Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b56dbe08
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b56dbe08
编写于
7月 29, 2021
作者:
Y
Yuang Liu
提交者:
GitHub
7月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the allreduce fused bug, test=develop (#34446)
上级
76f94f88
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
66 addition
and
193 deletion
+66
-193
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-1
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
...istributed/fleet/meta_optimizers/raw_program_optimizer.py
+65
-192
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
b56dbe08
...
...
@@ -188,7 +188,7 @@ message DistributedStrategy {
optional
bool
find_unused_parameters
=
28
[
default
=
false
];
optional
bool
tensor_parallel
=
29
[
default
=
false
];
optional
bool
without_graph_optimization
=
30
[
default
=
false
];
optional
int32
fuse_grad_size_in_num
=
31
[
default
=
1
];
optional
int32
fuse_grad_size_in_num
=
31
[
default
=
8
];
optional
bool
calc_comm_same_stream
=
32
[
default
=
false
];
optional
bool
asp
=
33
[
default
=
false
];
...
...
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
浏览文件 @
b56dbe08
...
...
@@ -131,7 +131,7 @@ class RawProgramOptimizer(MetaOptimizerBase):
def
_transpile_main_program
(
self
,
loss
):
self
.
_insert_loss_grad_ops
(
loss
)
if
self
.
fuse_all_reduce_ops
:
if
self
.
fuse_all_reduce_ops
and
self
.
fuse_grad_size_in_num
>
1
:
self
.
_allreduce_fusion_program
()
else
:
self
.
_insert_allreduce_ops
()
...
...
@@ -216,11 +216,10 @@ class RawProgramOptimizer(MetaOptimizerBase):
def
_allreduce_fusion_program
(
self
):
block
=
self
.
main_program
.
global_block
()
ring_id
=
self
.
global_ring_id
record_idx
,
allreduce_input_vars
,
allreduce_output_vars
=
[],
[],
[]
ops
=
list
(
enumerate
(
block
.
ops
))
param_grads
=
[]
for
idx
,
op
in
reversed
(
ops
):
# we travers the ops reversely
# find all grad params
for
op
in
reversed
(
block
.
ops
):
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
attr
(
OP_ROLE_VAR_KEY
)
...
...
@@ -229,214 +228,88 @@ class RawProgramOptimizer(MetaOptimizerBase):
assert
len
(
op_role_var
)
%
2
==
0
,
"vars need to be one param var followed by one grad var, "
\
"but got odd number of vars"
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
# handle vars in each op, each time handle a param and a grad
param_name
=
op_role_var
[
i
]
param
=
block
.
var
(
param_name
)
grad_name
=
op_role_var
[
i
+
1
]
grad
=
block
.
var
(
grad_name
)
if
param
.
is_distributed
:
continue
if
".cast_fp16@GRAD"
in
grad_name
:
# when amp=True get the fp16 param
param_name
=
param_name
+
".cast_fp16"
if
not
block
.
has_var
(
param_name
):
raise
ValueError
(
"op cast name error {}"
.
format
(
op
.
type
))
else
:
param
=
block
.
var
(
param_name
)
if
len
(
allreduce_output_vars
)
==
0
or
\
len
(
allreduce_output_vars
[
-
1
])
==
\
self
.
fuse_grad_size_in_num
:
# start of the fusion or last group meets the config size
allreduce_output_vars
.
append
([
grad
])
allreduce_input_vars
.
append
([
param
])
# add the start and end idx to the record idx
record_idx
.
append
([
idx
,
idx
])
param_grads
.
append
(
grad
)
segments
=
[]
last_dtype
=
None
# split the grad based on dtype and fused size
for
var
in
param_grads
:
if
len
(
segments
)
==
0
\
or
len
(
segments
[
-
1
])
==
self
.
fuse_grad_size_in_num
\
or
var
.
dtype
!=
last_dtype
:
segments
.
append
([
var
])
last_dtype
=
var
.
dtype
else
:
# Current group's size is below the config size
# append grad and param to the last group (current group)
# update the start idx to current op's idx
# Since we travers the ops reversely, the idx is descending
# we update the first entry of each entry for record_idx
allreduce_output_vars
[
-
1
].
append
(
grad
)
allreduce_input_vars
[
-
1
].
append
(
param
)
record_idx
[
-
1
][
0
]
=
idx
assert
len
(
allreduce_output_vars
)
==
len
(
record_idx
),
"It has different lens between the allreduce_output_vars and record_idx."
if
not
allreduce_output_vars
or
not
allreduce_input_vars
:
# nothing needs to be allreduced
return
segments
[
-
1
].
append
(
var
)
self
.
vars
=
collections
.
OrderedDict
()
index
,
pos
,
offset
=
0
,
0
,
0
start
,
end
=
record_idx
[
index
]
for
idx
,
op
in
reversed
(
ops
):
if
idx
==
start
:
pos
=
0
done_output_vars
,
done_input_vars
=
self
.
_split_fuction
(
allreduce_output_vars
[
index
],
# grad
allreduce_input_vars
[
index
]
# param
)
for
id_
,
done_output_var
in
enumerate
(
done_output_vars
):
fused_vars
=
[]
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
for
segment
in
segments
:
# insert coalesce tensor
tmp_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}'
.
format
(
done_output_var
[
0
].
name
)),
dtype
=
done_output_var
[
0
].
dtype
,
persistable
=
Fals
e
,
segment
[
0
].
name
)),
dtype
=
segment
[
0
].
dtype
,
persistable
=
Tru
e
,
stop_gradient
=
True
)
self
.
vars
[
'FusedOutput_{}'
.
format
(
done_output_var
[
0
]
.
name
)]
=
tmp_var
block
.
_insert_op
(
idx
+
id_
,
fused_vars
.
append
(
tmp_var
)
block
.
_insert_op_without_sync
(
idx
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
done_input_vars
[
id_
]},
outputs
=
{
"Output"
:
done_output_var
,
"FusedOutput"
:
tmp_var
},
inputs
=
{
"Input"
:
segment
},
outputs
=
{
"Output"
:
segment
,
"FusedOutput"
:
tmp_var
},
attrs
=
{
"copy_data"
:
Fals
e
,
"copy_data"
:
Tru
e
,
"use_align"
:
True
,
"dtype"
:
done_output_var
[
0
].
dtype
,
"dtype"
:
segment
[
0
].
dtype
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
pos
+=
1
for
id_
in
range
(
len
(
done_output_vars
)):
x
=
self
.
vars
[
'FusedOutput_{}'
.
format
(
done_output_vars
[
id_
][
0
].
name
)]
out
=
x
# NOTE: there still some optimize space if use EVENT instead of sync
if
not
self
.
calc_comm_same_stream
:
# need sync if the calc and comm stream are not the same
block
.
_insert_op
(
end
+
id_
+
pos
+
1
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
block
.
_insert_op
(
end
+
id_
+
pos
+
1
if
self
.
calc_comm_same_stream
else
end
+
id_
+
pos
+
2
,
# insert the allreduce_sum op
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
for
fused_var
in
fused_vars
:
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
self
.
calc_comm_same_stream
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
index
+=
1
if
len
(
record_idx
)
==
index
:
if
not
self
.
calc_comm_same_stream
:
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
fused_var
},
outputs
=
{
'Out'
:
fused_var
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
start
,
end
=
record_idx
[
index
]
if
not
self
.
calc_comm_same_stream
:
# need sync if the calc and comm stream are not the same
if
len
(
fused_vars
)
==
0
:
block
.
_sync_with_cpp
()
return
# insert the sync comm op
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
block
.
create_var
()},
outputs
=
{
'Out'
:
block
.
create_var
()},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
inputs
=
{
'X'
:
fused_vars
[
0
]},
outputs
=
{
'Out'
:
fused_vars
[
0
]},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
# Integrate grads of the same type to form a combination.
# If combination is selected, will return grads of the same type in a groups.
# For example:[(fp16, fp16), (fp32), (fp16)] -> [(fp16, fp16, fp16), (fp32)]
def
_split_fuction
(
self
,
allreduce_output_vars
,
allreduce_input_vars
,
combination
=
True
):
input_vars
,
final_input_vars
,
output_vars
,
final_output_vars
=
[],
[],
[],
[]
if
len
(
allreduce_output_vars
)
==
1
:
# only have one var to handle
final_output_vars
.
append
(
allreduce_output_vars
)
final_input_vars
.
append
(
allreduce_input_vars
)
return
final_output_vars
,
final_input_vars
for
idx
in
range
(
len
(
allreduce_input_vars
)
-
1
):
# the last var needs to be handled differently
if
allreduce_input_vars
[
idx
].
dtype
==
allreduce_input_vars
[
idx
+
1
].
dtype
:
# if current var and next var are in same type
# append current var to input_vars
input_vars
.
append
(
allreduce_input_vars
[
idx
])
if
idx
==
len
(
allreduce_input_vars
)
-
2
:
# if current var is the second last var
# append the last var to input_vars
# and update the final_input_vars
input_vars
.
append
(
allreduce_input_vars
[
idx
+
1
])
final_input_vars
.
append
(
input_vars
)
else
:
# the current var and next var are in different types
# append current var to input_vars
# update the final_input_vars
# reset input_vars to receive a new type
input_vars
.
append
(
allreduce_input_vars
[
idx
])
final_input_vars
.
append
(
input_vars
)
input_vars
=
[]
if
idx
==
len
(
allreduce_input_vars
)
-
2
:
# if current var is the second last var
# append the last var to a reset input_vars since they are in different types
# and update the final_input_vars
input_vars
.
append
(
allreduce_input_vars
[
idx
+
1
])
final_input_vars
.
append
(
input_vars
)
for
idx
in
range
(
len
(
allreduce_output_vars
)
-
1
):
# the procedure for the output vars is the same with that for the input vars
if
allreduce_output_vars
[
idx
].
dtype
==
allreduce_output_vars
[
idx
+
1
].
dtype
:
output_vars
.
append
(
allreduce_output_vars
[
idx
])
if
idx
==
len
(
allreduce_output_vars
)
-
2
:
output_vars
.
append
(
allreduce_output_vars
[
idx
+
1
])
final_output_vars
.
append
(
output_vars
)
else
:
output_vars
.
append
(
allreduce_output_vars
[
idx
])
final_output_vars
.
append
(
output_vars
)
output_vars
=
[]
if
idx
==
len
(
allreduce_output_vars
)
-
2
:
output_vars
.
append
(
allreduce_output_vars
[
idx
+
1
])
final_output_vars
.
append
(
output_vars
)
# at this time, all vars in each group in final_input_vars and final_output_vars are in the same type
if
combination
:
input_fp16_vars
,
input_fp32_vars
,
output_fp16_vars
,
output_fp32_vars
=
[],
[],
[],
[]
for
final_input_var
in
final_input_vars
:
if
final_input_var
[
0
].
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
# extend the group
input_fp16_vars
.
extend
(
final_input_var
)
else
:
input_fp32_vars
.
extend
(
final_input_var
)
for
final_output_var
in
final_output_vars
:
if
final_output_var
[
0
].
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
output_fp16_vars
.
extend
(
final_output_var
)
else
:
output_fp32_vars
.
extend
(
final_output_var
)
final_output_vars
,
final_input_vars
=
[],
[]
if
output_fp16_vars
:
final_output_vars
.
append
(
output_fp16_vars
)
if
output_fp32_vars
:
final_output_vars
.
append
(
output_fp32_vars
)
if
input_fp16_vars
:
final_input_vars
.
append
(
input_fp16_vars
)
if
input_fp32_vars
:
final_input_vars
.
append
(
input_fp32_vars
)
return
final_output_vars
,
final_input_vars
block
.
_sync_with_cpp
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录