={
"x": input,
'starts': np.array([-3, 0, 2]).astype("int32"),
'ends': np.array([3, 2147483648, -1]).astype("int64"),
'strides': np.array([1, 1, 1]).astype("int32")
},
fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
assert np.array_equal(res_5, input[-3:3, 0:100:2, -1:2:-1, :])
assert np.array_equal(res_6, input[-3:3, 0:100:2, :, -1:2:-1])
assert np.array_equal(res_7, input[-1, 0:100:2, :, -1:2:-1])
def test_dygraph_op(self):
x = paddle.zeros(shape=[3, 4, 5, 6], dtype="float32")
axes = [1, 2, 3]
starts = [-3, 0, 2]
ends = [3, 2, 4]
strides_1 = [1, 1, 1]
sliced_1 = paddle.strided_slice(x,
axes=axes,
starts=starts,
ends=ends,
strides=strides_1)
assert sliced_1.shape == (3, 2, 2, 2)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册