From b6f9ba484ee285b75d40272f8a2f48267fb3284c Mon Sep 17 00:00:00 2001 From: chengduoZH Date: Wed, 8 Nov 2017 18:19:41 +0800 Subject: [PATCH] fix conv2d doc --- paddle/operators/conv_op.cc | 14 ++++++++++---- python/paddle/v2/framework/tests/test_conv2d_op.py | 5 ++++- 2 files changed, 14 insertions(+), 5 deletions(-) diff --git a/paddle/operators/conv_op.cc b/paddle/operators/conv_op.cc index 852ac2ae37c..a848b9b49cd 100644 --- a/paddle/operators/conv_op.cc +++ b/paddle/operators/conv_op.cc @@ -54,6 +54,12 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { std::vector output_shape({in_dims[0], filter_dims[0]}); for (size_t i = 0; i < paddings.size(); ++i) { + PADDLE_ENFORCE(in_dims[i + 2] + 2 * paddings[i] - + (dilations[i] * (filter_dims[i + 2] - 1) + 1) > + 0, + "Due to the settings of paddings, filter_dims and " + "dilations, the output size is less than 0, please check " + "again."); output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i], paddings[i], paddings[i], strides[i])); @@ -100,11 +106,11 @@ Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto, Convolution Operator. The convolution operation calculates the output based on the input, filter -and strides, paddings, groups parameters. The size of each dimension of the +and strides, paddings, groups, dilations parameters. The size of each dimension of the parameters is checked in the infer-shape. Input(Input, Filter) and output(Output) are in NCHW format. Where N is batch size, C is the number of channels, H is the height of the feature, and W is -the width of the feature. Parameters(ksize, strides, paddings) are two elements. +the width of the feature. Parameters(ksize, strides, paddings, dilations) are two elements. These two elements represent height and width, respectively. The input(X) size and output(Out) size may be different. @@ -115,8 +121,8 @@ Example: Output: Output shape: (N, C_out, H_out, W_out) where - H_out = (H_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1; - W_out = (W_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1; + H_out = (H_in + 2 * paddings[0] - (dilations[0]*(filter_size[0] - 1) + 1)) / strides[0] + 1; + W_out = (W_in + 2 * paddings[1] - (dilations[1]*(filter_size[1] - 1) + 1)) / strides[1] + 1; )DOC"); } diff --git a/python/paddle/v2/framework/tests/test_conv2d_op.py b/python/paddle/v2/framework/tests/test_conv2d_op.py index 04ae7f294c2..f3f3930dab0 100644 --- a/python/paddle/v2/framework/tests/test_conv2d_op.py +++ b/python/paddle/v2/framework/tests/test_conv2d_op.py @@ -39,6 +39,7 @@ class TestConv2dOp(OpTest): def setUp(self): self.init_op_type() self.init_group() + self.init_dilation() self.init_test_case() conv2d_param = {'stride': self.stride, 'pad': self.pad} @@ -80,12 +81,14 @@ class TestConv2dOp(OpTest): def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] - self.dilations = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] / self.groups self.filter_size = [6, f_c, 3, 3] + def init_dilation(self): + self.dilations = [1, 1] + def init_group(self): self.groups = 1 -- GitLab