Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b6590b05
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b6590b05
编写于
10月 28, 2018
作者:
S
seiriosPlus
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
submit by tangwei12, test=develop
上级
eef77fdd
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
253 addition
and
183 deletion
+253
-183
paddle/fluid/operators/merge_ids_op.cc
paddle/fluid/operators/merge_ids_op.cc
+19
-12
paddle/fluid/operators/merge_ids_op.h
paddle/fluid/operators/merge_ids_op.h
+54
-41
paddle/fluid/operators/split_ids_op.cc
paddle/fluid/operators/split_ids_op.cc
+42
-11
paddle/fluid/operators/split_ids_op.h
paddle/fluid/operators/split_ids_op.h
+30
-8
python/paddle/fluid/tests/unittests/test_merge_ids_op.py
python/paddle/fluid/tests/unittests/test_merge_ids_op.py
+22
-9
python/paddle/fluid/tests/unittests/test_split_ids_op.py
python/paddle/fluid/tests/unittests/test_split_ids_op.py
+7
-4
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+79
-98
未找到文件。
paddle/fluid/operators/merge_ids_op.cc
浏览文件 @
b6590b05
...
@@ -20,13 +20,16 @@ namespace operators {
...
@@ -20,13 +20,16 @@ namespace operators {
class
MergeIdsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
MergeIdsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"Ids"
,
"(LoDTensor) the input ids with shape{batch_num, 1}"
);
AddInput
(
"Ids"
,
"(LoDTensor) the input ids with shape{batch_num, 1}"
)
AddInput
(
.
AsDuplicable
();
"X"
,
AddInput
(
"Rows"
,
"(LoDTensor) the input ids with shape{row_size, 1}, "
)
"(LoDTensors) multi input tensor with shape{batch_num, N}, N is the "
.
AsDuplicable
();
AddInput
(
"X"
,
"(LoDTensors) multi input tensor with shape{Rows, N}, N is the "
"size of embedding table"
)
"size of embedding table"
)
.
AsDuplicable
();
.
AsDuplicable
();
AddOutput
(
"Out"
,
"(LoDTensor) The merged outputs of the input tensors."
);
AddOutput
(
"Out"
,
"(LoDTensor) The merged outputs of the input tensors."
)
.
AsDuplicable
();
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Merge multi LoDTensor's into one according to Ids's shard num.
Merge multi LoDTensor's into one according to Ids's shard num.
...
@@ -79,15 +82,19 @@ class MergeIdsOp : public framework::OperatorWithKernel {
...
@@ -79,15 +82,19 @@ class MergeIdsOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"MergeIdsOp must has input Ids."
);
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"Ids"
),
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"X"
),
"MergeIdsOp must has input X."
);
"MergeIdsOp must has multi input Ids."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"MergeIdsOp must has output Out."
);
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"Rows"
),
"MergeIdsOp must has multi input Rows."
);
PADDLE_ENFORCE
(
ctx
->
HasInputs
(
"X"
),
"MergeIdsOp must has multi input X."
);
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
"Out"
),
"MergeIdsOp must has multi output Out."
);
auto
ids_var_type
=
ctx
->
GetInputsVarType
(
"Ids"
).
front
();
auto
ids_var_type
=
ctx
->
GetInputsVarType
(
"Ids"
).
front
();
auto
ids_dims
=
ctx
->
GetInputDim
(
"Ids"
);
auto
ids_dims
=
ctx
->
GetInput
s
Dim
(
"Ids"
);
if
(
ids_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
if
(
ids_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_EQ
(
ids_dims
.
size
(),
2
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
0
]
.
size
(),
2
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
1
],
1
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
0
][
1
],
1
);
}
}
auto
x_var_type
=
ctx
->
GetInputsVarType
(
"X"
);
auto
x_var_type
=
ctx
->
GetInputsVarType
(
"X"
);
for
(
auto
&
var_type
:
x_var_type
)
{
for
(
auto
&
var_type
:
x_var_type
)
{
...
...
paddle/fluid/operators/merge_ids_op.h
浏览文件 @
b6590b05
...
@@ -14,6 +14,8 @@ limitations under the License. */
...
@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#pragma once
#include <tuple>
#include <unordered_map>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/tensor_util.h"
...
@@ -30,59 +32,70 @@ class MergeIdsOpKernel : public framework::OpKernel<T> {
...
@@ -30,59 +32,70 @@ class MergeIdsOpKernel : public framework::OpKernel<T> {
if
(
!
platform
::
is_cpu_place
(
place
))
{
if
(
!
platform
::
is_cpu_place
(
place
))
{
PADDLE_THROW
(
"MergeIds do not support GPU kernel"
);
PADDLE_THROW
(
"MergeIds do not support GPU kernel"
);
}
}
VLOG
(
3
)
<<
"run in MergeIdsOpKernel"
;
const
auto
*
ids_var
=
ctx
.
InputVar
(
"Ids"
);
const
auto
ids
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"Ids"
);
PADDLE_ENFORCE
(
ids_var
->
IsType
<
framework
::
LoDTensor
>
(),
const
auto
row_ids
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"Rows"
);
"only support to merge Ids of LoDTensor"
);
const
auto
x_tensors
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"X"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
LoDTensor
>
(
"Out"
);
const
auto
&
ids_tensor
=
ids_var
->
Get
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
row_ids
.
size
(),
x_tensors
.
size
(),
const
auto
&
ids_dims
=
ids_tensor
.
dims
();
"the number of Rows and X should be the same"
);
const
int64_t
*
ids
=
ids_tensor
.
data
<
int64_t
>
();
PADDLE_ENFORCE_EQ
(
ids
.
size
(),
outs
.
size
(),
"the number of Ids and Out should be the same"
);
auto
x_tensors
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"X"
);
int
row_ids_size
=
0
;
int
row_size
=
0
;
int
embedding_size
=
0
;
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
for
(
int
i
=
0
;
i
<
x_tensors
.
size
();
++
i
)
{
const
auto
*
x_tensor
=
x_tensors
[
i
];
const
auto
*
row_id
=
row_ids
[
i
];
int
batch_size
=
0
;
int
embedding_size
=
0
;
for
(
auto
&
input
:
x_tensors
)
{
if
(
framework
::
product
(
input
->
dims
())
!=
0
)
{
if
(
embedding_size
==
0
)
{
if
(
embedding_size
==
0
)
{
embedding_size
=
input
->
dims
()[
1
];
embedding_size
=
x_tensor
->
dims
()[
1
];
}
}
PADDLE_ENFORCE_EQ
(
embedding_size
,
input
->
dims
()[
1
],
PADDLE_ENFORCE_EQ
(
embedding_size
,
x_tensor
->
dims
()[
1
],
"embedding size of all input should be the same"
);
"embedding size of all input should be the same"
);
batch_size
+=
input
->
dims
()[
0
];
row_size
+=
x_tensor
->
dims
()[
0
];
}
row_ids_size
+=
row_id
->
dims
()[
0
];
}
}
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
batch_size
,
ids_dims
[
0
],
row_size
,
row_ids_size
,
"the batch size of ids and merged embedding value should be the same"
);
"the merged X dim[0] and merged Rows dim[0] should be the same"
);
std
::
unordered_map
<
int64_t
,
std
::
tuple
<
int64_t
,
int64_t
>>
selected_rows_idx_map
;
for
(
int
i
=
0
;
i
<
x_tensors
.
size
();
++
i
)
{
const
auto
*
row_id
=
row_ids
[
i
];
for
(
int
j
=
0
;
j
<
row_id
->
numel
();
++
j
)
{
int64_t
key
=
row_id
->
data
<
int64_t
>
()[
j
];
std
::
tuple
<
int64_t
,
int64_t
>
val
=
std
::
make_tuple
(
i
,
j
);
selected_rows_idx_map
.
insert
(
std
::
make_pair
(
key
,
val
));
}
}
PADDLE_ENFORCE_EQ
(
row_ids_size
,
selected_rows_idx_map
.
size
(),
"the rows and tensor map size should be the same"
);
for
(
int
i
=
0
;
i
<
outs
.
size
();
++
i
)
{
auto
*
out_ids
=
ids
[
i
];
auto
*
out
=
outs
[
i
];
const
size_t
shard_num
=
x_tensors
.
size
(
);
out
->
set_lod
(
out_ids
->
lod
()
);
if
(
shard_num
==
1
)
{
int
nums
=
static_cast
<
int
>
(
out_ids
->
dims
()[
0
]);
VLOG
(
3
)
<<
"only one shard, we can copy the data directly"
;
TensorCopy
(
*
x_tensors
[
0
],
place
,
out
);
}
else
{
std
::
vector
<
int
>
in_indexs
(
shard_num
,
0
);
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
embedding_size
}),
place
);
framework
::
make_ddim
({
nums
,
embedding_size
}),
place
);
// copy data from ins[shard_num] to out.
for
(
int
j
=
0
;
j
<
nums
;
++
j
)
{
for
(
int
i
=
0
;
i
<
ids_dims
[
0
];
++
i
)
{
int
id
=
out_ids
->
data
<
int64_t
>
()[
j
];
int64_t
id
=
ids
[
i
];
auto
row_tuple
=
selected_rows_idx_map
[
id
];
size_t
shard_id
=
static_cast
<
size_t
>
(
id
)
%
shard_num
;
int64_t
row_idx
=
std
::
get
<
1
>
(
row_tuple
);
int
index
=
in_indexs
[
shard_id
];
const
auto
*
x_tensor
=
x_tensors
[
std
::
get
<
0
>
(
row_tuple
)];
memcpy
(
out_data
+
embedding_size
*
i
,
x_tensors
[
shard_id
]
->
data
<
T
>
()
+
index
*
embedding_size
,
memcpy
(
out_data
+
embedding_size
*
j
,
x_tensor
->
data
<
T
>
()
+
row_idx
*
embedding_size
,
sizeof
(
T
)
*
embedding_size
);
sizeof
(
T
)
*
embedding_size
);
in_indexs
[
shard_id
]
+=
1
;
}
for
(
size_t
i
=
0
;
i
<
shard_num
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
in_indexs
[
i
],
x_tensors
[
i
]
->
dims
()[
0
],
"after merge, all data in x_tensor should be used"
);
}
}
}
}
}
}
...
...
paddle/fluid/operators/split_ids_op.cc
浏览文件 @
b6590b05
...
@@ -20,17 +20,24 @@ namespace operators {
...
@@ -20,17 +20,24 @@ namespace operators {
class
SplitIdsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
SplitIdsOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"Ids"
,
"(LoDTensor) the input ids with shape{batch_num, 1}"
);
AddInput
(
"Ids"
,
"(LoDTensor) the input ids with shape{batch_num, 1}"
)
AddOutput
(
"Out"
,
"(LoDTensor) The outputs of the input Ids."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"(LoDTensors) The outputs of the input Ids."
)
.
AsDuplicable
();
.
AsDuplicable
();
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Split a LoDTensor of Ids into multi LoDTensors, the number is pserver's number
Split a LoDTensor of Ids into multi LoDTensors, the number is pserver's number
Example:
Example:
Input:
Input:
X = [
1,2,3,4,5,6
]
X = [
[1,2,3,4,5,6],[2,3]
]
Out(3 output):
Out(3 output):
if compress is True:
out0 = [3, 3, 6]
out1 = [1, 4]
out2 = [2, 2, 5]
else:
out0 = [3, 6]
out0 = [3, 6]
out1 = [1, 4]
out1 = [1, 4]
out2 = [2, 5]
out2 = [2, 5]
...
@@ -43,16 +50,24 @@ class SplitIdsOp : public framework::OperatorWithKernel {
...
@@ -43,16 +50,24 @@ class SplitIdsOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"SplitIdsOp must has input Ids."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
s
(
"Ids"
),
"SplitIdsOp must has input Ids."
);
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
"Out"
),
"SplitIdsOp must has output Out."
);
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
"Out"
),
"SplitIdsOp must has output Out."
);
auto
ids_var_type
=
ctx
->
GetInputsVarType
(
"Ids"
).
front
();
auto
ids_var_type
=
ctx
->
GetInputsVarType
(
"Ids"
).
front
();
auto
ids_dims
=
ctx
->
GetInputDim
(
"Ids"
);
auto
ids_dims
=
ctx
->
GetInput
s
Dim
(
"Ids"
);
if
(
ids_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
if
(
ids_var_type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_EQ
(
ids_dims
.
size
(),
2
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
0
].
size
(),
2
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
1
],
1
);
}
}
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Ids"
).
front
()
->
type
()),
ctx
.
GetPlace
());
}
};
};
class
SplitIdsOpInferVarType
:
public
framework
::
VarTypeInference
{
class
SplitIdsOpInferVarType
:
public
framework
::
VarTypeInference
{
...
@@ -66,12 +81,28 @@ class SplitIdsOpInferVarType : public framework::VarTypeInference {
...
@@ -66,12 +81,28 @@ class SplitIdsOpInferVarType : public framework::VarTypeInference {
}
}
};
};
class
SplitIdsOpGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
grad
=
new
framework
::
OpDesc
();
grad
->
SetType
(
"concat"
);
grad
->
SetInput
(
"X"
,
OutputGrad
(
"Out"
));
grad
->
SetOutput
(
"Out"
,
InputGrad
(
"Ids"
));
grad
->
SetAttr
(
"axis"
,
0
);
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad
);
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
split_ids
,
ops
::
SplitIdsOp
,
ops
::
SplitIdsOpMaker
,
REGISTER_OPERATOR
(
split_ids
,
ops
::
SplitIdsOp
,
ops
::
SplitIdsOpMaker
,
ops
::
SplitIdsOpInferVarType
);
ops
::
SplitIdsOpGradMaker
,
ops
::
SplitIdsOpInferVarType
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
split_ids
,
ops
::
SplitIdsOpKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
,
split_ids
,
ops
::
SplitIdsOpKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
,
ops
::
SplitIdsOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
SplitIdsOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/fluid/operators/split_ids_op.h
浏览文件 @
b6590b05
...
@@ -14,6 +14,8 @@ limitations under the License. */
...
@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#pragma once
#include <iterator>
#include <set>
#include <unordered_map>
#include <unordered_map>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
...
@@ -31,19 +33,39 @@ class SplitIdsOpKernel : public framework::OpKernel<T> {
...
@@ -31,19 +33,39 @@ class SplitIdsOpKernel : public framework::OpKernel<T> {
PADDLE_THROW
(
"SplitIds do not support GPU kernel"
);
PADDLE_THROW
(
"SplitIds do not support GPU kernel"
);
}
}
const
auto
*
ids_var
=
ctx
.
InputVar
(
"Ids"
);
const
auto
ids_vars
=
ctx
.
MultiInputVar
(
"Ids"
);
PADDLE_ENFORCE_GT
(
ids_vars
.
size
(),
0
,
"The number of Ids should > 0"
);
auto
*
ids_var
=
ids_vars
[
0
];
if
(
ids_var
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
ids_var
->
IsType
<
framework
::
LoDTensor
>
())
{
const
auto
&
ids_dims
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Ids"
)
->
dims
();
int
batch_size
=
0
;
const
T
*
ids
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Ids"
)
->
data
<
T
>
();
const
auto
ids_tensors
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"Ids"
);
for
(
size_t
i
=
0
;
i
<
ids_tensors
.
size
();
++
i
)
{
batch_size
+=
ids_tensors
[
i
]
->
dims
()[
0
];
}
VLOG
(
4
)
<<
"Get Total BatchSize is: "
<<
batch_size
;
std
::
vector
<
T
>
all_ids
(
batch_size
);
int
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
ids_tensors
.
size
();
++
i
)
{
const
auto
*
ids
=
ids_tensors
[
i
];
std
::
memcpy
(
all_ids
.
data
()
+
offset
,
ids
->
data
<
T
>
(),
ids
->
numel
()
*
sizeof
(
T
));
offset
+=
ids
->
numel
();
}
std
::
set
<
T
>
st
(
all_ids
.
begin
(),
all_ids
.
end
());
all_ids
.
assign
(
st
.
begin
(),
st
.
end
());
auto
outs
=
ctx
.
MultiOutput
<
framework
::
LoDTensor
>
(
"Out"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
LoDTensor
>
(
"Out"
);
const
size_t
shard_num
=
outs
.
size
();
const
size_t
shard_num
=
outs
.
size
();
std
::
vector
<
std
::
vector
<
T
>>
out_ids
;
std
::
vector
<
std
::
vector
<
T
>>
out_ids
;
out_ids
.
resize
(
outs
.
size
());
out_ids
.
resize
(
outs
.
size
());
// split id by their shard_num.
// split id by their shard_num.
for
(
int
i
=
0
;
i
<
ids_dims
[
0
]
;
++
i
)
{
for
(
int
i
=
0
;
i
<
all_ids
.
size
()
;
++
i
)
{
T
id
=
ids
[
i
];
T
id
=
all_
ids
[
i
];
size_t
shard_id
=
static_cast
<
size_t
>
(
id
)
%
shard_num
;
size_t
shard_id
=
static_cast
<
size_t
>
(
id
)
%
shard_num
;
out_ids
[
shard_id
].
push_back
(
id
);
out_ids
[
shard_id
].
push_back
(
id
);
}
}
...
@@ -64,7 +86,7 @@ class SplitIdsOpKernel : public framework::OpKernel<T> {
...
@@ -64,7 +86,7 @@ class SplitIdsOpKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
ids_dims
[
0
],
PADDLE_ENFORCE_EQ
(
ids_dims
[
0
],
static_cast
<
int64_t
>
(
ids_selected_rows
->
rows
().
size
()),
static_cast
<
int64_t
>
(
ids_selected_rows
->
rows
().
size
()),
""
);
""
);
const
T
*
ids
=
ids_selected_rows
->
value
().
data
<
T
>
();
const
T
*
ids
_data
=
ids_selected_rows
->
value
().
data
<
T
>
();
const
auto
&
ids_rows
=
ids_selected_rows
->
rows
();
const
auto
&
ids_rows
=
ids_selected_rows
->
rows
();
auto
outs
=
ctx
.
MultiOutput
<
framework
::
SelectedRows
>
(
"Out"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
SelectedRows
>
(
"Out"
);
const
size_t
shard_num
=
outs
.
size
();
const
size_t
shard_num
=
outs
.
size
();
...
@@ -87,7 +109,7 @@ class SplitIdsOpKernel : public framework::OpKernel<T> {
...
@@ -87,7 +109,7 @@ class SplitIdsOpKernel : public framework::OpKernel<T> {
T
*
output
=
out
->
mutable_value
()
->
mutable_data
<
T
>
(
ddim
,
place
);
T
*
output
=
out
->
mutable_value
()
->
mutable_data
<
T
>
(
ddim
,
place
);
for
(
int64_t
i
=
0
;
i
<
ddim
[
0
];
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
ddim
[
0
];
++
i
)
{
memcpy
(
output
+
i
*
row_width
,
memcpy
(
output
+
i
*
row_width
,
ids
+
id_to_index
[
out
->
rows
()[
i
]]
*
row_width
,
ids
_data
+
id_to_index
[
out
->
rows
()[
i
]]
*
row_width
,
row_width
*
sizeof
(
T
));
row_width
*
sizeof
(
T
));
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_merge_ids_op.py
浏览文件 @
b6590b05
...
@@ -22,15 +22,28 @@ from op_test import OpTest
...
@@ -22,15 +22,28 @@ from op_test import OpTest
class
TestMergeIdsOp
(
OpTest
):
class
TestMergeIdsOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"merge_ids"
self
.
op_type
=
"merge_ids"
ids
=
np
.
array
([[
0
],
[
2
],
[
2
],
[
3
],
[
5
],
[
5
],
[
6
]]).
astype
(
'int64'
)
ids1
=
np
.
array
([[
0
],
[
2
],
[
5
],
[
6
]]).
astype
(
'int64'
)
x0
=
np
.
array
([[
0.1
,
0.2
],
[
0.2
,
0.3
],
[
0.3
,
0.4
]]).
astype
(
'float32'
)
ids2
=
np
.
array
([[
0
],
[
2
],
[
2
],
[
3
]]).
astype
(
'int64'
)
x1
=
np
.
array
([]).
astype
(
'float32'
)
x2
=
np
.
array
([[
0.4
,
0.5
],
[
0.4
,
0.5
],
[
0.5
,
0.6
],
rows1
=
np
.
array
([[
0
],
[
2
]]).
astype
(
'int64'
)
[
0.5
,
0.6
]]).
astype
(
'float32'
)
rows2
=
np
.
array
([[
3
],
[
5
]]).
astype
(
'int64'
)
out
=
np
.
array
([[
0.1
,
0.2
],
[
0.4
,
0.5
],
[
0.4
,
0.5
],
[
0.2
,
0.3
],
rows3
=
np
.
array
([[
6
]]).
astype
(
'int64'
)
[
0.5
,
0.6
],
[
0.5
,
0.6
],
[
0.3
,
0.4
]]).
astype
(
'float32'
)
self
.
inputs
=
{
'Ids'
:
ids
,
"X"
:
[(
'x0'
,
x0
),
(
'x1'
,
x1
),
(
'x2'
,
x2
)]}
x0
=
np
.
array
([[
0.1
,
0.2
],
[
0.2
,
0.3
]]).
astype
(
'float32'
)
self
.
outputs
=
{
'Out'
:
out
}
x1
=
np
.
array
([[
0.3
,
0.4
],
[
0.4
,
0.5
]]).
astype
(
'float32'
)
x2
=
np
.
array
([[
0.5
,
0.6
]]).
astype
(
'float32'
)
out1
=
np
.
array
(
[[
0.1
,
0.2
],
[
0.2
,
0.3
],
[
0.4
,
0.5
],
[
0.5
,
0.6
]]).
astype
(
'float32'
)
out2
=
np
.
array
(
[[
0.1
,
0.2
],
[
0.2
,
0.3
],
[
0.2
,
0.3
],
[
0.3
,
0.4
]]).
astype
(
'float32'
)
self
.
inputs
=
{
'Ids'
:
[(
'ids1'
,
ids1
),
(
'ids2'
,
ids2
)],
"Rows"
:
[(
'rows1'
,
rows1
),
(
'rows2'
,
rows2
),
(
'rows3'
,
rows3
)],
"X"
:
[(
'x0'
,
x0
),
(
'x1'
,
x1
),
(
'x2'
,
x2
)]
}
self
.
outputs
=
{
'Out'
:
[(
'out1'
,
out1
),
(
'out2'
,
out2
)]}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
...
...
python/paddle/fluid/tests/unittests/test_split_ids_op.py
浏览文件 @
b6590b05
...
@@ -25,18 +25,21 @@ from paddle.fluid.op import Operator
...
@@ -25,18 +25,21 @@ from paddle.fluid.op import Operator
class
TestSplitIdsOp
(
OpTest
):
class
TestSplitIdsOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"split_ids"
self
.
op_type
=
"split_ids"
ids
=
np
.
array
([[
0
],
[
2
],
[
2
],
[
3
],
[
5
],
[
5
],
[
6
]]).
astype
(
'int64'
)
ids1
=
np
.
array
([[
0
],
[
2
],
[
2
],
[
3
],
[
5
],
[
5
],
[
6
]]).
astype
(
'int64'
)
ids2
=
np
.
array
([[
6
],
[
2
],
[
3
],
[
3
],
[
5
],
[
2
],
[
6
]]).
astype
(
'int64'
)
ids3
=
np
.
array
([[
2
],
[
2
],
[
2
],
[
3
],
[
5
],
[
5
],
[
6
]]).
astype
(
'int64'
)
out0
=
np
.
array
([[
0
],
[
3
],
[
6
]]).
astype
(
'int64'
)
out0
=
np
.
array
([[
0
],
[
3
],
[
6
]]).
astype
(
'int64'
)
out1
=
np
.
array
([[]]).
astype
(
'int64'
)
out1
=
np
.
array
([[]]).
astype
(
'int64'
)
out2
=
np
.
array
([[
2
],
[
2
],
[
5
],
[
5
]]).
astype
(
'int64'
)
out2
=
np
.
array
([[
2
],
[
5
]]).
astype
(
'int64'
)
self
.
inputs
=
{
'Ids'
:
ids
}
self
.
inputs
=
{
'Ids'
:
[(
'ids1'
,
ids1
),
(
'ids2'
,
ids2
),
(
'ids3'
,
ids3
)]
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
out0
),
(
'out1'
,
out1
),
(
'out2'
,
out2
)]}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
out0
),
(
'out1'
,
out1
),
(
'out2'
,
out2
)]}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
class
TestSplit
eId
s
(
unittest
.
TestCase
):
class
TestSplit
SelectedRow
s
(
unittest
.
TestCase
):
def
get_places
(
self
):
def
get_places
(
self
):
places
=
[
core
.
CPUPlace
()]
places
=
[
core
.
CPUPlace
()]
return
places
return
places
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
b6590b05
...
@@ -1033,15 +1033,11 @@ to transpile() call.")
...
@@ -1033,15 +1033,11 @@ to transpile() call.")
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
pserver_endpoints
):
pserver_endpoints
):
# 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
# 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
# self.all_prefetch_input_vars =
self
.
all_in_ids_vars
=
[]
# [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
# [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
self
.
all_prefetch_input_vars
=
[]
self
.
all_prefetch_input_vars
=
[]
# self.all_prefetch_input_vars =
# [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
# [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
self
.
all_prefetch_output_vars
=
[]
self
.
all_prefetch_output_vars
=
[]
self
.
all_out_emb_vars
=
[]
lookup_table_op_index
=
-
1
continue_search_lookup_table_op
=
True
continue_search_lookup_table_op
=
True
while
continue_search_lookup_table_op
:
while
continue_search_lookup_table_op
:
...
@@ -1051,42 +1047,50 @@ to transpile() call.")
...
@@ -1051,42 +1047,50 @@ to transpile() call.")
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
continue_search_lookup_table_op
=
True
continue_search_lookup_table_op
=
True
lookup_table_op_index
=
list
(
all_ops
).
index
(
op
)
lookup_table_op_index
=
lookup_table_op_index
if
lookup_table_op_index
!=
-
1
else
list
(
all_ops
).
index
(
op
)
ids_name
=
op
.
input
(
"Ids"
)
ids_name
=
op
.
input
(
"Ids"
)
out_name
=
op
.
output
(
"Out"
)
out_name
=
op
.
output
(
"Out"
)
ids_var
=
program
.
global_block
().
vars
[
ids_name
[
0
]]
ids_var
=
program
.
global_block
().
vars
[
ids_name
[
0
]]
prefetch_input_vars
=
self
.
_create_splited_vars
(
self
.
all_in_ids_vars
.
append
(
ids_var
)
source_var
=
ids_var
,
block
=
program
.
global_block
(),
tag
=
"_prefetch_in_"
)
self
.
all_prefetch_input_vars
.
append
(
prefetch_input_vars
)
out_var
=
program
.
global_block
().
vars
[
out_name
[
0
]]
out_var
=
program
.
global_block
().
vars
[
out_name
[
0
]]
prefetch_output_vars
=
self
.
_create_splited_vars
(
self
.
all_out_emb_vars
.
append
(
out_var
)
source_var
=
out_var
,
block
=
program
.
global_block
(),
# delete lookup_table_op
tag
=
"_prefetch_out_"
)
delete_ops
(
program
.
global_block
(),
[
op
])
self
.
all_prefetch_output_vars
.
append
(
prefetch_output_vars
)
# break for loop
break
for
index
in
range
(
len
(
self
.
pserver_endpoints
)):
in_var
=
program
.
global_block
().
create_var
(
name
=
str
(
"prefetch_compress_in_tmp_"
+
str
(
index
)),
type
=
self
.
all_in_ids_vars
[
0
].
type
,
shape
=
self
.
all_in_ids_vars
[
0
].
shape
,
dtype
=
self
.
all_in_ids_vars
[
0
].
dtype
)
self
.
all_prefetch_input_vars
.
append
(
in_var
)
out_var
=
program
.
global_block
().
create_var
(
name
=
str
(
"prefetch_compress_out_tmp_"
+
str
(
index
)),
type
=
self
.
all_out_emb_vars
[
0
].
type
,
shape
=
self
.
all_out_emb_vars
[
0
].
shape
,
dtype
=
self
.
all_out_emb_vars
[
0
].
dtype
)
self
.
all_prefetch_output_vars
.
append
(
out_var
)
# insert split_ids_op
# insert split_ids_op
program
.
global_block
().
_insert_op
(
program
.
global_block
().
_insert_op
(
index
=
lookup_table_op_index
,
index
=
lookup_table_op_index
,
type
=
"split_ids"
,
type
=
"split_ids"
,
inputs
=
{
inputs
=
{
'Ids'
:
self
.
all_in_ids_vars
},
'Ids'
:
[
outputs
=
{
"Out"
:
self
.
all_prefetch_input_vars
})
program
.
global_block
().
vars
[
varname
]
for
varname
in
ids_name
]
},
outputs
=
{
"Out"
:
prefetch_input_vars
})
# insert prefetch_op
# insert prefetch_op
program
.
global_block
().
_insert_op
(
program
.
global_block
().
_insert_op
(
index
=
lookup_table_op_index
+
1
,
index
=
lookup_table_op_index
+
1
,
type
=
"prefetch"
,
type
=
"prefetch"
,
inputs
=
{
'X'
:
prefetch_input_vars
},
inputs
=
{
'X'
:
self
.
all_
prefetch_input_vars
},
outputs
=
{
"Out"
:
prefetch_output_vars
},
outputs
=
{
"Out"
:
self
.
all_
prefetch_output_vars
},
attrs
=
{
attrs
=
{
"epmap"
:
pserver_endpoints
,
"epmap"
:
pserver_endpoints
,
# FIXME(qiao) temporarily disable this config because prefetch
# FIXME(qiao) temporarily disable this config because prefetch
...
@@ -1099,23 +1103,11 @@ to transpile() call.")
...
@@ -1099,23 +1103,11 @@ to transpile() call.")
index
=
lookup_table_op_index
+
2
,
index
=
lookup_table_op_index
+
2
,
type
=
"merge_ids"
,
type
=
"merge_ids"
,
inputs
=
{
inputs
=
{
'Ids'
:
[
'Ids'
:
self
.
all_in_ids_vars
,
program
.
global_block
().
vars
[
varname
]
'Rows'
:
self
.
all_prefetch_input_vars
,
for
varname
in
ids_name
'X'
:
self
.
all_prefetch_output_vars
],
'X'
:
prefetch_output_vars
},
},
outputs
=
{
outputs
=
{
"Out"
:
self
.
all_out_emb_vars
})
"Out"
:
[
program
.
global_block
().
vars
[
varname
]
for
varname
in
out_name
]
})
# delete lookup_table_op
delete_ops
(
program
.
global_block
(),
[
op
])
# break for loop
break
def
_split_table_grad_and_add_send_vars
(
self
,
program
,
pserver_endpoints
):
def
_split_table_grad_and_add_send_vars
(
self
,
program
,
pserver_endpoints
):
# 2. add split_ids_op and send_op to send gradient to pservers
# 2. add split_ids_op and send_op to send gradient to pservers
...
@@ -1159,15 +1151,14 @@ to transpile() call.")
...
@@ -1159,15 +1151,14 @@ to transpile() call.")
# STEP: create prefetch block
# STEP: create prefetch block
table_var
=
pserver_program
.
global_block
().
vars
[
self
.
table_name
]
table_var
=
pserver_program
.
global_block
().
vars
[
self
.
table_name
]
prefetch_var_name_to_block_id
=
[]
prefetch_var_name_to_block_id
=
[]
for
index
in
range
(
len
(
self
.
all_prefetch_input_vars
)):
prefetch_block
=
pserver_program
.
_create_block
(
optimize_block
.
idx
)
prefetch_block
=
pserver_program
.
_create_block
(
optimize_block
.
idx
)
trainer_ids
=
self
.
all_prefetch_input_vars
[
index
]
[
pserver_index
]
trainer_ids
=
self
.
all_prefetch_input_vars
[
pserver_index
]
pserver_ids
=
pserver_program
.
global_block
().
create_var
(
pserver_ids
=
pserver_program
.
global_block
().
create_var
(
name
=
trainer_ids
.
name
,
name
=
trainer_ids
.
name
,
type
=
trainer_ids
.
type
,
type
=
trainer_ids
.
type
,
shape
=
trainer_ids
.
shape
,
shape
=
trainer_ids
.
shape
,
dtype
=
trainer_ids
.
dtype
)
dtype
=
trainer_ids
.
dtype
)
trainer_out
=
self
.
all_prefetch_output_vars
[
index
]
[
pserver_index
]
trainer_out
=
self
.
all_prefetch_output_vars
[
pserver_index
]
pserver_out
=
pserver_program
.
global_block
().
create_var
(
pserver_out
=
pserver_program
.
global_block
().
create_var
(
name
=
trainer_out
.
name
,
name
=
trainer_out
.
name
,
type
=
trainer_out
.
type
,
type
=
trainer_out
.
type
,
...
@@ -1363,16 +1354,6 @@ to transpile() call.")
...
@@ -1363,16 +1354,6 @@ to transpile() call.")
program
.
global_block
().
_sync_with_cpp
()
program
.
global_block
().
_sync_with_cpp
()
return
var_mapping
return
var_mapping
def
_create_splited_vars
(
self
,
source_var
,
block
,
tag
):
return
[
block
.
create_var
(
name
=
str
(
source_var
.
name
+
tag
+
str
(
index
)),
type
=
source_var
.
type
,
shape
=
source_var
.
shape
,
dtype
=
source_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
def
_clone_var
(
self
,
block
,
var
,
persistable
=
True
):
def
_clone_var
(
self
,
block
,
var
,
persistable
=
True
):
return
block
.
create_var
(
return
block
.
create_var
(
name
=
var
.
name
,
name
=
var
.
name
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录